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Abstract. The presented work focuses on the investigation of gridded daily mininfTfud) &and maximum

(T X) temperature probability density functions (PDFs) with the intent of both characterising a region and de-
tecting extreme values. The empirical PDFs estimation procedure has been realised using the most recent years
of gridded temperature analysis fields available at ARPA Lombardia, in Northern Italy. The spatial interpola-
tion is based on an implementation of Optimal Interpolation using observations from a dense surface network
of automated weather stations. Aficet has been made to identify both the time period and the spatial areas
with a stable data density otherwise the elaboration could be influenced by the unsettled station distribution.
The PDF used in this study is based on the Gaussian distribution, nevertheless it is designed to have an asym-
metrical (skewed) shape in order to enable distinction between warming and cooling events. Once properly
defined the occurrence of extreme events, it is possible to straightforwardly deliver to the users the information
on a local-scale in a concise way, suchBX:extremely colghot or T N extremely col¢ghot.

1 Introduction grid. The quality of the analysis fields is adequate to resolv

the mesoscale features down to the Mes®ale Thunis and
This paper describes a method for the estimation of dailyBornstein 1996. A T X andTN analysis field is computed
maximum T X and minimumTN temperature probability at each grid point as the daily maximum and minimum (re
density functions (PDFs) from gridded datasets. spectively) of the hourly averaged temperature.

The hourly temperature observations have been measured This work aims to obtain a reliable spatial description of
by ARPA Lombardia’s meteorological network, a dense sur-T XandT N extreme events on a local scale. Extreme tempel
face network of automated weather stations in Northern ltalyature events, such as heat waves or cold spells, are of grea
The mesonet covers part of the southern alpine ridge and oihterest for their impact on human activities, and in a warm-
the Po Plain, where elevation and local advections play im-ing climate scenarioSchar et al, 2004 they are expected
portant roles; a more detailed description of the network carto become more frequent and intense, but the statistical mo
be found inLussana et a(20093. elling of climate extremes across space remains a challenging

As daily temperature extremes are often recorded siissue Katz, 2010).
multaneously at many station$f@hl and Wernli 2012 The statistical model chosen foeX andT N PDFs is based
Wulfmeyer and Henning-Miler, 2009, it is convenient to  on the normal distribution, sinc& X is often observed to
use the high-resolution meteorological information providedbe GaussianKatz and Brown 1992, particularly in sum-
by the whole surface network through a statistical interpola-mer (Mearns et al.1984). A stationary climate is implicitly
tion procedure. assumed, despite climate changderéti and Desiato2008

Lombardy’s weather service has implemented an OptimalSimolo et al, 201Q 2011), because of the short time period
Interpolation (Ol) procedurdJboldi et al, 2008 to interpo-  considered in the elaborations. In this preliminary study, tq
late the sparse hourly temperature observations on a regular
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enable distinction between extreme warm and cold eventscombines the fects of irregular station distribution and of

the statistical model is designed to be asymmetrical. Ol operational choices, resulting in a field with a straightfor-
The extreme event definition is usually based on percentilavard interpretation: dense station areas have IDI values close
thresholds calculated from observed dat&in Tank et al, to 1 while areas with poor station coverage have values close

2009, without any explicit assumption regarding the under- to 0.
lying PDF. In this work, due to the short temporal period cov- In the case of ARPA Lombardia’s automated mesonet the
ered by the initial datasets, any percentile-based thresholBulk of the observations ranges from 2000 to 2011 (with
could lead to ambiguous results. To overcame these limitasome sparse longer time series). The time series of spatially
tions and, hopefully, to infer more general results, the choiceaveraged IDI over Lombardy for this period shows two peri-
has been to include the a-priori knowledge about the ex-ods of stationary IDI value: 2000—2002 and 2005-2011. The
pected temperature behaviour through the PDF. 2003-2004 period is characterised by a gradual IDI increase
This paper is structured as follows: Sect. 2 addresses theorresponding to the mesonet development. Only the latest
issues of data quality and data coverage (temporal and sp&-yr (2005-2011) has been considered in this study.
tial); Sect. 3 presents thHEX and TN PDF models and the An IDI-based spatial mask has been computed to include
related parameter estimation procedure; Sect. 4 discusses tloaly grid points where the station coverage idfisiently
extreme event definition and briefly presents two case studdense and stationary in time, that is, where the IDI value is
ies. mostly close to 1. In Fig®3 and5, where the IDI mask is ap-
plied, white areas within Lombardy’s administrative bound-
aries represent masked out grid points. The borffects are
2 Quality of the observations and gridded fields quite evident, as it's evident thefect of sparse (or variable
in time) data coverage in the Alps.
All new observations of ARPA Lombardia’s meteorological
network undergo a manual quality control procedure within
the network’s quality assurance systdmgsana et al2012

Ranci and Lussan@009, however at present only recent The Tx or TN time series at a fixed location for a calen-
data has been manually verified by meteorologists. To OVergar year shows the noisy weather-related variability overly-
came this Ilm!tatlon the Ol procedure pgrfornjs an automateqng the typical bell-shaped main annual cycle. To simplify
Spatial Consistency Test (SCT), described issana et al.  he presentation the following discussion regafdé but it
(201Q 2009h. The SCT stops observations likely to be af- -5 pe easily applied ©©N.

fected by gross measurement errors from entering the Ol, The TX PDF chosen at any fixed grid point is composed
and also reduces thefects related to the absence of a databy two normal distributions sharing the same mean value
homogenisation procgdyre because of the filter on large SYSorresponding to the PDF'’s location parameter, but with two
tematic or representativity errors. _ _ distinct standard deviations allowing for asymmetry between
The rest of this section concerns the impact of the '”egmarpositive and negative anomalies (i.effeiience between the
s'FatiQn (_jistribution on anz_alysis qual_ity. The analys_is eIror's Ty value and the location parameter). The PDF is then com-
distribution (RMS) at station’s Iocauon_has a median C|°Sep|etely defined by the three parameters: the location param-
to 1°C for all stations but the spread is dependent on stagter (T ), taking into account the main annual cycle, and
tion density and is significantly higher for isolated stations. ihe two scale parametesd X, o7 for positive and negative

Ther_efore, though it’s_ reasonable_to assume a stable a”aWSé‘?nomalies, respectively, accounting for the daily variability.
quality for dense stations areas, in areas with poorer statiofpo PDFprx (X) can be written as:

coverage analysis quality is known to be irregular. In the lat-

3 Estimating probability density functions

ter case, any long-term statistics is likely to include the non- Tx 1 (%0 2
trivial behaviour of the unstable representativity erong- 0 [1/<‘/2_”‘7+ )] exp ‘é( o ) » X2(TX)
sana et a).2010, and its variability is comparable with the PTx{X) = X PR
natural variability. It is necessary to reduce the initial dataset [1/(‘/5‘7— )] exp _E( s ) s X<(TX

in order to use only temporal periods and spatial areas with
stationary and adequate station density, thus avoiding ambi- As a preliminary step in the parameter estimation proce-
guity in the comparisons of the results inffdrent areas or  dure, each month has been split into three 10-day periods as
time periods. shown in Fig.1. The 10-day periods have been used in the
A convenient way to quantify station density is through the selection of the initial statistical datasets for the estimation
Integral Data Influence (IDI) parameter describedJimoldi procedure. It is assumed that each 10-day period is likely to
et al.(2008. The IDI field can be intuitively visualised as the be characterised by similar meteorological conditions. The
analysis obtained by interpolating observations with a con-previous and following 10-day periods show X temporal
stant value of 1 on a constant background field of value Obehaviour on longer time scales than the short-term weather
(without reference to any particular unit). The IDI analysis variability, but still consistent with the assumptions made in
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Figure 2. Milan grid point. Scale parameters estimates for the cal-
endar yearoT%, o™* in black; oIV, o™ in grey;oc™* ando ™ are
reported with opposite sign (negative values).

Figure 1. Milan grid point. Location parameter estimates for the
calendar yearT X values for the period 2005-2011 in gréy;X) in
black.

the estimation procedure, such as the linear trend approximaestimated parameters have been replaced with the averageg
tion used forT X). the estimated values in neighbouring grid points and adjace
As a first step, the parameter estimation procedure haslays.
been applied independently at every grid point. The location Overall the parameter estimation procedure is robust an
parameter for a fixed calendar day is estimated from an initiakesistant, based upon simple assumptions for the probabili
dataset of about two hundrddX values (the analysis from model, and rather insensitive to misbehavior of the data.
the 10-day period containing the calendar day and the two As an example, the estimation procedure is shown for Mi
adjacent 10-day periods). ThémX) is obtained by choos- lan’s grid point. In Fig.1, grey dots represent the initi&lX
ing the linear trend which best fits the dataset at the calendadataset (each day has 7 values from years 2005 to 2011) a|
day. The method used for the linear trend estimation is theblack dots show the rather smootK@&rX) time series at the
median of pairwise slope regressidraizante 1996, based  same grid point. Figur@ shows therI* andoIN time se-
on computing the slope between pairslof values and con-
sidering the median of these values. parameters for negative temperature anomalies are report
The twoT X scale parameters for a fixed calendar day arewith opposite sign (negative values), ahk and TN scale
estimated from the same dataset using temperature anomparameters are shown with black and grey dots, respectivel
lies instead ol X values. As correlations within the anomaly The estimated values are smaller in summer, arount2.5
time series could bias the scale parameters estimatifiss( and higher in winter, around°€. TheT N scale parameters
1999, a resampling procedure has been implemented to creare generally lower than theX parameters.
ate uncorrelated synthetic samples of the three 10-day peri- The maps of seasonally averaged scale parameter, su
ods under consideration. The standard deviation is estimateds those presented in Fig3.and 4, often show a signifi-
separately for the upper and for the lower part —respect to theant (i.e. greater than O°F) difference betweenr, ando_,
median— of each of the synthetic samples and their valueshus supporting the choice of two distinct scale parameter
are assigned toT* ando T, respectively. This procedure is for positive and negative anomalies. In particular, To¥ a
an implementation of the asymmetric biweight standard de-significant diference can be found in winter and, for moun-
viation estimation procedure describedLianzante(1996. tainous areas, also in autumn; significarfietences foil X

ries estimated at this grid point. To avoid confusion, scal¢

[72)

The uncertainties in the! X andoT* values evaluated from
the oT* and o ¥ distributions obtained form the synthetic
samples are about & for both values (the same holds for
TN).

The second step in the parameter estimation procedure imdue to the greater variability associated with daytime weathg
poses temporal and spatial consistency by applying a spaceonditions. Furthermorer_ is greater thanr, for all sea-
time smoothing to the estimates of both location and scalesons except for winter when the situation is the opposite. |
parameters. As the PDF parameters are expected to changeénter, o is significantly greater thaa™ in the Apen-
slowly in space and in time over the high-resolution grid-
ded domain, for each grid point and fixed calendar day thevalleys, probably due to the frequent foehn episodé$’ is

www.adv-sci-res.net/10/59/2013/

have been found in summer, autumn and winter. The sprin
season is characterised by the highest and more variable v
ues ofo-, ando_. In general, the dierence between the two
scale parameters is more pronouncedTot than for TN,

nines, in the south-western part of the Plain and in the alpin
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Figure 3. Winter season (December-January-February) averagedrigure 4. Summer season (June-July-August) averagell The
o™ . The IDI mask has been applied (see S&kt. IDI mask has been applied (see Sejt.

To define an extreme event it is convenient to transform the
random variablél X (or T N) to standard form (i.e. a Gaus-
sian having a sample mean of zero and a sample standard
deviation of one \Wilks, 1995). The resulting standardised
random variabl& has valuez computed as:

significantly greater tham™ N in the Plain due to frequent and
persistent fog. In the other seasoad is increased by the
greater variability due to cloudiness, whité X is associated
with the lower temperature variability in clear sky conditions.
Figures3 and4 show the winter averaged' N and the sum-
mer averaged!* associated with the occurrence of winter _ [ [x—(TX)|/o1X, x>(TX)
cold spells and summer heat waves, respectively. In generaf, { X—(TX)/oTX, X< (TX)
the study of the seasonal averaged maps reveals the stro
influence of the elevation, as expected and showed indig.
nevertheless it is also possible to identify other distinctive
features on a very local scale. In the case of the winter aver
agedo!N, in Fig. 3, the reduced variability of Milan’s urban
area is clearly evident in the Western Plain, probably relate
to the constraining féect of the urban heat island anN's
variability.

r\1/9nerex represents & X realisation. The random variable
Z follows a standard Gaussian distribution regardless of the
calendar day or the grid point considered, therefore this local-
scale definition allows for direct comparison both in space
Oand in time.

The TX and TN events are classified according to their
estimated probability of occurrence as: unusual dfld <
7] <20% or warmP[Z > Z] < 20 %; extreme coldP[Z < 7] <
5% or warmP[Z > Z] < 5 %, whichever more restrictive.
4 Extreme events The high sensitivity of extreme event definition to the PDF

tails suggests avoiding the use of too small probabilities as

Extreme events are by definition rare events, and their probthresholds because the Gaussian assumption may be prob-
ability of occurrence is described by tieX and TN PDFs  lematic.
outermost tails. However, due to the limited temporal period As an example, in Fig5 the TN analysis map is shown
available in this study (only 7yr), it is more likely that ex- for a winter foehn case resulting in extreme warming in sep-
treme events here detected would be in fact moderate exarated areas: two areas close to the conjunction between the
tremes Klein Tank et al, 2009, that typically occurs several Plain and the Alpine region and one area in the South corre-
times every yeatr. sponding to the mountainous Apennines region. In this case
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Figure 5. 8 January 2012T N extreme events classification. Ex- Figure 6. 22 June 2012T X extreme events classification. Extreme
treme warming: orange. Unusual warming: yellow. Normal condi- warming: orange. Unusual warming: yellow. Normal conditions:
tions: grey. Unusual cooling: green. The IDI mask has been appliedyrey. The IDI mask has been applied (see S&ct.

(see Secr).

Resistant and robust estimation techniques can be appli¢
the extreme event occurrence is related to local-scale advege obtain reasonable values for thX andT N PDF location
tion, this scheme is able to correctly detect such events andnd scale parameters, also in the case of sparse data. The §
to provide a reasonable description for their spatial extenqificant diference in scale parameter value between positiv
sion. Figure6 presents a summer heat wave case. Respecind negative anomalies clearly supports the use of asymmg
to the previous foehn case, in this situation the forcing isrical PDFs.
at the mesoscale, and results in widespread warming in the TheTX andT N PDFs can be used to detect and evaluats
whole region. Nevertheless, the map can shows gradients igxtreme events in the daillyX andT N analysis for each grid
the probability of occurrence, with extreme warming in the point, thus completing the high-resolution spatial informa-
central part of the Po Plain while in the upper part of the Plaintion available operationally at Lombardy’s weather service.
T Xreaches unusual values. In the mountains only the valley To improve on this preliminary work the dataset should be

floors and only on a local scale show extreme warming.  enlarged (collecting data from other mesonets in Lombard
and in neighbouring regions), andfféirent choices in sta-
5 Conclusions tistical model (skew-normal density functioBimolo et al,

2010 and in the parameter estimation procedure (movingp

The Ol hourly high-resolution temperature analysis pro-window for the linear trend estimation) should be explored.
duced by ARPA Lombardia’s weather service is known to

provide valuable information on a local scalébpldi et al, . )

2008. This preliminary study investigates the possibility of Acknowledgements.  The extensive and important comments of
exploiting these high-resolution analysis to characterise thé\/larta Salvati, Francesco Uboldi and the reviewers are gratefull
daily TX and TN PDFs using an asymmetrical Gaussian- acknowledged.
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portance to use initial temperature analysis fields of adequate

and stationary quality. The IDI field can be helpful to locate
areas and periods likely to give ambiguous results, which can
then be removed from the analysis.
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