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Abstract. A significant amount of radioactive material was accidentally discharged into the atmosphere from

the Fukushima Dai-ichi Nuclear Power Plant from 12 March 2011, which produced high contaminated areas

over a wide region in Japan. In conducting regional-scale atmospheric dispersion simulations, the computer-

based nuclear emergency response system WSPEEDI-II developed by Japan Atomic Energy Agency was used.

Because this system is driven by a meso-scale meteorological (MM) model, it is difficult to reproduce small-

scale wind fluctuations due to the effects of local terrain variability and buildings within a nuclear facility that

are not explicitly represented in MM models. In this study, we propose a computational approach to couple an

LES-based CFD model with a MM model for detailed simulations of turbulent winds with buoyancy effects

under real meteorological conditions using turbulent inflow technique. Compared to the simple measurement

data, especially, the 10 min averaged wind directions of the LES differ by more than 30 degrees during some

period of time. However, distribution patterns of wind speeds, directions, and potential temperature are similar

to the MM data. This implies that our coupling technique has potential performance to provide detailed data on

contaminated area in the nuclear accidents.

1 Introduction

A significant amount of radioactive material was accidentally

discharged into the atmosphere from the Fukushima Dai-ichi

Nuclear Power Plant (FDNPP) from 12 March 2011. In this

nuclear accident, a computer-based nuclear emergency re-

sponse system, Worldwide version of System for Prediction

of Environmental Emergency Dose Information (WSPEEDI-

II) developed by Japan Atomic Energy Agency was used to

conduct atmospheric dispersion simulations from regional to

hemispheric scales (Katata et al., 2012). This system consists

of a meso-scale meteorological (MM) model and Lagrangian

particle dispersion model, which can provide near real-time

predictions of mean air concentrations and mean surface de-

position of radionuclides. However, it is difficult to estimate

contaminated areas in a local-scale where turbulent motions

are dominant by the influence of local terrain variability and

roughness elements such as individual buildings and trees

within a nuclear facility that are not explicitly resolved in

MM simulation models.

For simulating wind flows and plume dispersion in a local-

scale, a computational fluid dynamics (CFD) technique is

commonly used. In CFD models, buildings and structures

can be explicitly represented at high resolutions. In partic-

ular, the CFD simulations using large-eddy simulation (LES)

are effective to capture complex behaviors of impinging, sep-

arating, and circulating flows around a bluff body. Therefore,

an approach to couple an LES-based CFD model with a MM

model is expected to have a potential of becoming an effec-

tive tool to provide detailed information on turbulent flows

and plume dispersion in a local-scale under real meteoro-

logical conditions. For example, in the approach by Wys-
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zogrodzki et al. (2012), the MM outputs such as pressure,

wind velocity, and potential temperature calculated based

on RANS simulations were directly imposed at the inflow

boundaries of the LES-based CFD model. Although they

provided reasonable results in comparison to field experi-

mental data, the inflow data did not include high-frequency

turbulent fluctuations appropriate to drive LES-based CFD

models. Michioka et al. (2013) coupled a micro-scale LES-

based CFD model with a meso-scale LES-based model and

investigated spatial distributions of plume concentrations in

a residential area. However, they assumed a neutral atmo-

spheric stability condition in the micro-scale model. The

application of their approach is limited to a case building-

induced turbulence is dominant.

In Japan, most nuclear facilities are located at coastal com-

plex terrains. In this case, the assumption of neutral sta-

bility is less valid and thermal stability effects should be

considered. Therefore, it is important to generate thermally-

stratified boundary layers with small-scale wind fluctuations

in order to more faithfully reproduce meteorological con-

ditions in the LES model from the MM outputs. In this

study, we propose a calculation approach to simulation of

thermally-stratified boundary layer flows by coupling an

LES-based CFD model with a MM model and examine the

effectiveness of the approach in comparison to measurement

and MM simulation data.

2 Approach to couple between MM and CFD models

2.1 CFD model

The model used for local-scale detailed simulations is the

LOHDIM-LES developed by Nakayama et al. (2014). The

basic equations are the filtered continuity, Navier-Stokes, and

temperature transport equations under the Boussinesq ap-

proximation. The subgrid scale (SGS) turbulent effect is rep-

resented by the standard Smagorinsky model (1963) with a

constant value of 0.1. The SGS scalar flux is also parame-

terized by an eddy viscosity model and the turbulent Prandtl

number is set to a constant value 0.71. The turbulent effects

of local terrain and plant canopy are represented by the ex-

ternal force term and are incorporated into the Navier–Stokes

equation. The terrain effects are represented by immersed

boundary method proposed by Goldstein et al. (1993) as fol-

lows;

fterrain, i = m

t∫
0

ui(t)dt + nui(t)m < 0,n < 0, (1)

where m and n are negative constants. The stability limit is

given by 1t <
−n−
√

(n2−2mk)
m

where k is a constant of order

1. The plant canopy effects are expressed as follows;

fcanopy, i =−Cda (z) Uui, (2)

where Cd is a drag coefficient with a constant value of 0.2. U

is a wind speed. a (z) is a plant area density and is determined

by the forest leaf area index, thus, LAI=
∫ h

0
a (z) dz, where

h is the canopy height.

Nudging terms for wind velocity and temperature fields

are incorporated into the Navier–Stokes equation in order to

maintain the mean structure of the MM model in the LES

computational domain and can be expressed as the follows,

respectively;

fnud_flow,i =−Cnud

(
uMM,i − ui

)
(3)

fnud_temp =−Cnud

(
θMM− θ

)
, (4)

where uMM, i and θMM are the wind velocity and potential

temperature of the MM model, respectively. Cnud is a spa-

tially dependent nudging constant (see details in Sect. 3.2).

The coupling algorithm of the velocity and pressure fields

is based on the marker-and-cell method with the second-

order Adams-Bashforth scheme for time integration. The

Poisson equation is solved by the successive over-relaxation

method. For the spatial discretization in the basic equations,

a second-order accurate central difference scheme is used.

2.2 Generation of turbulent inflows from MM outputs

Mean wind directions are not always constant and often vary

due to a change of weather conditions. Therefore, first, we

proposed the treatment of the inflow boundary conditions in

order to automatically input wind velocity data obtained by

the MM model into the LES model under neutral stability

conditions, depending on mean wind directions in the me-

teorological field (Nakayama et al., 2012, 2015). Figure 1

shows a schematic diagram of the treatment of inflow bound-

ary conditions in the LES model. First, mean wind directions

in the meteorological field are estimated and vertical planes

of inflow boundaries are determined automatically depend-

ing on them. For example, when mean wind directions α of a

MM model range from −315 to 0◦ or from 0 to 45◦, vertical

boundary planes in the west, north, and east sides are auto-

matically set to inflow boundaries and that in the south side

is set to an outflow boundary. For the inflow boundaries, the

MM outputs linearly interpolated on the spatial resolution of

the LES domain. At the same time, only for the north vertical

boundary plane, turbulent fluctuations generated by a turbu-

lent inflow technique are added to the mean inflow as shown

Fig. 1a.

In order to drive an LES model, a recycling method pro-

posed by Kataoka and Mizuno (2002) is adopted. In this tur-

bulent inflow technique, only fluctuating components are ex-

tracted at a recycling station and recycled back to the inlet
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Figure 1. Schematic diagram of the treatment of inflow boundary

conditions in the CFD model depending on mean wind directions

in the meteorological field. The solid and dotted lines are compu-

tational regions to drive turbulent winds and simulate thermally-

stratified boundary layers, respectively. The open and filled arrows

indicate input of wind velocities and potential temperature obtained

by a MM model, respectively.

boundary. The formulation is as follows:

uinlt (y,z, t)= 〈u〉mean (y,z, t) (5)

+ϕ (z)
{
urecy (y,z, t)− [u] (y,z)

}
vinlt (y,z, t)= 〈v〉mean (y,z, t) (6)

+ϕ (z)
{
vrecy (y,z, t)− [v] (y,z)

}
winlt (y,z, t)= 〈w〉mean (y,z, t) (7)

+ϕ (z)
{
wrecy (y,z, t)− [w] (y,z)

}
.

Where u, v, and w are the wind components of the stream-

wise (x), spanwise (y), and vertical (z) directions, respec-

tively. The suffixes of inlt and recy indicate the instantaneous

wind velocity at the inlet and the instantaneous wind velocity

at the recycle station, respectively. The recycle station is set

at 1 km downstream position from the main inflow bound-

ary. [u], [v], and [w] are horizontally averaged winds over

the driver domain and ϕ (z) is a damping function. 〈u〉mean,

〈v〉mean, and 〈w〉mean are given by mean wind velocities for

each component obtained by a MM model. In cases of α

ranging from 45 to 135◦, from 135 to 225◦, and from 225

to 315◦, the method to determine inflow and outflow bound-

aries depending on α is shown in Fig. 1b–d.

In order to produce thermally-stratified boundary layers,

vertical profiles of potential temperature data obtained by a

MM model are imposed at a distance of 1 km inward from

each horizontal boundary. As well as the case for a wind

velocity field, vertical planes of inlet and outlet boundaries

are automatically determined depending on mean wind di-

rections in the meteorological field.

Figure 2. Computational areas of the WRF and LES models.

The WRF is configured with for nested domains covering areas

of (a) 2025 km× 2025 km at 4.5 km grid, (b) 720 km× 720 km

at 1.5 km grid, (c) 150 km× 180 km at 500 m grid, and

(d) 50 km× 50 km at 100 m grid. The LES model covers an area

of (e) 11 km× 11 km at 20m grid.

3 Simulation settings

3.1 Meso-scale meteorological simulation

The meso-scale meteorological simulation model used here

is the Weather Research and Forecasting (WRF) model, the

Advanced Research WRF Version 3.3.1 (Skamarock et al.,

2008) to provide the input data for the LES model. We

use a nesting capability to resolve the FDNPP region at a

fine grid spacing by setting two-way nested, four computa-

tional domains (with the top being at the 50 hPa level). The

four domains cover areas of 2025 km by 2025 km at 4.5 km

grid, 720 km by 720 km at 1.5 km grid, 150 km by 180 km at

500 m grid, and 50 km by 50 km at 100 m grid, respectively

(Fig. 2a–d). The number of vertical levels is 53, with 15 lev-

els in the lowest 1 km depth.

The terrain data used are the global 30 s data (GTOPO30)

from the US Geological Survey for the outer 2 domains and

the 50 m mesh digital elevation model (DEM) dataset by the

Geographical Survey Institute (GSI) of Japan for the inner

2 domains. The land-use/land-cover information is obtained

from the 100 mesh dataset from the Ministry of Land, Infras-

tructure, Transport and Tourism of Japan.

To determine the initial and boundary conditions, we use

6-hourly Mesoscale Analysis (MANAL) data of Japan Me-

teorological Agency (JMA), 6-hourly Final Analysis data

of the US National Centers for Environmental Prediction

(NCEP FNL), and daily Merged Sea Surface Tempera-

ture (MGDSST) analyses of JMA. The times of the 6-

hourly MANAL and NCEP FNL are 00:00, 06:00, 12:00,

and 18:00 UTC. The horizontal resolutions of MANAL and

MGDSST are 10 km and 0.25 degree, respectively. Full

physics processes are included in the present simulation
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in order to reproduce real meteorological phenomena. A

physics parameterization closely relevant to the simulation

of wind fields is a PBL mixing parameterization. We choose

a Mellor-Yamada Level 2.5 scheme of Janjic (2002) in which

mixing is done vertically between the adjacent vertical lev-

els. A single-moment, 6-category water- and ice-phase mi-

crophysics of Hong and Lim (2006) is employed for cloud

and precipitation processes in all the domains.

The case studied is the FDNPP accident on 12

March 2011. In order to simulate wind fields for this event,

the time period of the WRF simulation is from 00:00 UTC

11 March 2011 to 00:00 UTC 13 March 2011. The WRF out-

puts during 05:00 UTC 12 March and 06:00 UTC 12 March

are used for the LES model. The simulated outputs of the in-

nermost domain at 1 min interval are used as the inputs of the

LES model.

3.2 LES computational conditions

The size of the computational domain is 11.0 km by 11.0 km

in the horizontal directions with the depth of 1.6 km (Fig. 2e).

The total mesh number is 550 by 550 by 94 nodes. The grid

spacing is 20 m in the horizontal directions and 2.5–64 m

stretched in the vertical direction based on an orthogonal grid

system. In the previous study, we conducted LESs of urban

boundary layer flows in the urban central district by coupling

with a MM model and showed reasonable results in compar-

ison to the field experimental data of vertical profiles of wind

speeds and directions (Nakayama et al., 2015). Those cal-

culation conditions such grid resolution and computational

domain were almost the same as the present ones. Therefore,

it is considered that the present model set-up is reasonable to

reproduce basic characteristics of the meteorological condi-

tions in the LES model. For a wind velocity field, the inlet

and spanwise boundaries are determined by the WRF wind

velocity data (with 1 min interval and 100 m resolution) lin-

early interpolated on the spatial resolution of the LES domain

with 1 min interval. At the outlet boundary, a free-slip condi-

tion is applied for each component of wind velocity. At the

upper boundary, a free-slip condition for the horizontal ve-

locity components and zero-speed condition for the vertical

velocity component is imposed. For a potential temperature

field, the bottom, ground surfaces, and spanwise boundaries

are determined by the WRF potential temperature data (with

1 min interval and 100 m resolution) linearly interpolated on

the spatial resolution of the LES domain with 1 min interval.

At the outlet, a free-slip condition is imposed.

Focusing on the ground surface of the study site shown in

Fig. 3a, it is found that the FDNPP is located along the coast

and many forest canopies are densely situated over the land.

Ground surface geometries are represented using the 50 m

mesh DEM of GSI linearly interpolated on the spatial resolu-

tion of the LES model. Buffer zones with a length of 1.0 km

is set in only land area and roughness blocks are placed in

order to represent roughened ground surface as shown in

Figure 3. (a) The photograph reproduced by GoogleTM earth

graphic. (b) Configuration of the FDNPP in the LES model. The

buffer zone with 1.0 km is set up from each boundary. In the land

area of this buffer zone, roughness blocks are placed. Green area

indicates forest canopies.

Figure 4. Instantaneous fields of (a) wind speed and (b) potential

temperature.

Fig. 3b. The forest canopy is arranged based on the mixed

forest in USGS 24-category land use. The LAI and canopy

height are set to 4.0 and 12.0 m, respectively.

The nudging constant is set to rapidly vary from 0.0 to

0.01 s−1 across 750 m height using a hyperbolic tangent

function for only flow field and decrease from the lateral

boundaries toward the inner part using a ten-grid-point buffer

zone for both flow and temperature fields. In real meteo-

rological fields, mean wind directions are often largely dif-

ferent between upper and lower parts of boundary layers,

which often induces numerical instabilities. Therefore, in

case spatially-averaged wind directions at heights greater

than 750 m height differ from those at heights less than the

height by 30 degrees at the main inlet boundary, the values

for each component of wind velocities are set to those at

750 m height. The time step interval is 0.05 s. The simula-

tion period is from 05:00 UTC 12 March 2011 to 06:00 UTC

12 March 2011.
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Figure 5. Vertical profiles of wind speed, wind direction, and potential temperature obtained at (a) Main gate, (b) MP4, and (c) MP8 at

06:00 UTC 12 March 2011. The locations of Main gate, MP4, and MP8 are shown in Fig. 3.

4 Results

Figure 4 shows instantaneous fields of (a) wind speed and

(b) potential temperature. It is found that small-scale fluctu-

ations in both wind and temperature fields are reproduced

by the turbulent inflow technique. Figure 5 compares the

LES results with vertical profiles of wind speeds, wind direc-

tions, and potential temperature of the WRF model obtained

at (a) Main gate, (b) MP4, and (c) MP8 at 06:00 UTC 12

March 2011. The LES wind speeds and directions are found

to be generally distributed along the WRF data and consid-

erably fluctuate up to 100 m height at each point due to the

turbulent effects by local terrain variability and forest canopy.

However, at MP4, locally rapid variations of wind speeds and

directions around 750 m are not captured in the LES model.

The vertical profiles of potential temperature are similar to

those of the WRF model.

Figure 6 compares the LES results with the simple mea-

surement and WRF data of time series of wind speeds and

directions. The measurement and LES data are obtained at

the ground-level and the WRF data are obtained at a height of

50 m. According to the press release (28 May 2011) by Tokyo

Electric Power Company (2011), all monitoring posts at the

FDNPP did not work due to blackout caused by the severe

earthquake. Therefore, wind speeds, wind directions, and ra-

diation dose were measured by monitoring cars. Although

these simple measurement data are not appropriate to evalu-

ate the model performance, we use the data for a comparison.

The measurement data of wind speeds vary within the range

from 2.7 to 3.5 m s−1. The WRF data considerably exceed

the measurement data due to the difference of the measure-

ment height. The LES 10 min values are found to be com-

parable to the measurement data although the instantaneous

values highly fluctuate. The measurement data of wind di-

rections vary within the range from South-southeast to South

directions. The WRF wind directions vary around West-

southwest direction. The LES instantaneous values highly

fluctuate as well as those of wind speeds. The LES 10 min

values differ by more than 30 degrees from the measurement

data during some period of time.

Although the difference between the LES and measure-

ment data are observed at a ground-level during some period
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Figure 6. Time series of (a) wind speeds and (b) wind directions

obtained at Main gate from 05:00 to 06:00 UTC 12 March 2011.

The observed and LES data are obtained at the ground-level. The

WRF data are obtained at the height of 50 m. The location of Main

gate is shown in Fig. 3.

of time, it is successful in generally maintaining the simu-

lated meteorological fields as the basic flow with buoyancy

effects in the LES domain.

5 Conclusions

We proposed a calculation approach to couple the LES-based

CFD model with the MM model for detailed simulations of

turbulent winds with buoyancy effects under real meteoro-

logical conditions using turbulent inflow technique and ex-

amined the effectiveness in comparison to the simple mea-

surement and MM simulation data. Inflow boundary condi-

tions were set to automatically input wind velocity data ob-

tained by the MM model into the LES model, depending on

mean wind directions in the meteorological field. In gener-

ating thermally-stratified boundary layers from the MM out-

puts, first, small-scale wind fluctuations were generated at the

main inlet boundary by a recycling technique. Then, the po-

tential temperature profiles obtained by the MM model were

imposed at the recycle station.

Compared to vertical profiles of the MM simulation data,

it is seen that the LES wind speeds, directions, and poten-

tial temperature generally fluctuate around the MM data al-

though locally rapid variations of wind speeds and directions

are not reproduced well. The 10 min averaged wind direc-

tions of the LES differ by more than 30 degrees from those

of the measurement data during some period of time although

the averaged wind speeds of the LES are in good agreements

with them. Important issues still remain in accurately simu-

lating local-scale turbulent winds at a ground-level under real

meteorological conditions. However, our approach is suc-

cessful in generally reproducing thermally-stratified bound-

ary layer flows with turbulent fluctuations in the LES model.

It can be concluded that our coupling technique has potential

performance to provide detailed data on contaminated area

in the nuclear accidents.
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