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Abstract. In the framework of the interdisciplinary FORBIO Climate research project, the Royal Meteorologi-

cal Institute of Belgium is in charge of providing high resolution gridded past climate data (i.e. temperature and

precipitation). This climate data set will be linked to the measurements on seedlings, saplings and mature trees

to assess the effects of climate variation on tree performance. This paper explains how the gridded daily tem-

perature (minimum and maximum) data set was generated from a consistent station network between 1980 and

2013. After station selection, data quality control procedures were developed and applied to the station records

to ensure that only valid measurements will be involved in the gridding process. Thereafter, the set of unevenly

distributed validated temperature data was interpolated on a 4 km× 4 km regular grid over Belgium. The per-

formance of different interpolation methods has been assessed. The method of kriging with external drift using

correlation between temperature and altitude gave the most relevant results.

1 Introduction

The interdisciplinary FORBIO Climate research project

wants to scrutinize the adaptive capacity of tree species and

predict the future performance of tree species in Belgium

under different scenarios of climate change. Towards this

objective, the Royal Meteorological Institute of Belgium is

in charge of providing high resolution gridded past climate

data (i.e. temperature and precipitation) between 1980 and

2013. The gridded daily temperature (minimum and maxi-

mum) data set was generated from the network of climato-

logical stations administrated by the Royal Meteorological

Institute of Belgium (RMI) since the end of the 19th century.

In order to provide the high resolution gridded data set from

the data of the station network, data quality control proce-

dures were developed and the performance of different inter-

polation methods has been assessed.

The RMI network relies on voluntary observers, profes-

sional observers on civil and military aerodromes, federal

agents, regional agents and employees of private companies.

RMI supplies any voluntary observers with a manual rain

gauge and a meteorological shelter in about 3/5 of the sta-

tions. Air temperature is measured in a shaded enclosure (i.e.,

Stevenson screen) at a height of approximately 1.5 m above

the ground. Maximum and minimum temperatures, for the

previous 24 h, are recorded at 08:00 LCT (local clock time).

Minimum temperature is recorded against the day of the ob-

servation, and the maximum temperature against the previ-

ous day. Temperature records from both voluntary and syn-

optic stations were considered to generate the 34-year-long

(1980–2013) high resolution daily gridded temperature data

set over Belgium. Within this period, 278 time series from

the RMI database of climate observations contain at least one

temperature record. However, a large number of time series

contain missing observations. The total number of available

observations per day varies between 109 and 175 over the

considered time period (see Fig. 1, left panel). The spatial

distribution of the corresponding stations within the Belgian

territory is provided on the right panel in Fig. 1. Stations for

which less than 5 % of the temperature records are missing

over the considered time period are referred to as reference

stations (i.e. 65 stations, see black dots in Fig. 1). The mean

temperature over the 34 years obtained using the daily tem-

perature observations from the 65 reference stations are pro-

vided in Fig. 2 for TN and TX, respectively. Because no mea-

suring technique is perfect and errors can run in meteorolog-

ical observations for a wide variety of reasons (e.g. Aguilar

et al., 2003), data were first quality controlled.

To ensure that only valid measurements will be involved

in the gridding process, Sect. 2 describes the quality con-
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Figure 1. Evolution of the number of available observations per day for the period 1980 to 2013 (left panel) and location of the stations

in operation between 1980 and 2013 with the division into 4 climate zones (right panel). Reference stations (i.e. less than 5 % of missing

temperature records) are indicated by a black dot while the other stations are represented by a yellow diamond.
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Figure 2. Averaged temperature over the 34 years [◦C] for TN (left panel) and TX (right panels) using reference station records only. The

interpolation was made using ordinary kriging method (see Sect. 3). The missing data are estimated by spatial interpolation.

trol (QC) procedures developed. Section 3 presents the

considered interpolation methods. Results are presented in

Sect. 4 and additional discussions are provided in Sect. 5.

Final conclusions are given in Sect. 6.

2 Quality control procedures

2.1 Definition of quality control zones

For quality control purposes, geographical zones of similar

temperature characteristics were defined based on the refer-

ence stations temperature records. These zones will be used

to compare stations of the same zone to each other and to de-

fine quality control thresholds specific to each zone. The dif-

ferent zones were identified by k-means clustering approach

(Hair, 2009) based on mean and variability of the reference

stations TX and TN time series.

A division into 4 zones was selected (see the right panel

in Fig. 1). These zones broadly correspond to the Belgian

coast (red), Flanders (green), Ardenne (purple) and the rest

of Wallonia (blue).

2.2 Preliminary tests (time series evaluation)

In the first instance, two preliminary tests are applied on 1-

year long time series to ensure the validity of the studied sta-

tion. The first test (variability test) compares the data’s stan-

dard deviation σ of the given station for a time period of

one year to the expected limits. The minimum (maximum)

limit corresponds to the half (double) of the reference sta-

tions mean standard deviation. If σ lies outside the minimum

and maximum thresholds, the entire time series is consid-

ered as not usable. The second test (lag test) verifies that no

one-day time lag is affecting the data. Each 1-year long tem-

perature record with and without lag (forwards or backwards)

were compared to neighboring stations. If the data fit is better

with a lag, the entire time series is considered as not usable.

2.3 Daily data quality control

All time series that succeeded the preliminary tests are fur-

ther checked with the following tests for daily data. After an

existence test, a first QC module checks for physical lim-

its and flags the data violating these limits (note that val-

ues flagged as erroneous fail immediately and do not require

further testing). Second, similarly to Feng et al. (2004) and

Boulanger et al. (2010), automated QC procedures check the
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Figure 3. Automated QC applied to temperature records and associated confidence index.

temperature values for more subtle errors. Implementation of

the automated QC is diagrammed in Fig. 3. Data are checked

for internal consistency, plausible value test (using adapted

limits to reflect climatic conditions more precisely than in

the first range test), temporal consistency and spatial consis-

tency. At the end of the process, a confidence index ranging

from−1 to 6 (i.e. missing data to validated data) is attributed

to each datum.

2.3.1 Physical limit consistency test

The aim of the physical limit consistency test is to ensure

that temperature records stays within acceptable range limits

using extreme climatological boundaries. These boundaries

are based on the extreme values of the reference stations for

each season and climate zone. To account for extreme values

within the different zones, the boundaries are adjusted with a

tolerance of 3 ◦C. Lower and upper limits for the four seasons

are given for the Flanders and Ardenne zones in Table 1 for

illustration.

2.3.2 Internal consistency test

The internal consistency test ensures that for a given day TN

is not higher than TX. Such an incoherence is technically pos-

sible because TN is recorded one day later than TX but is

attached to the same day as TX.

Table 1. Extreme climatological boundaries for the Flan-

ders/Ardenne zones per seasons used in the physical limit consis-

tency test.

Lower limit Upper limit Lower limit Upper limit

TN[◦C] TN[◦C] TX[◦C] TX[◦C]

winter −26.5/−27.6 16.5/15.8 −15.2/−17.6 26.8/25.7

spring −12.8/−15.4 25.7/24 −2.8/−5.9 39.4/36

summer −1/−5.4 26/25.3 6.8/6 41.2/40

autumn −18.2/−23.2 21/18.2 −13.9/−14.2 31/29.9

2.3.3 Plausible value test

For the plausible value test, daily TN and TX values are com-

pared to daily lower and upper bounds. For each of the 4 cli-

mate zones, lower and upper bounds for a given temperature

data series (i.e. TN and TX) are constructed by retrieving the

highest and lowest daily values on each calendar day d of the

year from 34 years of data. Assuming that the annual temper-

ature variations follow a sinusoidal wave, a fit of the annual

variation of these extreme temperatures is defined using wave

function TL/U (d). An observation succeeds the test if it stays

within the lower and upper bounds of the corresponding day

(Sciuto et al., 2013).

2.3.4 Temporal consistency test

The temporal consistency test analyzes the rate of daily

change in order to detect possible anomalies. A spike or step

test (1max) checks for a plausible rate of change from a pre-
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Table 2. Percentage of the different indexes obtained after the QC

procedures. Note that to maintain a good comparison between both

types of stations, the “missing data” are not included in the index

percentage of index 0 to 6.

Index percentage

Index Reference Other

stations stations

[%] [%]

−1 3.32 61.22

0 0.001 0.002

1 0.003 0.005

2 0.008 0.008

3 0.029 0.036

4 0.008 0.014

5 0.593 0.640

6 99.358 99.301

ceding acceptable level. The maximum probable change is

based on the 99th percentile change for the 34 years of data.

The test is applied by season and climate zone with a one-

day time step. Similarly a persistence test (1min) flags the

measurements that fail to change by more than a minimum

amount.

2.3.5 Spatial consistency test

The spatial consistency test compares the observations at a

given station with the observations of the same day made

at neighboring stations. The result is suspicious (represented

by a question mark in Fig. 3) if the station record differs

for more than 2.5 ◦C from each of its 3 closest neighboring

stations or by more than 4 ◦C of the averaged values of the

3 closest neighboring stations. The observation fails the spa-

tial consistency tests if the two values above become respec-

tively 5 and 7 ◦C (these values are based on the expertise of

the well qualified RMI’s data quality agents). A nearby sta-

tion is considered only if the difference in elevation with the

studied station is below 150 m.

2.4 Confidence Index

More than 5 millions of temperature records (TN and TX)

were faced to the data quality control protocol described

above. More than 99.3 % of the analyzed records have suc-

ceeded the different tests (confidence index of 6). The pro-

portion of data classified as at least “very probably good”

(confidence index greater than 5) was of 99.95 %. Table 2

compares the results in terms of attributed confidence index

obtained at the reference stations and at the other stations.

Table 3. Correspondance between Corine Land Cover database and

the five land cover types used in this study.

Index Corine index Corine description

1 1–11 Artificial surfaces

2 12–15 Arable land

3 16–22 Permanent crops, pastures and

heterogenous agricultural areas

4 23–34 Forest and semi-natural areas

5 35–44 Wetlands and water bodies

3 Interpolation methods

Long-term climate patterns observed across the globe are a

result of a combination of many different processes that man-

ifest themselves at many spatial scales. It is assumed that

most of those patterns occur at scales large enough to be ad-

equately reflected in the station data, and thus are not explic-

itly accounted for by the major interpolation methods. The

main physiographic features affecting spatial patterns of cli-

mate are terrain and water bodies (e.g., Daly, 2006). Several

additional spatial climate foreigns factors are most important

at scales of less than 1 km but may also have effects at larger

scales. These factors include slope and aspect, riparian zones

and land use/land cover (Lookingbill and Urban, 2003; Mc-

Cutchan and Fox, 1986; Bolstad et al., 1998; Dong et al.,

1998).

For each day of the considered 34-year-long time period

(i.e. 1 January 1980 to 31 December 2013), all the validated

(i.e. confidence index of 6) stations temperature records

(i.e. TN and TX) were interpolated on a regular 4 km× 4 km

grid over Belgium. To predict the unknown values from the

unevenly distributed temperature records observed at known

locations, the performance of different interpolation meth-

ods has been assessed: inverse distance weighting (IDW), or-

dinary kriging (OK) and kriging with external drift (KED;

Wackernagel, 1995) that is able to handle densely sampled

auxiliary variables highly correlated with the parameter of

interest. In this study, KED was used with either the orogra-

phy (KED1) or land cover types (KED2) as a drift, as well as

simultaneously with the two drifts (KED12). For the kriging

methods, the parameters used to estimate the semivariogram

were fixed in order to have an exact interpolation at the sta-

tion location (i.e. the estimation satisfies the observation at

the station location) with a fixed range of 50 km and an ex-

ponential semivariogram model.

Left panel in Fig. 4 displays the Belgian orography at the

4x4 km spatial resolution. Similarly, right panel in Fig. 4

presents the spatial distribution of the 5 land cover classes

considered here. These classes are derived from the 100 m

spatial resolution CORINE land cover database (Bossard and

Feranec, 2000). Basically the 44 classes of the CORINE

database are merged in 5 main classes as detailed in Table 3

and reprojected in a 4x4 km regular grid over Belgium (the
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Figure 4. 4 km resolution orography of Belgium [m] (left panel) and 4 km resolution CORINE Land Cover in Belgium (right panel).
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Figure 5. Correlation between station elevation and daily mean

temperature (for the reference stations). The correlation coefficients

are of −0.85 and −0.93 for TN and TX, respectively.

dominant land cover class within a given grid point is at-

tributed to the entire grid point).

The various interpolation approaches are validated by

leave-one-out cross-validation. For each day of the con-

sidered period, the cross-validation root mean square error

(RMSEcv) is computed from the differences between the pre-

diction P and the actual measurements M at the n stations:

RMSEcv=

√
1
n

n∑
i=1

(P (xi) − M(xi))2 where {xi}i=1,...,n is

the location of the climate stations.

To determine the best performing method, two indices are

derived from the daily RMSEcv. First, the averaged over the

34 years (i.e. RMSEAVG
cv ) and second, the frequency of the

method providing the best daily RMSEcv over the 34 years

(i.e. RMSE
FREQ
cv ).

4 Results

Table 4 summarizes the performance of the investigated in-

terpolation methods in terms of RMSEAVG
cv and RMSE

FREQ
cv

index for both TN and TX, respectively. Results indicate that

for TN all methods perform quite similarly: the averaged

accuracy (RMSEAVG
cv ) ranges from 0.867 for the “worst”

method (IDW) to 0.818 for the best one (KED1). By con-

trast the interpolated TX fields appear more sensitive to the

considered methods. As for TN, the best performing method

is KED1 and the worst one is IDW but the magnitude of the

difference between the two methods in terms of RMSEAVG
cv

is larger (i.e. 0.14 ◦C vs. 0.05 ◦C for TN). This difference be-

tween TN and TX can be explained by the larger correlation

found over our domain between the elevation and TX than for

TN (see Fig. 5).

Accounting for the land cover type in the interpolation

scheme does not improve the results for both TN and TX.

The difference in terms of RMSEAVG
cv between OK and KED2

is clearly negligible (i.e. 0.852 ◦C vs. 0.854 ◦C for TN and

0.721 ◦C vs. 0.723 ◦C for TX). Similarly using the land cover

type in addition to the orography in the kriging with ex-

ternal drift approach does not significantly modify the per-

formance obtained when only considering the orography as

drift (e.g. RMSEAVG
cv of 0.818 ◦C for KED1 vs. 0.820 ◦C for

KED12 in the case of TN and 0.601 ◦C for KED1 vs. 0.605 ◦C

for KED12 in the case of TX, respectively). This is not so

surprising in view of the spatial resolution adopted for the

gridding (e.g. 4 km× 4 km) as the land use/land cover varia-

tions are expected to be most important below 1 km. Analysis

of the RMSE
FREQ
cv provided in Table 4 confirm that the best

performing interpolation method in terms of RMSEcv is the

kriging using the orography as external drift (KED1) for both

TN and TX (e.g. RMSE
FREQ
cv of 43 % for TN and RMSE

FREQ
cv

of 77.1 % for TX). What is interesting to note regarding the

RMSE
FREQ
cv in Table 4 is the score obtained by the kriging

using the land cover type as external drift (KED2). Indeed,

for both TN and TX, the value of this index for the KED2 is

lower than for IDW (i.e. 7.9 % vs. 14.5 % for TN and 0.3 %

vs. 0.6 % for TX).

www.adv-sci-res.net/12/103/2015/ Adv. Sci. Res., 12, 103–109, 2015
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Table 4. Overall performance of the different interpolation methods

over the entire time period expressed in terms of RMSEAVG
cv and

RMSE
FREQ
cv for both TX and TN.

RMSEAVG
cv RMSEAVG

cv RMSE
FREQ
cv RMSE

FREQ
cv

(TN) [◦C] (TX) [◦C] (TN) [%] (TX) [%]

IDW 0.867 0.738 14.5 0.6

OK 0.852 0.721 15.1 1.1

KED1 0.818 0.601 43 77.1

KED2 0.854 0.723 7.9 0.3

KED12 0.820 0.605 19.5 20.9

Finally, Fig. 6 displays the time evolution of the annual

mean daily RMSEcv over the considered 34-year-long time

period obtained by using the OK and the KED1 daily inter-

polation methods, respectively. Both methods present a clear

reduction of the RMSEcv throughout the time for TX with

the largest reduction obtained by the KED1 approach (see

left panel in Fig. 6). Similar behavior is also observed for TN

while for this parameter the dispersion is a bit more larger

than for TX (see right panel in Fig. 6). The reduction of the

annual mean daily RMSEcv has to be put in connection with

the increasing number of stations involved in the interpola-

tion process with time (see Fig. 1, left panel).

5 Discussion

As an additional validation exercise, the newly developed

FORBIO climate data set was compared to existing data sets.

Towards this objective, the RMSE results presented in

Sect. 4 are compared to these obtained from the HYRAS data

set which cover Germany (Frick et al., 2014). This data set

has a similar resolution (5 km) and use the Optimal Interpola-

tion method. The fivefold cross-validation of HYRAS gives

an averaged RMSE of 1.39 ◦C versus values from 0.601 ◦C

to 0.867 ◦C for the FORBIO climate data set. The better sta-

tion density and the smaller elevation differences between

stations can explain the better results obtained in the FOR-

BIO data set.

The new FORBIO data set can also be compared to the ex-

isting E-OBS data set (version 10.0) (Haylock et al., 2008),

which provides daily temperature data for the period 1950–

2013 on a regular 0.25◦ grid (approximately 25 km). 16 Bel-

gian synoptic stations are used in the E-OBS data set. To al-

low a comparison at the same resolution, the FORBIO data

set was first degraded at the E-OBS resolution. Figure 7

shows the differences between the two data sets using the

mean maximum temperature over the 34 years. The benefit

of the original FORBIO data set spatial resolution is evident

for the user. At the degraded resolution, a major difference

between the two data sets (> 1 ◦C) appears in the Hainaut

Province. Only one station located in the Hainaut Province is

considered with the E-OBS data set (i.e. the Chièvre syn-

optic station, black dot in Fig. 7) and this station appears
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Figure 6. Evolution of the averaged annual RMSEcv and regression

line using ordinary kriging (OK) and kriging with external drift us-

ing orography (KED1) for TN (left panel) and TX (right panel).

too cold compared to the neighboring climatological stations

used in the FORBIO data set in addition to the Chièvre sta-

tion records. This comparison is also true for minimum tem-

perature.

6 Conclusions

To meet the needs of the FORBIO Climate research project,

a 34-year-long (1980–2014) daily gridded temperature (min-

imum and maximum) has been produced over Belgium at a

4 km× 4 km spatial resolution. Because no measuring tech-

nique is perfect and errors can run in meteorological observa-

tions for a wide variety of reasons, data quality control pro-

cedures were developed and applied to temperature records

performed within the Belgian climatological station network

operated by RMI prior to undergo the daily gridding pro-

cess. More than 5 millions of daily temperature records (TN

and TX) were analyzed in depth and about 0.7 % of these

were discarded. The performance of 5 different interpola-

tion methods was assessed over the Belgian domain ranging

from the simple inverse-distance weighting approach to the

kriging with external drift methods. Two auxiliary drifts have

been considered (i.e. the orography and the land cover type)

either individually or in combination. Because of the spatial

resolution of 4 km× 4 km adopted for the data set, it has been

found that accounting for the land cover type in the interpo-

lation process of temperature over Belgium is not relevant.

By contrast using the orography as external drift in the krig-

ing interpolation scheme provides the best results in term of

RMSEcv and RMSE
FREQ
cv for both TX and TN. It is however

worth pointing out that the influence of the selected methods

in the accuracy of the interpolated temperature field is only

well apparent for TX. For TN the performance of the different

interpolation methods were found rather similar. Based on

these results the daily gridded temperature (TN and TX) were

carried out with the kriging with external drift method using

the orography as auxiliary highly correlated parameter. The

results obtained are similar to the E-OBS data set excepted in

Adv. Sci. Res., 12, 103–109, 2015 www.adv-sci-res.net/12/103/2015/
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Figure 7. Averaged value for TX over the 34 years [◦C]: FORBIO (4 km resolution), FORBIO (25 km resolution), E-OBS (25 km resolution),

differences between FORBIO and E-OBS. The black dot corresponds to the Chièvre station.

the Hainaut province where the E-OBS data set is colder. A

minimum of 80 stations per day were always used in the grid-

ding process for both TN and TX. Note that in average over

the 34 years a bit more stations were involved in the spatial

interpolation of TX than for TN (i.e. 137 vs. 132 stations, re-

spectively). Finally, because the number of stations involved

in the daily gridding process has increased with time (even if

the total number of available stations has started to decrease

in the last decade covered by the dataset), the daily RMSEcv

present a clear reduction as a function of time for both TX

and TN. As an example, the annual mean daily RMSEcv has

decreased by 0.085 ◦C from 1980 to 2013 for TX and by

0.068 ◦C for TN.
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