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Abstract. Meteorological drought is generally defined as a prolonged deficiency of precipitation and is con-

sidered one of the most relevant natural hazards as the related impacts can involve many different sectors. In

this study, we investigated the spatial patterns of European droughts for the periods 1981–2010, 2041–2070, and

2071–2100, focusing on the projections under a moderate emissions scenario. To do that, we used the outputs

of the KNMI-RACMO2 model, which belongs to the A1B family and whose spatial resolution is 0.25◦
× 0.25◦.

By means of monthly precipitation and potential evapotranspiration (PET), we computed the Standardized Pre-

cipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) at the 12-month ac-

cumulation scale. Thereafter, we separately obtained drought frequency, duration, severity, and intensity for the

whole of Europe, excluding Iceland. According to both indicators, the spatial drought patterns are projected to

follow what recently characterized Europe: southern Europe, who experienced many severe drought events in

the last decades, is likely to be involved by longer, more frequent, severe, and intense droughts in the near fu-

ture (2041–2070) and even more in the far future (2071–2100). This tendency is more evident using the SPEI,

which also depends on temperature and consequently reflects the expected warming that will be highest for the

Mediterranean area in Europe. On the other side, less severe and fewer drought events are likely to occur in

northern Europe. This tendency is more evident using the SPI, because the precipitation increase is projected to

outbalance the temperature (and PET) rise in particular in Scandinavia. Regarding the mid-latitudes, the SPEI-

based analyses point at more frequent drought events, while the SPI-based ones point at less frequent events in

these regions.

1 Introduction

Drought is a slowly developing natural hazard which can af-

fect large areas and populations, can propagate through the

full hydrological cycle, and may have both immediate con-

sequences as well as long-term economic and environmental

impacts (Vogt et al., 2011; Vogt and Somma, 2000). Drought

is a temporary condition that can result in irreversible dam-

ages to ecosystems and can take place in almost all climates,

not only in areas prone to land degradation (Winslow et al.,

2011).

Due to its complex evolution and onset, there is no single

definition of drought, and the scientific literature usually dis-

tinguishes between meteorological, agricultural, hydrologi-

cal, ground-water, streamflow, and socioeconomic droughts

(Mishra and Singh, 2010). In this study we refer to meteoro-

logical drought because we used meteorological variables –

precipitation and mean temperature – to compute the drought

indicators at the 12-month accumulation scale. However, in

the literature, the 3-month accumulation scale is sometimes

used for meteorological drought, while the 12-month scale

is used for hydrological drought (Mishra and Singh, 2010,

2011). Meteorological drought is usually defined as a deficit

in precipitation over a defined period compared with clima-

tological normal values, but drought conditions can also be
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triggered by high temperatures, low relative humidity, strong

and desiccating winds, etc. (Zampieri et al., 2009). The im-

pacts of meteorological and hydrological drought events in-

volve a wide variety of sectors, e.g. agriculture (Ciais et al.,

2005), soil (Hirschi et al., 2011), ecology (McDaniels et al.,

1997), and energy (Hightower and Pierce, 2008).

At the global level, recent climate change seems to have

caused only little increase in drought (Dai, 2011; Sheffield

et al., 2012; Spinoni et al., 2014; Trenberth et al., 2014).

However, at the regional level some areas experienced a re-

markable increase in drought frequency and severity over the

last decades, for example in the Carpathian region (Spinoni

et al., 2013), southern Europe (van der Schrier et al., 2013;

Beguería et al., 2014; Spinoni et al., 2015a), and in partic-

ular the Mediterranean region (Briffa et al., 2009; Hoerling

et al., 2012). According to the latest report of the Intergov-

ernmental Panel on Climate Change (IPCC, 2014), global

warming will generally drive the dry regions to drier con-

ditions and the wet ones to wetter conditions. This can be ap-

plied to Europe as a whole, as southern Europe is projected

to get drier and northern Europe to get wetter (Spinoni et al.,

2015a). Though there is indeed a general tendency towards a

drier world (Sherwood and Fu, 2014), at the global level the

paradigm the dry gets drier, and the wet gets wetter should

be handled with care (Greve et al., 2014).

This study has been conducted in the framework of the

GAP-PESETA project, the follow-up of the Joint Research

Centre’s PESETA II project, whose main goal was to gain

insights into the patterns of climate change impacts in Eu-

rope and was focused on many topics (agriculture, energy,

floods, forest fires, etc.) but provided only preliminary infor-

mation regarding drought, i.e. about streamflow drought only

(Ciscar et al., 2014). We dealt with spatial drought patterns

from 1950 to 2100, investigating in particular the evolution

of drought events under a moderate emissions scenario (fam-

ily A1B, see IPCC, 2000) in the near future (period: 2041–

2070) and in the far future (2071–2100) compared with the

recent past (1981–2010). The examined area is Europe, in-

cluding European Russia, but excluding Iceland, Greenland,

the Azores, the Canary Islands, and Madeira. We computed

two drought indicators, the Standardized Precipitation Index

(SPI; McKee et al., 1993) and the Standardized Precipita-

tion Evapotranspiration Index (SPEI; Vicente-Serrano et al.,

2010), at the monthly scale for every grid point (spatial reso-

lution: 0.25◦
× 0.25◦) belonging to the examined area. Such

indicators have been used to calculate the frequency, dura-

tion, severity, and intensity of drought events on the same

grid.

This study has three main goals: firstly, it aims at pro-

viding new insights about future droughts in Europe at a

spatial resolution higher than most of the existing studies,

which usually analyze data at 0.5◦
× 0.5◦ or 1◦

× 1◦ res-

olution, or focus on smaller regions (see, e.g. Blenkinsop

and Fowler, 2007); secondly, it focuses on drought events,

differently than most of the publications, which usually fo-

cus on drought-related climate indicators (see, e.g. Heinrich

and Gobiet, 2012); thirdly, it aims at evaluating whether and

where a potential evapotranspiration (PET) increase will be

the leading factor for drought and, on the other side, whether

and where the drought trends will be driven by precipitation.

In this study, we did not consider potential human-induced

changes in future drought patterns, because meteorological

droughts do not directly depend on human activities, as other

types of droughts do, e.g. the hydrological drought (Wanders

and Yada, 2015).

After the introduction, Sect. 2 deals with data and meth-

ods: we describe the data inputs and the quality checks, we

motivate the choice of the indicators and their computation

algorithms, and we define the drought variables. Section 3

deals with results and discussions: we present figures about

the change of frequency, duration, severity, and intensity of

drought events in Europe between the near (and far) future

and the recent past. Section 3 also focuses on the debate

about which will be the most important meteorological driver

for future droughts in Europe. Section 4 briefly summarizes

the main findings and anticipates possible future develop-

ments.

2 Data and methods

2.1 Scenario model, input variables, and study region

The PESETA II project based its projections on the outputs

of the version 2.1 of the KNMI regional atmospheric climate

model RACMO (van Meijgaard et al., 2008), consequently

we chose such model for our analyses. The RACMO2 is pro-

vided by the Royal Meteorological Institute of the Nether-

lands, its driving global circulation model (GCM) is the

ECHAM5-RT3, and it belongs to the A1B scenario family.

The special report on the emissions scenarios published by

the IPCC in 2000 (IPCC, 2000) divides them into four main

groups: A1, A2, B1, and B2. The A1 family describes a fu-

ture world of very rapid economic growth, global population

that peaks in the 2050s and declines thereafter, and the rapid

introduction of new and more efficient technologies. This

category is further subdivided into categories which corre-

spond to different directions of technological change in the

energy system: fossil intensive energy sources (A1FI), non-

fossil energy sources (A1T), and balance across all sources

(A1B). The A1B scenario foresees moderate but increasing

emissions of carbon dioxide (CO2) and methane (CH4) until

the 2050s, followed by a slow decrease. Nitrous oxide (N2O)

emissions are projected to be stable through the whole of the

century, and the sulfur dioxide (SO2) emissions are projected

to increase until the 2030s and thereafter decrease. In the lat-

est assessment report (the IPCC AR5, 2014), it was discussed

how the various scenarios are able to represent what effec-

tively happened in the last decades and it turned out that the

A1 class effectively pictures the actual global change, though
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it seems to slightly overestimate the emissions and the rise of

temperature.

From the RACMO2 model, we directly obtained monthly

precipitation, and we derived PET using the FAO-56

Penman–Monteith algorithm (Allen et al., 1998), from

January 1950 to December 2100 (spatial resolution of

0.25◦
× 0.25◦). The selected area is Europe, but we excluded

the small atlantic islands (Madera, the Azores, and the Ca-

nary Islands) and Iceland, for a few grid points there showed

suspect precipitation data in the 2000s according to the

quality-checks and the homogenization tests performed with

the Multiple Analysis of Series for Homogenization software

(MASH, version 3.03, Szentimrey, 1999).

The choice of the algorithm to derive PET is a key

point regarding the computation of drought variables (van

der Schrier et al., 2011; Trenberth et al., 2014). We chose

the Penman–Monteith equation because the outputs of the

RACMO2 model include the input variables needed, i.e. tem-

perature, relative humidity, solar radiation, and wind speed.

Other common formulations are based on mean tempera-

ture (Thornthwaite; Thornthwaite, 1948) or on minimum

and maximum temperature (Hargreaves and Samani, 1982;

Allen et al., 1998). Recently, contradictory opinions emerged

about the validity of such simplified formulations: Sheffield

et al. (2012) pointed at the overestimation of drought trends

based on temperature-only-based PET estimations, while

Dai (2011) and van der Schrier et al. (2011) affirmed that

the choice of the PET formulation does not remarkably af-

fect drought indicators such as the PDSI (Palmer, 1965) and

the sc-PDSI (Wells et al., 2004) in Europe. However, keeping

in mind that we used potential and not actual evapotranspira-

tion (AET) and that this could bias the results in soil moisture

stressed areas (Brutsaert and Parlange, 1998), we discarded

the temperature-only-based PET models as they may influ-

ence too much the projections of drought events due to the

projected temperature rise in the A1B scenario, especially in

the far future.

2.2 Drought indicators, events, and derived variables

The monthly precipitation and PET series – from 1950 to

2100 – have been used to compute the Standardized Precip-

itation Index (SPI: McKee et al., 1993), which depends on

precipitation, and the Standardized Precipitation Evapotran-

spiration Index (SPEI, Vicente-Serrano et al., 2010), which

depends on the difference between precipitation and PET. We

chose the SPI for it is probably the most applied drought in-

dicator at the European level (e.g. Lloyd-Hughes and Saun-

ders et al., 2002), but considering that the scenarios describe

a warming future (IPCC, 2014), we assumed that it is impor-

tant to consider also one indicator that directly or indirectly

depends on temperature; thus we included the SPEI that is

nowadays frequently applied in Europe (e.g. Vicente-Serrano

et al., 2014) in our analyses.

We computed the SPI and the SPEI at the 12-month scale,

and we fitted the cumulated precipitation with the Gamma

distribution (Thom, 1958) for the SPI and the cumulated dif-

ference between precipitation and PET with the log-logistic

distribution (Shoukri et al., 1988) for the SPEI, following the

approaches suggested by the authors who first presented such

indicators, being also aware that different distributions could

best fit the SPI and the SPEI in Europe, depending on the lo-

cal climate features (Stagge et al., 2014, 2015). Dealing with

standardized indicators, the length of the record used (Wu et

al., 2005) and the choice of the baseline period (Guttman,

1999) are key issues: we used all the available data in the

period 1950–2100 to fit the distributions. If a shorter period

(e.g. 30-year interval) is chosen as the baseline for an indi-

cator computed over a 151-year period and the selected pe-

riod is characterized by frequent and severe drought events,

this will influence the computation of the indicator and the

other periods are bound to be characterized by less frequent

and severe drought events. Because we were not interested

in the absolute number of drought events (and their duration

and severity) in a certain period, but we aimed at studying

whether the drought events will be longer, more severe, fre-

quent, or intense in the future compared to the recent past,

the entire baseline ensures more robust comparisons between

different periods.

This study focuses on the drought events, not on the in-

dicators, and we separately analyzed them according to the

SPI and the SPEI. Using the monthly series of the indicators

at a grid point level, we followed Guerrero-Salazar and Yev-

jevich (1975) and McKee et al. (1993) to define the events.

In this study, a drought event takes place every time the indi-

cator falls below −1 for at least 2 consecutive months, and it

ends when the indicator rises above 0. For a given period,

the drought frequency is therefore the number of drought

events. The duration of a drought event refers to the number

of months of the event, its severity to the integral area of the

event (the sum of the indicator values below zero, in absolute

values, during the occurrence of the event), and its intensity

to the ratio between severity and duration. We computed the

frequency and the average duration, severity, and intensity of

the drought events over 30-year periods: recent past (1981–

2010), near future (2041–2070), and far future (2071–2100).

The results are presented as comparisons between recent past

and, respectively, near (Fig. 1) and far future (Fig. 2).

3 Results and Discussion

3.1 Drought patterns in the near future (2041–2070)

The drought patterns of the near future (2041–2070) have

been evaluated vs. the reference period 1981–2010. The fre-

quency (DF; number of events), duration (DD; months),

severity (DS; score), and intensity (DI; score) of the events

shown in Fig. 1 are expressed per decade.

www.adv-sci-res.net/12/179/2015/ Adv. Sci. Res., 12, 179–186, 2015
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Figure 1. Comparisons between near future and recent past for the

frequency (DF), duration (DD), severity (DS), and intensity (DI) of

drought events, according to the SPI-12 (left panel) and the SPEI-12

(right panel). All the values are expressed per decade.

According to the SPI, the drought events are projected to

be more frequent in the near future (2041–2070) than in the

recent past (1981–2010) in the Mediterranean region, in the

Balkans, along the Black Sea coast and in general in southern

Europe. On the contrary, Scandinavia (but not southern Swe-

den) and the Baltic republics are projected to be involved by

fewer drought events. According to the SPEI, the gradient be-

tween northern and southern Europe is remarkable and also

the European mid-latitudes are projected to be involved by

more frequent droughts (up to 2.3 more events per decade).

Regarding the duration and according to the SPI, the

drought events are projected to be longer in the near future

than in the recent past in Spain, the French Riviera, Sicily

and Sardinia, Greece, and Turkey, and shorter in Northern

Ireland, central Europe, and Scandinavia. According to the

SPEI, they will be longer in the entire Mediterranean re-

gion and the Balkans, and shorter in the same regions high-

lighted by the SPI. According to both the indicators, the

Figure 2. Comparisons between far future and recent past for the

frequency (DF), duration (DD), severity (DS), and intensity (DI) of

drought events, according to the SPI-12 (left panel) and the SPEI-12

(right panel). All the values are expressed per decade.

drought events are projected to follow, on average, the same

spatial patterns regarding the severity and the duration. In-

stead, the spatial patterns of the drought intensity are less ho-

mogeneous. The average intensity is projected to be higher

in central Spain, north-eastern France, northern Italy, the

Carpathian region, the Balkans, Belarus, Greece, and Turkey.

On the contrary, it is projected to be lower especially in Scan-

dinavia and Ukraine.

In general, it seems that the PET increase (included in the

SPEI) will result in more frequent drought events in the near

future in southern Europe, but it will not be the main cause

for longer or more severe events everywhere in southern Eu-

rope, as they are similarly projected by both the SPI and the

SPEI. On the contrary, the precipitation increase will outbal-

ance the PET (and temperature) increase in northern Europe

and is projected to cause less frequent events there. Central

Europe shows contradictory tendencies: less (SPI) or more

Adv. Sci. Res., 12, 179–186, 2015 www.adv-sci-res.net/12/179/2015/
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(SPEI) frequent and intense events depending on the indica-

tor, shorter and less severe events for both indicators.

A more detailed description of the varying importance of

precipitation deficit vs. temperature extremes in a chang-

ing climate goes beyond the scopes of this paper. However,

the authors more thoroughly discussed on that in Spinoni

et al. (2015a, b) and the reader can also find more details

on other recent publications, such as Paulo et al. (2012);

Vicente-Serrano et al. (2014); Kingston et al. (2015).

3.2 Drought patterns in the far future (2071–2100)

We repeated the analyses discussed in Sect. 3.1, this time

for the far future (2071–2100) compared with the recent past

(1981–2010), see Fig. 2. According to the SPI, southern Eu-

rope is projected to be involved in more frequent droughts

in the far future than in the recent past, and this higher fre-

quency will be more evident according to the SPEI. Northern

Europe will be hit by fewer droughts for both the indicators,

while central Europe shows different patterns: no particular

changes for the SPI, excluding a frequency decrease for Ger-

many vs. more drought events reaching up to latitudes corre-

sponding to Denmark for the SPEI. To summarize, it seems

that the PET increase will be the driver for drought frequency

increase in the far future as well as in the near future for most

of Europe, excluding Scandinavia and northern Russia.

From Fig. 2 we can notice that, according to the SPI, the

Mediterranean region – and southern Europe in general –

are expected to be hit by longer, more severe, and intense

droughts in the far future. Such increasing tendencies are

even more pronounced for duration and severity in Spain,

Greece, and Turkey, according to the SPEI. Instead, the de-

crease in northern European regions is lower in absolute val-

ues. If we compare the far future with the near future (not

shown), the drought duration and severity increase in the far

future compared to the near future is relevant only in Spain

according to the SPI, while it is relevant in every part of Eu-

rope below 45◦ N of Latitude according to the SPEI. Once

again, it seems that the global warming tendency will cause

the increase of drought length and severity at the end of the

century, even under a moderate emissions scenario.

The intensity of the drought events is projected to increase

for both the indicators in the far future in southern Europe

and Belarus, and to decrease in Irealand, Scotland, Scandi-

navia, Ukraine, and Russia. Germany again shows contradic-

tory patterns: according to the SPI, fewer, shorter, less severe,

and less intense drought events will occur, while according to

the SPEI the droughts will be more frequent and intense, but

also shorter.

We underline that the results discussed in this chapter

and in the previous one have been derived from indicators

based on 12-month accumulation, i.e. a whole year, conse-

quently the seasonal effects are lost as well as the seasonality

of precipitation and evapotranspiration. To overcome such a

shortage of data, we plan performing new analyses based on

Figure 3. Country tendencies towards drier or wetter near and far

future, according to the SPI-12 (left panel) and the SPEI-12 (right

panel).

shorter accumulation periods (SPI-3 and SPEI-3), in order

to study the seasonal spatial drought patterns which may be

different from annual patterns in some parts of Europe, both

during the current and future climate.

3.3 Projected drought patterns at a country scale

To provide a general picture of the future European drought

tendencies, we analyzed the complete monthly records of the

indicators from 1950 to 2100. We averaged them at a country

level, and we compared their values for the three periods al-

ready investigated in the previous chapters. Because this part

is based on country averages and European Russia is not a

country, we excluded it from the analyses.

Figure 3 shows that the southern European countries are

projected to be drier in the near future than in the recent

past. In particular, the SPEI indicator projects drier condi-

tions than the SPI indicators for the Mediterranean countries,

the Balkans, and Turkey. According to the SPI, the central

and northern European countries are projected to be wetter

in the near future, in particular the Baltic republics and Fin-

land. In general, in the far future a more extreme shift to-

wards drier conditions for southern and eastern Europe can

be seen, in particular according to the SPEI, and a more ex-

treme shift towards a wetter central and northern Europe can

be seen, in particular according to the SPI. In the last decades

of the current century such shifts are projected to be extreme

also by the SPI, especially regarding the shifts towards wetter

conditions, but also towards drier conditions for the Iberian

Peninsula and Greece.

These findings reinforce the general idea of climate change

in Europe: from the 1950s to 2010s, southern Europe faced a

drying tendency and northern Europe a tendency toward wet-

ness (Lloyd-Hughes and Saunders, 2002; IPCC, 2014; Briffa

www.adv-sci-res.net/12/179/2015/ Adv. Sci. Res., 12, 179–186, 2015
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et al., 2009; Hannaford et al., 2011; Hoerling et al., 2012;

Spinoni et al., 2015a). Such spatial patterns are projected to

continue – and increase in magnitude – until the end of the

century, as also discussed by, e.g. Burke et al. (2006), Blenk-

insop and Fowler (2007), and Warren et al. (2009) using dif-

ferent drought indicators and moderate emission scenarios.

In particular, compared to our findings, Warren et al. (2009)

presented similar results (drought variables tend to increase

in southern and eastern Europe, and decrease in northern Eu-

rope) by using SPI-5 and SPI-12 projected in 2050–2098

under different emission scenarios; the only remarkable dif-

ferences involve Romania, where a more pronounced ten-

dency towards longer drought events was found by Warren

et al. (2009).

4 Conclusions

In this study we investigated the tendency of drought events

in Europe until 2100 under a moderate emissions scenario,

the KNMI-RACMO2. To do that, we based our analyses on

two drought indicators, the SPI and the SPEI, computed at

a 12-month scale. Regarding the drought events, we defined

four quantities (frequency, duration, severity, and intensity),

and we compared the recent past (1981–2010) vs. the near

(2041–2070) and the far future (2071–2100). The spatial

drought patterns have been analyzed both at 0.25◦
× 0.25◦

and at the country scale.

We looked for the answers to a few questions: are the

drought events likely to become more frequent in the future?

Will they be longer? Will they be more severe and intense?

Southern Europe, that already experienced a drying trend in

the second part of the 20th century (see, e.g. IPCC, 2014),

is projected to be affected by more frequent, severe, intense,

and longer drought events in the near future and even more

in the far future. The drying trend is driven by the combina-

tion of PET increase and precipitation decrease. Oppositely,

northern Europe, the area that experienced a trend toward

wetness from the 1970s onwards (IPCC, 2014), is projected

to be involved by fewer and less intense droughts, mainly due

to the projected precipitation increase.

The results of this study should be considered as a pre-

liminary step towards more detailed analyses regarding the

projections of European drought events. Many different as-

pects could be introduced to refine the methodologies and

the outputs. Among them we plan to study seasonal droughts,

adding new indicators, using other models belonging to the

A1B (see Meehl et al., 2005, for a summary) and different

scenario families, performing tests to compute the statistical

error intervals of the climate projections, and coupling the

drought information with other climate extremes.

Acknowledgements. We would like to thank the two anonymous

referees for their precious suggestions which helped improving the

manuscript.

Edited by: O. Einar Tveito

Reviewed by: two anonymous referees

References

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop

evapotranspiration-Guidelines for computing crop water require-

ments, FAO Irrigation and drainage paper, 56, FAO, Rome, 15

pp., 1998.

Beguería, S., Vicente-Serrano, S. M., Reig, F., and Latorre, B.: Stan-

dardized precipitation evapotranspiration index (SPEI) revisited:

parameter fitting, evapotranspiration models, tools, datasets and

drought monitoring, Int. J. Climatol., 34, 3001–3023, 2014.

Blenkinsop, S. and Fowler, H. J.: Changes in European drought

characteristics projected by the PRUDENCE regional climate

models, Int. J. Climatol., 27, 1595–1610, 2007.

Briffa, K. R., van Der Schrier, G., and Jones, P. D.: Wet and dry

summers in Europe since 1750: evidence of increasing drought,

Int. J. Climatol., 29, 1894–1905, 2009.

Brutsaert, W. and Parlange, M. B.: Hydrologic cycle explains the

evaporation paradox, Natur, 396, 30–30, 1998.

Burke, E. J., Brown, S. J., and Christidis, N.: Modeling the recent

evolution of global drought and projections for the twenty-first

century with the Hadley Centre climate model, J. Hydrometeo-

rol., 7, 1113–1125, 2006.

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V.,

Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Cheval-

lier, F., De Noblet, N., Friend, A. D., Friedlingestein, P., Grün-

wald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Lous-

tau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M.,

Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J. F.,

Sanz, M. J., Schulze, E. D., Vesala, T., and Valentini, R.: Europe-

wide reduction in primary productivity caused by the heat and

drought in 2003, Nature, 437, 529–533, 2005.

Ciscar, J. C., Feyen, L., Soria, A., Lavalle, C., Raes, F., Perry, M.,

Nemry, F., Demirel, H., Rozsai, M., Dosio, A., Donatelli, M., Sri-

vastava, A., Fumagalli, D., Niemeyer, S., Shrestha, S., Ciaian, P.,

Himics, M., Van Doorslaer, B., Barrios, S., Ibáñez, N., Forzieri,

G., Rojas, R., Bianchi, A., Dowling, P., Camia, A., Libertà, G.,

San Miguel, J., de Rigo, D., Caudullo, G., Barredo, J.-I., Paci, D.,

Pycroft, J., Saveyn, B., Van Regemorter, D., Revesz, T., Vandyck,

T., Vrontisi, Z., Baranzelli, C., Vandecasteele, I., Batista e Silva,

F., and Ibarreta, D.: Climate Impacts in Europe. The JRC Pe-

seta II Project, JRC-IPTS Working Paper JRC8701, Institute for

Prospective and Technological Studies, Joint Research Centre,

Ispra, Italy, 2014.

Dai, A.: Drought under global warming: a review, Wiley Interdisci-

plinary Reviews: Climate Change, 2, 45–65, 2011.

Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M.,

and Seneviratne, S. I.: Global assessment of trends in wetting and

drying over land, Nat. Geosci., 7, 716–721, 2014.

Guerrero-Salazar, P. and Yevjevich, V.: Analysis of drought charac-

teristics by the theory of runs, Fort Collins, Colorado: Colorado

State University, Hydrology Papers, 80, 1–44, 1975.

Guttman, N. B.: Accepting the standardized precipitation index: a

calculation algorithm, J. Am. Water Resour. As., 35, 311–322,

1999.

Hannaford, J., Lloyd-Hughes, B., Keef, C., Parry, S., and Prud-

homme, C.: Examining the large-scale spatial coherence of Eu-

Adv. Sci. Res., 12, 179–186, 2015 www.adv-sci-res.net/12/179/2015/



J. Spinoni et al.: Spatial patterns of European droughts under a moderate emission scenario 185

ropean drought using regional indicators of precipitation and

streamflow deficit, Hydrol. Process., 25, 1146–1162, 2011.

Hargreaves, G. H. and Samani, Z. A.: Estimating potential evapo-

transpiration, J. Irr. Drain. Div.-ASCE, 108, 225–230, 1982.

Heinrich, G. and Gobiet, A: The future of dry and wet spells in

Europe: A comprehensive study based on the ENSEMBLES re-

gional climate models, Int. J. Climatol., 32, 1951–1970, 2012.

Hightower, M. and Pierce, S. A.: The energy challenge, Nature, 452,

285–286, 2008.

Hirschi, M., Seneviratne, S. I., Alexandrov, V., Boberg, F.,

Boroneant, C., Christensen, O. B., Formayer, H., Orlowsky, B.,

and Stepanek, P.: Observational evidence for soil-moisture im-

pact on hot extremes in southeastern Europe, Nat. Geosci., 4,

17–21, 2011.

Hoerling, M., Eischeid, J., Perlwitz, J., Quan, X., Zhang, T., and

Pegion, P.: On the increased frequency of Mediterranean drought,

J. Climate, 25, 2146–2161, 2012.

Kingston, D. G., Stagge, J. H., Tallaksen, L. M., and Hannah, D. M.:

European-Scale Drought: Understanding Connections between

Atmospheric Circulation and Meteorological Drought Indices, J.

Climate, 28, 505–516, 2015.

IPCC: IPCC Special Report on Emissions Scenarios. A Special Re-

port of IPCC WG III, Cambridge University Press, Cambridge

UK and New York, NY, 599 pp., 2000.

IPCC: Summary for policymakers, in: Climate Change 2014: Im-

pacts, Adaptation, and Vulnerability. Part A: Global and Sectoral

Aspects. Contribution of Working Group II to the Fifth Assess-

ment Report of the Intergovernmental Panel on Climate Change,

edited by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K.

J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L.,

Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A.

N., MacCracken, S., Mastrandrea, P. R., and White, L. L., Cam-

bridge University Press, Cambridge, United Kingdom and New

York, NY, USA, 1–32, 2014.

Lloyd-Hughes, B. and Saunders, M. A.: A drought climatology for

Europe, Int. J. Climatol., 22, 1571–1592, 2002.

McDaniels, T. L., Axelrod, L. J., Cavanagh, N. S., and Slovic, P.:

Perception of ecological risk to water environments, Risk Anal-

ysis, 17, 341–352, 1997.

McKee, T. B., Doeskin, N. J., and Kleist, J.: The relationship of

drought frequency and duration to time scales, in: Proceedings

of the 8th Conference on Applied Climatology, American Mete-

orological Society, Boston, MA, 179–184, 1993.

Meehl, G. A., Arblaster, J. M., and Tebaldi, C.: Understand-

ing future patterns of increased precipitation intensity in cli-

mate model simulations, Geophys. Res. Lett., 32, L18719,

doi:10.1029/2005GL023680, 2005.

Mishra, A. K. and Singh, V. P.: A review of drought concepts, J.

Hydrol., 391, 202–216, 2010.

Mishra, A. K. and Singh, V. P.: Drought modeling – A review, J.

Hydrol., 403, 157–175, 2011.

Palmer, W. C.: Meteorological drought, U.S. Weather Bureau Re-

search Paper, 45, 58 pp., 1965.

Paulo, A. A., Rosa, R. D., and Pereira, L. S.: Climate trends and be-

haviour of drought indices based on precipitation and evapotran-

spiration in Portugal, Nat. Hazards Earth Syst. Sci., 12, 1481–

1491, doi:10.5194/nhess-12-1481-2012, 2012.

Sheffield, J., Wood, E. F., and Roderick, M. L.: Little change in

global drought over the past 60 years, Nature, 491, 435–438,

2012.

Sherwood, S. and Fu, Q.: A Drier Future?, Science, 343, 737–739,

2014.

Shoukri, M. M., Mian, I. U. H., and Tracy, D. S.: Sampling proper-

ties of estimators of the log-logistic distribution with application

to Canadian precipitation data, Can. J. Stat., 16, 223–236, 1988.

Spinoni, J., Antofie, T., Barbosa, P., Bihari, Z., Lakatos, M., Szalai,

S., Szentimrey, T., and Vogt, J.: An overview of drought events in

the Carpathian Region in 1961–2010, Adv. Sci. Res., 10, 21–32,

doi:10.5194/asr-10-21-2013, 2013.

Spinoni, J., Naumann, G., Carrao, H., Barbosa, P., and Vogt, J. V.:

World drought frequency, duration, and severity for 1951–2010,

Int. J. Climat., 34, 2792–2804, 2014.

Spinoni, J., Naumann, G., Vogt, J., and Barbosa, P.: European

drought climatologies and trends based on a multi-indicator ap-

proach, Global Planet. Change, 127, 50–57, 2015a.

Spinoni, J., Naumann, G., Vogt, J. V., and Barbosa, P.: The

biggest drought events in Europe from 1950 to 2012,

Journal of Hydrology: Regional Studies, 3, 509–524,

doi:10.1016/j.ejrh.2015.01.001, 2015b.

Stagge, J. H., Tallaksen, L. M., Xu, C. Y., and van Lanen, H. A.

J.: Standardized precipitation-evapotranspiration index (SPEI):

Sensitivity to potential evapotranspiration model and parameters,

Proceedings of FRIEND-Water 2014, IAHS Red Book No. 363,

Montpellier, France, 367–373, 2014.

Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., van Loon, A. F.,

and Stahl, K.: Candidate distributions for climatological drought

indices (SPI and SPEI), Int. J. Climatol., doi:10.1002/joc.4267,

in press, 2015.

Szentimrey, T.: Multiple analysis of series for homogenization

(MASH), Proceedings of the Second Seminar for Homogeniza-

tion of Surface Climatological Data, Budapest, Hungary, WMO

& WCDMP No. 41, 27–46, 1999.

Thom, H. C.: A note on the gamma distribution, Mon. Weather Rev.,

86, 117–122, 1958.

Thornthwaite, C. W.: An approach toward a rational classification

of climate, Geogr. Rev., 38, 55–94, 1948.

Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D.,

Barichivich, J., Briffa, K. R., and Sheffield, J.: Global warming

and changes in drought, Nature Climate Change, 4, 17–22, 2014.

van der Schrier, G., Jones, P. D., and Briffa, K. R.: The sensitivity

of the PDSI to the Thornthwaite and Penman-Monteith param-

eterizations for potential evapotranspiration, J. Geophys. Res.-

Atmos., 116, doi:10.1029/2010JD015001, 2011.

van der Schrier, G., Barichivich, J., Briffa, K. R., and Jones, P. D.:

A scPDSI-based global dataset of dry and wet spells for 1901–

2009, J. Geophyis. Res., 118, 4025–4048, 2013.

van Meijgaard, E., van Ulft, L. H., van de Berg, W. J., Bosveld, F.

C., van den Hurk, B. J. J. M., Lenderink, G., and Siebesma, A. P.:

The KNMI regional atmospheric climate model RACMO version

2.1, Technical Report TR-302, Koninklijk Nederlands Meteorol-

ogisch Instituut, De Bilt, The Netherlands, 50 pp., 2008.

Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A

multiscalar drought index sensitive to global warming: the stan-

dardized precipitation evapotranspiration index, J. Climate, 23,

1696–1718, 2010.

www.adv-sci-res.net/12/179/2015/ Adv. Sci. Res., 12, 179–186, 2015

http://dx.doi.org/10.1029/2005GL023680
http://dx.doi.org/10.5194/nhess-12-1481-2012
http://dx.doi.org/10.5194/asr-10-21-2013
http://dx.doi.org/10.1016/j.ejrh.2015.01.001
http://dx.doi.org/10.1002/joc.4267
http://dx.doi.org/10.1029/2010JD015001


186 J. Spinoni et al.: Spatial patterns of European droughts under a moderate emission scenario

Vicente-Serrano, S. M., Lopez-Moreno, J. I., Beguería, S., Lorenzo-

Lacruz, J., Sanchez-Lorenzo, A., García-Ruiz, J. M., Azorin-

Molina, C., Moran-Tejeda, E., Revuelto, J., Trigo, R., Coelho, F.,

and Espejo, F.: Evidence of increasing drought severity caused

by temperature rise in southern Europe, Environ. Res. Lett., 9,

044001, doi:10.1088/1748-9326/9/4/044001, 2014.

Vicente-Serrano, S. M., van der Schrier, G., Beguería, S., Azorin-

Molina, C., and Lopez-Moreno, J. I.: Contribution of precipita-

tion and reference evapotranspiration to drought indices under

different climates, J. Hydrol., 526, 42–54, 2015.

Vogt, J. and Somma, F. (Eds.): Drought and drought mitigation in

Europe, Kluwer, Dordrecht, 325 pp., 2000.

Vogt, J. V., Safriel, U., Von Maltitz, G., Sokona, Y., Zougmore,

R., Bastin, G., and Hill, J.: Monitoring and assessment of land

degradation and desertification: Towards new conceptual and in-

tegrated approaches, Land Degrad. Dev., 22, 150–165, 2011.

Wanders, N. and Yada, Y.: Human and climate impacts on the 21th

century hydrological drought, J. Hydrol., 526, 208–220, 2015.

Warren, R., Yu, R., Osborn, T., and de la Nava Santos, S.: Future

European drought regimes under mitigated and un-mitigated cli-

mate change, IOP Conf. Ser.: Earth Environ. Sci., 6, 292012,

doi:10.1088/1755-1307/6/29/292012, 2009.

Wells, N., Goddard, S., and Hayes, M. J.: A self-calibrating Palmer

drought severity index, J. Climate, 17, 2335–2351, 2004.

Winslow, M. D., Vogt, J. V., Thomas, R. J., Sommer, S., Martius, C.,

and Akhtar-Schuster, M.: Science for improving the monitoring

and assessment of dryland degradation, Land Degrad. Dev., 22,

145–149, 2011.

Wu, H., Hayes, M. J., Wilhite, D. A., and Svoboda, M. D.: The

effect of the length of record on the standardized precipitation

index calculation, Int. J. Climatol., 25, 505–520, 2005.

Zampieri, M., D’Andrea, F., Vautard, R., Ciais, P., de Noblet-

Ducoudré, N., and Yiou, P.: Hot European summers and the role

of soil moisture in the propagation of Mediterranean drought, J.

Climate, 22, 4747–4758, 2009.

Adv. Sci. Res., 12, 179–186, 2015 www.adv-sci-res.net/12/179/2015/

http://dx.doi.org/10.1088/1748-9326/9/4/044001
http://dx.doi.org/10.1088/1755-1307/6/29/292012

	Abstract
	Introduction
	Data and methods
	Scenario model, input variables, and study region
	Drought indicators, events, and derived variables

	Results and Discussion
	Drought patterns in the near future (2041--2070)
	Drought patterns in the far future (2071--2100)
	Projected drought patterns at a country scale

	Conclusions
	Acknowledgements
	References

