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Abstract. Soil temperatures at various depths are unique parameters useful to describe both the surface energy

processes and regional environmental and climate conditions. To provide soil temperature observation in differ-

ent regions across Belgium for agricultural management as well as for climate research, soil temperatures are

recorded in 13 of the 20 automated weather stations operated by the Royal Meteorological Institute (RMI) of

Belgium. At each station, soil temperature can be measured at up to 5 different depths (from 5 to 100 cm) in

addition to the bare soil and grass temperature records. Although many methods have been developed to iden-

tify erroneous air temperatures, little attention has been paid to quality control of soil temperature data. This

contribution describes the newly developed semi-automatic quality control of 10-min soil temperatures data at

RMI.

1 Introduction

Of great importance in agriculture, soil temperature affects

plant growth directly, e.g. in seed germination, root growth

and nutrient uptake as well as indirectly in soil water and gas

flow, soil structure and nutrient availability (Hillel, 1998).

Soil temperature is an important parameter in energy bal-

ance applications such as land surface modeling, numerical

weather forecasting, and climate prediction (e.g. Best et al.,

2005). It is also important in radiative transfer applications,

such as in the retrieval of land surface properties with satel-

lite sensors, and especially in the retrieval of surface mois-

ture with microwave sensors (e.g. de Jeu et al., 2008). Soil

temperature varies in response to exchange processes that

take place primarily through the soil surface. These effects

are propagated into the soil profile by a complex series of

transport processes, the rates of which are affected by time-

variable and space-variable soil properties. At each succeed-

ing depth, the peak temperature is dampened and shifted pro-

gressively in time (see Fig. 1). The degree of damping in-

creases with depth and is related to the thermal properties of

the soil and the frequency of the temperature fluctuation. Due

to the much higher heat capacity of soil relative to air and the

thermal insulation provided by vegetation and surface soil

layers, soil heat anomalies of daily or weekly timescales in

shallow layers near the surface do not propagate to the deeper

layers. Only persistent long-term anomalies (e.g. at the in-

ter annual and decadal scale) affect temperature variations in

those layers (e.g. Lachenbruch and Marshall, 1986).

While many methods have been proposed to identify erro-

neous air temperatures, only little attention has been paid to

quality control of soil temperature data. This situation im-

poses a significant effort toward providing quality control

and assurance (QC/QA) especially devoted to soil tempera-

ture measurements. Here we propose a semi-automatic qual-

ity control method to check 10-min grass and soil tempera-

ture records. In developing quality control tests for the auto-

matic weather stations (AWSs) operated by the Royal Meteo-

rological Institute of Belgium (RMI), we adapted some of the

tools developed in Hu et al. (2002) and Hu and Feng (2003)

to examine daily and hourly soil temperature data and ex-

panded their approach to include additional tests introduced

for some of them in quality control of air temperatures at

RMI (Bertrand et al., 2013). The framework is similar to

Gandin’s concept of complex QA (Gandin, 1988), in that

it approaches the question of the validity of a given datum

from several different angles and considers errors of differ-

ent types. However, in the present approach, the automated

QA functions are included in a larger QA protocol involving

manual inspections similarly to the method implemented at

RMI for the quality control of 10-min air temperature data

(Bertrand et al., 2013).

Published by Copernicus Publications.
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Table 1. List of the 13 RMI’s Automatic Weather Stations performing at least one soil temperature record and the associated measurements.

AWS Air temperature measurement (s) QC Coordinates

Code Name Climate Grass Bare soil Soil Soil Soil Soil Soil group Lat. Lon.

zone 0 cm −5 cm −10 cm −20 cm −50 cm −1 m (◦ N) (◦ E)

6414 Beitem 1 X X X X X 3 50.91 3.12

6431 Zelzate 1 X 5 51.18 3.81

6434 Melle 1 X X X X X X 2 50.98 3.83

6438 Stabroek 1 X X X X X X 2 51.33 4.37

6439 Sint Katelijn 2 X X X X X 4 51.08 4.53

Waver

6447 Uccle 1 X X X X X X 2 50.80 4.36

6455 Dourbes 3 X X X X X X 2 50.10 4.60

6459 Ernage 3 X X X X X X 2 50.58 4.69

6464 Retie 2 X X X X X X 2 51.22 5.03

6472 Humain 4 X X X X X X X 1 50.19 5.26

6477 Diepenbeek 2 X X X X X X 2 50.92 5.45

6484 Buzenol 4 X X X X X 3 49.62 5.59

6494 Mont Rigi 5 X X X X X 3 50.51 6.07
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Figure 1. 10-min soil temperature at various depths vs time of the

day for 2–3 July 2014, at the Humain station (RMI’s AWS 6472,

see Table 1).

2 Soil temperature records at RMI

Automatic weather stations operated by RMI range from ba-

sic climatological stations to fully equipped synoptic stations

performing a complete set of meteorological observations.

Soil temperature measurements are performed in 13 of them

to provide soil temperature profile in different regions across

Belgium for agricultural management as well as for climate

research. At each station, soil temperature can be measured

at up to 5 different depths (from 5 to 100 cm) in addition to

the bare soil and grass temperatures records (see Table 1).

Due to the large heterogeneity within the RMI’s AWSs, five

groups based on the recorded temperature parameters are dis-

tinguished for the automated data QC and the stations are

gathered in five climatic zones.

3 Complex automatic QA

RMI’s AWSs are built around a programmable data logger

that measures the sensors, then processes, stores and trans-

mits the data to the central database (DB) in Uccle, Brus-

sels. Once converted to digital values a first processing is

performed on the raw data at the data logger level allow-

ing calculation of 10-min temperatures values from the 5-s

measurements. To ensure that gross errors are trapped before

being further transmitted in the central DB a first basic QC is

performed on all temperature values once acquired centrally.

Automated procedures monitor the data to make sure they

are collected and that the system performance is acceptable.

After an existence test, a module checks for physical lim-

its and flags the data violating these limits (erroneous when

data lie outside physical limits and suspect when lying out-

side basic long-term climatological extremes that do not take

into account the time of year and location). A list of missing

and flagged data is automatically produced after each control

cycle and transmitted to the AWS network maintenance team

for further intervention. Note that values flagged as erroneous

fail immediately and do not require further testing.

Second, each night automated QA procedures check the

previous day 10-min temperatures values for more subtle er-

rors. Implementation of the complex automated QA is dia-

grammed in Fig. 2. Daily temperature values are first checked

using annual variation expectancies envelopes and the shape

of the diurnal variation of the soil temperature at the differ-

ent depths are compared to ensure consistency between them

(see Sect. 3.1 for details). Individual 10-min records are fur-

ther scrutinized for plausibility (using adjusted limits to re-

flect climatic conditions more precisely than in the first near

real time range test), internal consistency, temporal consis-

tency and spatial consistency (see Sect. 3.2 for details).
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Figure 2. Complex QA of 10-min grass/soil temperatures records.

At the end of the checks, when all 10-min daily temper-

ature time series recorded in a given station have been ana-

lyzed, a decision algorithm (that is applicable to all variables

and all sites) interprets the scores obtained at each of the indi-

vidual tests and attributes a final flag (i.e. erroneous, suspect

or valid) to each particular data given the weight of evidence.

At the end of the process, a report is automatically generated

for each AWS and sent to the QC staff.

3.1 Global daily QC

In nature, soil temperature varies continuously in response

to the ever changing meteorological regime acting upon the

soil-atmosphere interface. That regime is characterized by a

regular periodic succession of days and nights, and of sum-

mers and winters. The regular diurnal and annual cycles are

perturbed by irregular episodic phenomena as cloudiness,

cold wave, warm waves, rain storms or snow storms, and

periods of drought. In addition to these external influences,

there are the soil’s own changing properties (i.e. temporal

changes in reflectivity, heat capacity, and thermal conduc-

tivity as the soil alternately wets and dries, and the varia-

tion of all these properties with depth), as well as the influ-

ences of geographic location and vegetation. While the ther-

mal regime of soil profiles is very complex, a simple math-

ematical representation of the fluctuating thermal regime in

a soil profile is obtained by assuming that at all depths in

the soil the temperature oscillates as a pure harmonic (sinu-

soidal) function of time around an average value (van Wijk

and de Vries, 1963).

To rapidly identify data outside the variation range of soil

temperatures at each depth, daily values (i.e. computed from

the 10-min measurements) are compared to lower and upper

bounds for soil temperature at given depths. Similarly to the

LIM test in Hu and Feng (2003), lower and upper bounds for

a given temperature data series (i.e. grass and soil tempera-

tures) are constructed for each of the five climate zones by

retrieving the highest and lowest daily values on each cal-

endar day of the year from 9 years (2005–2013) of manu-

ally quality controlled historical data. Assuming that annual

soil/grass temperature variations follow a sinusoidal curve,

envelopes of annual variation of these extreme temperatures

were then defined using wave functions of the form:

TL/U(z,d)= TLo/Uo(z)+ALo/Uo(z) · sin(ωod) (1)

where, TL and TU are the lower and upper bounds of soil

temperature variations, respectively, d is the day of year, ωo

is the angular frequency, which is 2π times the actual fre-

quency (i.e. 2π /365 in case of an annual forcing), z is depth,

and TLo/Uo(z) andALo/Uo(z) are the annual mean of these ex-

treme soil temperatures and their amplitude of variations, re-

spectively. To include the extreme values within the derived

expectancy envelopes from Eq. (1), the boundaries are ad-

justed as follows (see Fig. 3 for an illustration): data satisfy-

ing

TL(z,d)− 2≤ T (z,d)≤ TU(z,d)+ 2

succeed the limits consistency test, and data failing it are soft

flagged if they are less than 10 % outside the range delimited

by the adjusted boundaries and hard flagged otherwise.

www.adv-sci-res.net/12/23/2015/ Adv. Sci. Res., 12, 23–30, 2015
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Figure 3. Example of annual variation expectancy envelopes used

in the Global Daily QC Limits Consistency test. Illustrated limits

apply to the daily mean soil temperature recorded at −10 cm for

stations of climate zone 1 (see Table 1)

To check the reduction in amplitude of the diurnal temper-

ature cycle and the phase shift of the temperature maximum

and minimum with depth (see Fig. 1), the recorded diurnal

temperature cycle at any depth z, and time t , is modeled as

follows:

T (z, t)= T (z)+A(z) · sin(ωt −φ(z)) (2)

where, T (z) is the daily mean temperature at depth z, ω is the

angular frequency (diurnal forcing), A(z) is the amplitude

of the temperature wave at depth z, and φ(z) is the phase

constant at depth z (aligns soil temperature variation with the

forcing). The different A(z) and φ(z) which are functions

of z but not of t are then compared and temperature data

series which do not respect the damping and retarding of the

temperature waves with depth fail the internal consistency

test.

Note that these two tests are denoted as global because

they cannot discern which observations within the daily time

series are responsible for the offense.

3.2 Individual 10-min record QC

The question of the validity of a given datum is approached

using a number of additional tests applied to each particu-

lar 10-min temperature record. To verify whether the values

are within acceptable range limits depending on the climatic

conditions of the measurement site, individual data values are

compared with upper and lower seasonal bounds derived for

each temperature parameters and zones from several years

of previous manually controlled data. The check provides in-

formation as to whether the values are erroneous or suspect.

To minimize the possibility of a false positive identification,

the algorithm does not report an anomaly in case where the
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Figure 4. Probable bare soil–grass temperature differences as a

function of the bare soil temperature.

majority of the recorded parameters in a given site at time t

are flagged as being either to cool or to warm. Grass tem-

perature and bare soil temperature are further examined for

climatological consistency.

Bare soil temperature is measured by a PT100 sensor in

contact with the ground on a horizontal surface fully exposed

to the open sky. Similarly, grass temperature is measured by a

PT100 sensor, fully exposed to the open sky, suspended hor-

izontally over an area covered with short cropped turf and

in contact with the tips of grass blades. With the advent of

automation and the lack of daily attention by an observer or

caretaker, this set up has proved limitations (e.g. lack/lost of

contact between the temperature probe and the ground sur-

face or the grass blades, probe fully covered by grass, . . . ).

The probable range test provides a more stringent constraint

than simple valid maximum/minimum limit test by requiring

consistency among temperature parameters as well as consis-

tency with historical data. Basically, the differences between

bare soil and grass temperatures as a function of the bare soil

temperature are compared to probable difference determined

from several years of previous data. Contours in Fig. 4 indi-

cate which combinations of grass and bare soil temperatures

fall within a given percentile of joint probability density. Fol-

lowing a review of the values that fall outside the 99.9 %

boundary, the 99.9th percentile was selected as the boundary

of acceptability. Combinations are hard flagged when falling

outside the 99.9 % boundary and soft flagged when falling

between the 99.0 and 99.9 % boundaries. Because two com-

parisons (involving three parameters) are necessary to unam-

biguously identify which parameter is problematic, similar

joint probability densities were established involving the soil

temperature at −10 cm. This last parameter has been chosen

for the probable range test as it is systematically recorded

in stations where both grass and bare soil temperatures are

measured (see Table 1).

Adv. Sci. Res., 12, 23–30, 2015 www.adv-sci-res.net/12/23/2015/
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To examine the temporal consistency of the data, two tests

involving the rate of change of the variables from a preced-

ing acceptable level are applied: the spike/step (1Max) test

and the persistence (1Min) test. Both, the maximum and

minimum probable changes for each analyzed parameters

(i.e. grass and soil temperatures) are based on the 99.9th per-

centile change for several years of previous data. Because the

rate of change for deep soil temperatures can be very small,

the persistence test does not apply to soil temperature below

−20 cm. Values are checked for 10-min, 1, 2, 3 and 6 h time

steps. To minimize the possibility of a false positive identi-

fication, the data must fail in at least 3 of the 5 tested time

steps prior to be flagged as suspect or erroneous. Moreover,

because in case of extreme meteorological conditions, un-

usual variability in the air temperature may occur, grass and

bare soil temperatures data may be flagged as suspect, al-

though correct. To prevent from this, the algorithm does not

report a spike/step anomaly for grass and bare soil tempera-

tures if both temperatures at the same site fail the spike/step

test. Similarly, the algorithm does not report a persistence

anomaly for the grass and bare soil temperatures in case

of snow cover. Below 0 ◦C in snow free condition, a per-

sistence anomaly is reported based on the assumption that

freezing conditions can affect multiple sensors. Note that for

stations where only one of the grass or bare soil temperatures

is recorded, the −5 cm soil temperature value is used (when

applicable) in place of the lacking parameter to adjust the

1Max and 1Min tests.

Finally, horizontal comparisons of the same measurement

at different stations are performed for all recorded tempera-

ture parameters. As for the quality control of 10-min air tem-

perature data implemented at RMI (Bertrand et al., 2013),

the horizontal check works in two steps. First, an outlier de-

tection is performed on both the station data being quality

controlled and the data of the surrounding stations using the

daily 10-min temperature time series of each stations.

Let Ti,t be a 10-min temperature record at station i

(i= 1,M withM ≤ 13) at time t (t = 1,N withN ≤ 144) in a

given day. Yi,t = Ti,t − Ti with Ti =
1
N

N∑
t=1

Ti,t the daily mean

temperature at station i. Zi,t =Yi,t −Yt with Yt =
1
M

M∑
i=1

Yi,t

the stations’ mean at time t . We test whether or not the Zi,t
values fall within the confidence interval defined by:

Zt −CσZt ≤ Zi,t ≤ Zt +CσZt (3)

where Zt =
1
M

M∑
i=1

Zi,t = 0, σZt =

√
1

M−1

M∑
i=1

(Zi,t −Zt )2 is

the estimated standard deviation at time t , and C is an adjust-

ment parameter function of the considered soil/grass temper-

ature parameter. Values Ti,t that do not satisfy the relation in

Eq. (3) are considered as outliers.

If an outlier is detected for the station being quality

checked, then the data fails the horizontal consistency test.

Table 2. Overall performance of the automatic QC. The evalua-

tion is performed over the full month of November 2014. A total

of 298 512 (100 %) 10-min records including all soil/grass temper-

ature parameters recorded within the RMI AWS network have been

analyzed.

10-min records

QCAUTO Manual Manual Total

QC TRUE QC FALSE

Valid 97.71 % 1.60 % 99.31 %

Suspect 0.17 % 0.09 % 0.26 %

Erroneous < 0.01 % 0.43 % 0.43 %

Total 97.88 % 2.12 % 100 %

Otherwise, the algorithm tests on a 10-min basis whether the

analyzed station value, Ti,t , falls inside a confidence interval

formed from surrounding stations data that were not classi-

fied as outliers. Measurements that fail the test are soft or

hard flagged depending upon the departure of the data from

the confidence interval. Note that the outlier check in Eq. (3)

can lead to false positives if one or several of the compar-

ison measurements are spatial outliers able to influence the

stations mean, Yt , in such a way that the measurement under

the test is erroneously flagged as an outlier while being valid.

In such cases either the decision algorithm at the end of the

checking process identifies the false positives as valid based

on the scores obtained at the other tests involved in the auto-

mated QA system or they will be reviewed during the manual

follow up (see Sect. 4) and set to valid if justified.

In developing quality control methods for the US Depart-

ment of Agriculture (USDA) Natural Resources Conserva-

tion Service (NRCS) Soil Moisture-Soil Temperature (SM-

ST) network, Hu et al. (2002) established a soil heat diffu-

sion model to screen and identify erroneous soil temperature

data. Because such kind of model was found to perform well

only in sunny and clear days situations, in our case, modeled

data are not used to examine the soil temperatures records.

Instead a soil model is used to assist the QC staff in their

corrections and estimations (see Sect. 4).

3.3 Automated QC performance

Quality assurance consists of procedures or rules against

which data are tested. Each procedure will either detect the

data as being valid, suspect or erroneous. False positives

(i.e. type I error) increase the burden on the manual QC,

and false negatives (i.e. type II error) reduce the quality of

the data. One month of data (e.g. November 2014) has been

used to determine the overall performance of the automated

QA system. Independent manual QC applied on the recorded

10-min soil temperatures during the same month has been

considered as reference for the evaluation. Table 2 presents a

general overview of the performance of the newly developed

www.adv-sci-res.net/12/23/2015/ Adv. Sci. Res., 12, 23–30, 2015
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Table 3. Quantitative evaluation of the different tests involved

in the automated QC of the 10-min soil/grass temperatures

records (QC1= physical limits test, QC2=Min–Max range test,

QC3= spike/step− persistence test, QC4= spatial horizontal test

and QC5= probable range test). The evaluation is performed over

the full month of November 2014. A total of 298 512 (100 %)

10-min records including all soil/grass temperature parameters

recorded within the RMI AWS network have been analyzed

(v= valid, s= suspect, e= erroneous, and nt=no check).

10-min records

QC TESTS Manual TRUE Manual FALSE

. 292 187= 100 % 6325= 100 %

QC1

v 100 % 100%

s

e

nt

QC2

v 98.15 % 71.40 %

s 1.81 % 26.12 %

e 0.04 % 2.34 %

nt 0.14%

QC3

v 99.36 % 89.38 %

s 0.51 % 7.67 %

e 0.13 % 2.81 %

nt 0.14 %

QC4

v 91.45 % 96.13 %

s 7.07 % 1.44 %

e < 0.01 % 2.43 %

nt 1.48 %

QC5

v 99.96 % 78.95 %

s 0.04 % 1.56 %

e < 0.01 % 19.34 %

nt 0.15 %

QCAUTO

v 99.83 % 75.38 %

s 0.17 % 4.49 %

e < 0.01 % 20.13 %

nt

complex QA system while Table 3 provides a quantitative

evaluation of the various tests involved in the data checking.

It is worth pointing out that both tables refer to the 10-min

data tests (daily tests cannot identify which observations are

responsible for the offense) and that the results could differ

for a given temperature parameter or a station type (i.e. QC

group in Table 1). Table 2 indicates that type I errors gen-

erated by the automated QA system are very low (less than

0.01 % of the true 10-min records were detected as erroneous

by the algorithm). By contrast the percentage of type II errors

is very large (more than 75 % of the false 10-min records

were found as valid by the automated QC as indicated in

Table 3). However, this apparent very bad performance of

the automated QA system in term of type II errors has to

be handle with caution. First, it often occurred that while

Figure 5. Visualization of the automated QC applied on the 10-min

soil/grass temperatures records performed on 22 November 2014 at

the Melle station (AWS 6434, see Table 1). Erroneous grass tem-

perature data are indicated by a orange circle on the green curve.

the algorithm effectively detected 10-min erroneous/suspect

measurements in a daily parameter time series, the operators

corrected more records than the ones found problematic by

the system. As an example, Fig. 5 indicates that the 10-min

grass temperature records were found erroneous by the au-

tomated QA system 14 times (orange circles on the green

curve) on 22 November 2014 at the Melle station. After vi-

sualization of the station grass temperatures time series on

22 November 2014, 33 corrections were performed by the

operator on the 10-min records (i.e. the full time segment

where problematic measurements were detected by the al-

gorithm was manually corrected). Second, Tables 2 and 3

only deal with the 10-min tests and do not account for the

daily tests. It is worth pointing out that during the month of

November 2014, the grass temperature measurements per-

formed in the Stabroek station were found systematically

wrong by the QC staff during 28 days. Over this time pe-

riod, the grass temperature parameter in this station was de-

tected as erroneous (suspect) 23 (4) times on a daily basis

while the 10-min tests did not necessarily reported any erro-

neous/suspect measurements for this parameter as illustrated

in Fig. 6.

When accounting for both daily and 10-min automated

QC results, the algorithm succeeded to identify the stations,

days and parameters on which corrections were made by the

QC staff. A detailed analysis of the type II errors revealed

that they mainly concern grass temperature measurements.

We strongly suspect that the grass temperature database (and

to a lesser extend the bare soil temperature database) used

to derive the tests was not validated as it should have been.

Typically, probable range test aims at detecting problematic

situations as the one illustrated in Fig. 6 for the grass tem-

Adv. Sci. Res., 12, 23–30, 2015 www.adv-sci-res.net/12/23/2015/
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Figure 6. Visualization of the automated QC applied on the 10-min

soil/grass temperatures records performed on 3 November 2014 at

the Stabroek station (AWS 6438, see Table 1). No erroneous or sus-

pect data were found in the daily 10-min temperatures time series.

perature 10-min daily time series. Because erroneous data

have been involved when defining the boundaries used in

the automated tests, probable differences between bare soil

and grass temperatures given in Fig. 4 are certainly too per-

missive. This drawback has a direct impact on the detection

performance of problematic grass, bare soil and −10 cm soil

temperatures records by the probable range test. As an exam-

ple, Table 3 indicates that this test (i.e. QC5) produced type II

errors in about 79 % of the cases while this category of test

has proven to be one of the most efficient in the detection of

erroneous 10-min air temperature records performed by the

RMI’s AWSs.

4 Manual QA

Each day, the QC staff analyses the preceding day 10-min

temperature records in the light of the assigned quality flags

from the automated QA system. Results of the automated

QA system can be graphically plotted on the operator ter-

minal screen as illustrated in Figs. 5 and 6. In that case, all

the analyzed station 10-min soil/grass temperatures records

of the inspected day are illustrated in a graphic window and

erroneous or suspect data are indicated in the corresponding

parameter daily time series (e.g. orange circles on the green

line in Fig. 5). Visual inspection of all records flagged by the

automated decision making algorithm is done to distinguish

instrumental problems from plausible behaviors. It is the hu-

man decision whether or not a value is accepted. When er-

rors are verified or visually detected, faulty records are elim-

inated and ”trouble tickets” are issued where needed to the

maintenance team so that sensors can be replaced or repaired.

More than simply deleting erroneous measurements, human

operators supply corrections and estimations (i.e. when val-

ues are missing) where possible. They are supported in this

task by automated procedures. As an example, assuming that

the thermal properties are constant with depth, soil tempera-

ture at any depth below the ground surface (i.e. 0<z<∞)

can be estimated using a soil heat diffusion model (van Wijk

and de Vries, 1963).

The correction/estimation process is fully interactive, op-

erators directly visualize on screen the corrections they ap-

plied on the parameters time series (the graphic window dis-

playing the station temperatures time series being automat-

ically updated after each modification). They have the op-

portunity to visualize different corrections on the problem-

atic time series in order to determine the most appropriate

in their specific case. When the correction/estimation pro-

cess is completed, all modifications introduced by the op-

erator are automatically implemented in the central RMI

database. Note that the original parameters values are kept in

the database and still accessible by the QC staff if required.

5 Conclusions

Automation of the RMI’s AWSs data quality control is ongo-

ing. After the automated quality control of 10-min air tem-

perature data (Bertrand et al., 2013), automated quality as-

surance procedures devoted to 10-min grass/soils tempera-

ture records have been operationally implemented to support

the QC staff in their work. The purpose of this automated

data screening is to objectively identify abnormal data val-

ues for subsequent review by an experienced data analyst.

The review is necessary to determine whether an anomaly re-

sults from a problem with instrumentation or whether it accu-

rately reflects unusual meteorological conditions. Validation

exercises have revealed that the complex automatic QA sys-

tem is able to correctly identify problematic parameters in a

particular station on a given day. However, automated tests

applied to 10-min temperature records produce a very high

percentage of type II error. In depth analysis of type II er-

rors indicates that because the database of grass temperature

records (and to a lesser extent bare soil temperature records)

used to derive the boundaries involved in the automated tests

was not validated as it should be, the probable range test fails

to perform correctly. To overcome such a limitation an exten-

sive validation of our historical records of 10-min grass and

bare soil temperatures will be undergone as soon as possi-

ble. Once available, the new validated database will be used

to refine the automated tests in general and in particular the

probable range test involving the grass, bare soil and -10 cm

soil temperatures. This forthcoming version of the algorithm

will be evaluated using test data days from a whole year as

the use of one single month of data could have masked sen-

sitivities of the automated QA system to seasonal variations.
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