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Abstract. The new McClear clear-sky model, a fast model based on a radiative transfer solver, exploits the
atmospheric properties provided by the EU-funded Copernicus Atmosphere Monitoring Service (CAMS) to
estimate the solar direct and global irradiances received at ground level in cloud-free conditions at any place any
time. The work presented here focuses on desert conditions and compares the McClear irradiances to coincident
1 min measurements made in clear-sky conditions at three stations in Israel which are distant from less than
100 km. The bias for global irradiance is comprised between 2 and 32W m~2, i.e. between 0 and 4% of the
mean observed irradiance (approximately 830 W m—2). The RMSE ranges from 30 to 41 W m~2 (4 %) and the
squared correlation coefficient is greater than 0.976. The bias for the direct irradiance at normal incidence (DNI)
is comprised between —68 and +13 W m~2, i.e. between —8 and 2 % of the mean observed DNI (approximately
840 W m~2). The RMSE ranges from 53 (7 %) to 83 W m~2 (10 %). The squared correlation coefficient is close
to 0.6. The performances are similar for the three sites for the global irradiance and for the DNI to a lesser extent,
demonstrating the robustness of the McClear model combined with CAMS products. These results are discussed

in the light of those obtained by McClear for other desert areas in Egypt and United Arab Emirates.

1 Introduction

The downwelling solar irradiance observed at ground level
on horizontal surfaces and integrated over the whole spec-
trum (total irradiance) is called surface solar irradiance (SSI).
It is the sum of the direct irradiance, from the direction of the
sun, and the diffuse, from the rest of the sky vault, and is
also called the global irradiance. The SSI is an essential cli-
mate variable as established by the Global Climate Observ-
ing System in August 2010 (GCQOS, 2016). Knowledge of the
SSI and its geographical distribution is of prime importance
for numerous domains where SSI plays a major role as e.g.
weather, climate, biomass, and energy.

A model estimating the SSI under clear sky or cloud-free
conditions is called a clear-sky model. Oumbe et al. (2014)
have demonstrated that computations of the SSI from satel-
lite images can be approximated by the product of the clear-
sky SSI and a modification factor due to cloud properties and
ground albedo only. Changes in clear-atmosphere properties
have negligible effect on this modification factor so that both
terms can be calculated independently. These results are im-
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portant in the view of an operational system as it permits sep-
arating the whole processing into two distinct and indepen-
dent models, whose input variable types and resolutions may
be different. This enforces the importance of the availability
of an accurate and easy-to-operate model for the assessment
of the clear-sky SSI.

The McClear model (Lefévre et al., 2013) is such a model.
It has been designed to benefit from the recent advances on
atmosphere composition made in MACC projects (Monitor-
ing Atmosphere Composition and Climate). The latter were
preparing the operational provision of global aerosol proper-
ties analyses and forecasts together with physically consis-
tent total column content in water vapour and ozone avail-
able every 3h (Benedetti et al., 2009; Kaiser et al., 2012;
Peuch et al., 2009). Such information had not been avail-
able so far from any operational numerical weather predic-
tion centre. Since 1 January 2016, the McClear model and
its inputs are part of the operational services delivered by the
Copernicus Atmosphere Monitoring Service (CAMS) oper-
ated by ECMWEF on behalf of the European Commission.
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Table 1. Geographical coordinates of the three stations. Period is 2006-2011. All data are coincident. Number of samples is 19849 in G, B

and D.
Station Latitude (positive  Longitude (positive  Elevation
North, ISO 19115) East, SO 19115) a.s.l. (m)
Beer Sheva (BEE) 31.25 34.8 195
Sede Boger (SBO) 30.905 34.782 500
Yotvata (YOT) 29.879 35.065 66

The CAMS McClear service is available as an interopera-
ble Web processing service (WPS), i.e. an application that
can be invoked via the Web and that obeys the OGC (Open
Geospatial Consortium) standard for interoperability (Perci-
vall et al., 2011). This service delivers estimates of the global
SSI and its direct and diffuse components on horizontal sur-
face as well as the direct SSI at normal incidence, for various
durations ranging from 1 min to 1 month.

Since its inception as a pre-operational service, McClear
has been increasingly used by academics and practitioners.
A lot of attention is paid to the validation of the estimates
provided by McClear. The goal is to better establish the do-
main of validity of McClear, its qualities and drawbacks, and
to bring transparency and confidence in the use of this oper-
ational service.

McClear has been previously validated with respect to
1min measurements of global and direct SSI on hori-
zontal surface from the Baseline Surface Radiation Net-
work (BSRN) collected from 11 sites located throughout
six continents (Lefévre et al., 2013). The relative root mean
square error (RMSE) for global SSI and direct SSI depends
on the station and ranges respectively between 3 and 5% of
the mean of the measurements for the station, and between 5
and 10 %.

This article aims at contributing further to the validation
of the McClear model. It focuses on desert conditions en-
countered in Israel where three close stations measure the
global, diffuse and direct SSI. This density of stations per-
mits to study the variability of the performances of McClear
in this climate homogeneous area.

2 Measurements and McClear estimates

Measurements of the global G and diffuse D SSI and of the
beam irradiation received at normal incidence By were col-
lected from three stations (Fig. 1 and Table 1) from the Is-
rael Meteorological Service (IMS), the BSRN network and
an undisclosed company for the period 2006-2011. The di-
rect SSI B on horizontal surface is computed from the dif-
ference G—D. Measurements are integrated over 10 min at
Beer Sheva and Yotvata and 1 min at Sede Boger which be-
longs to the BSRN network. 1 min measurements at Sede Bo-
ger were averaged over 10 min to match the sampling rate
of the two other stations. The solar zenith angle 6s corre-
sponding to each measurement is computed with the SG2 al-
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Figure 1. Map of the three stations. The red line is 100 km in length.

gorithm (Blanc and Wald, 2012). After applying the quality
check procedures of Roesch et al. (2011), only the measure-
ments were kept which pass the filters proposed by Lefévre
et al. (2013) to retain reliable clear-sky instants. Finally, only
are kept clear-sky instants for which measurements are valid
for the three stations simultaneously. The number of samples
is 19849 for each station. This last constraint was imposed
in order to be able to compare correlation coefficients com-
puted for data sets, whether measurements or estimates, for
two stations.

The three stations are fairly close to each other (Fig. 1).
Beer Sheva is 40km north of Sede Boger and Yotvata is
120 km south of Sede Boger.

McClear estimates of G, D, B and By for 10 min duration
were obtained from the SoDa web site (www.soda-pro.com)
for these same instants and for each location. It may be of in-
terest here to underline that the McClear model computes G
and By, then B, and that D is deduced from G-B. Also pro-
vided were the corresponding time-series of the irradiance
at the top of atmosphere on both horizontal and normal sur-
faces: Ep and Egn. The clearness index KT and the direct
clearness index KT g, were computed for both measurements
and McClear estimates using the following formula:

KT = G/Eg )
K Tgy, = Bn/Eon. @)
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Table 2. Comparison between clear-sky global G and diffuse D SSI measured by ground stations and estimated by McClear. Units in

wm2,
G \ D

BEE SBO YOT \ BEE SBO YOT
Mean observed SSI 810 838 825 124 114 137
Bias 19 2 32 60 69 48
Relative bias (%) 2 0 4 48 60 35
RMSE 32 30 41 66 74 55
Relative RMSE (%) 4 4 5 53 65 40

Squared correlation coefficient  0.977

0.976 0.980 | 0.594 0.627 0.633
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Figure 2. 2-D histogram of measurements (horizontal axis) and
McClear estimates (vertical axis) of G for Sede Boger. The colour
represents the frequency of each pair.

3 Results

Following the ISO (International Organization for Standard-
ization) standard (1995), the deviations were computed by
subtracting measurements for each instant from the McClear
estimates and they were summarized by the bias, the root
mean square error (RMSE), and the squared correlation coef-
ficient, also known as the coefficient of determination (R2).
Relative values are expressed with respect to the mean ob-
served value. The validations of KT and KTp, are also in-
cluded, as they are stricter measures of the performance of a
model with respect to the optical state of the atmosphere.
The 2-D histograms of measured and estimated values are
presented for Sede Boger (Figs. 2 and 3). Red, respectively
dark blue, dots correspond to regions with great, respectively
very low, densities of samples. The plots also present the
number of samples, the mean reference value, the bias, the
RMSE, the correlation coefficient (CC) and the 1:1 line
(y = x). One may see in Fig. 2 that the points are mostly
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Sede Boger: beam normal clear sky irradiation (W m2)
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Figure 3. 2-D histogram of measurements (horizontal axis) and
McClear estimates (vertical axis) of By for Sede Boger. The colour
represents the frequency of each pair.

aligned with the 1:1 line with a very limited scattering.
The bias and RMSE are respectively 2 and 30Wm~—2. The
squared correlation coefficient is very large: 0.976, meaning
that the temporal changes in G are well reproduced by Mc-
Clear. The points in Fig. 3 for By are less aligned with the
1: 1 line. The absolute value of the bias and RMSE are much
larger: —68 and 83 W m~—2. The squared correlation coeffi-
cient is 0.610 and a large amount of changes in By is unex-
plained by McClear.

Tables 2-4 present the results of the comparison for re-
spectively G, D, B, Bn, KT and KTg,. The means of G
(Table 2, approximately 830 W m~—2), By (Table 3, approx-
imately 840 W m—2) and clearness indices (Table 4, 0.75 and
0.64) are large which means that the atmosphere is very of-
ten clear and not turbid. Yotvata experiences less By — and a
lower KT g, —though it is the southernmost site. It is located
40 km north of the Red Sea in the Negev desert and may be
under maritime influence and dust episodes.

Adv. Sci. Res., 13, 21-26, 2016
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Table 3. Comparison between clear-sky beam SSI B and beam at normal incidence By measured by ground stations and estimated by

McClear. Units in Wm™2,

B \ BN

BEE SBO YOT \ BEE SBO YOT
Mean observed SSI 686 724 688 841 878 809
Bias —-41 —-66 —16 —46  —68 13
Relative bias (%) —6 -9 -2 —6 -8 2
RMSE 59 80 46 69 83 53
Relative RMSE (%) 9 11 7 8 10 7
Squared correlation coefficient  0.931 0.937 0.929 | 0.576 0.610 0.603

Table 4. Comparison between clear-sky clearness indices KT and KT g, from ground stations and estimated by McClear.

KT \ KT gy

BEE SBO YOT | BEE SBO  YOT
Mean observed index 0.74 0.76 0.74 0.62 0.66 0.62
Bias 0.02 0.01 0.03 | —0.04 -0.06 -0.01
Relative bias (%) 3 1 5 —6 -9 -2
RMSE 0.03 0.03 005 0.05 0.07 0.04
Relative RMSE (%) 5 4 6 8 11 7
Squared correlation coefficient 0.524 0.471 0474 | 0.625 0.641 0.578

The bias for G is low for Sede Boger: 2Wm~=2, and is
larger for the other sites: 19 and 32Wm~2, i.e. 2 and 4%
of the mean observed G. The RMSE ranges from 30 to
41Wm~2 (4%) and the squared correlation coefficient is
greater than 0.976 (Table 2). The influence of 6s on the SSI
creates de facto a correlation between measurements and es-
timates in clear-sky conditions as s and Eg can be accu-
rately estimated. The influence of 6s on KT is much less pro-
nounced and the squared correlation coefficient denotes the
ability of McClear to reproduce the optical state of the atmo-
sphere. It ranges between 0.471 and 0.524 (Table 4) and is
low. A majority of changes in KT is not reproduced by Mc-
Clear and improvements should be brought on the McClear
model and on the quality of its inputs. The bias and RMSE
for KT are similar in relative value to those for G (Table 4).
Expectedly, the results for Sede Boger are fully in line with
the bias, RMSE and squared correlation coefficient for both
G and KT reported by Lefévre et al. (2013) for this station
though for 1 min SSI: 7 and 30 Wm~2, 0.982, and 0.01, 0.03
and 0.581.

The estimates of D by McClear are inaccurate (Ta-
ble 2). There is an overestimation ranging between 48 and
69 W m~—2 (35 to 60 % of the mean of D). The RMSE ranges
between 55 and 74 W m~2 (40 to 65 %). The squared corre-
lation coefficient is comprised between 0.594 and 0.633; a
large amount of changes in D is unexplained by McClear.

An underestimation is observed for B and By (Table 3),
except Yotvata for By. The bias for B, respectively By, is
comprised between —66 and —16 W m~2, i.e. between —9
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and —2 % of the mean B, and between —68 and +13 W m—2
(—8 and 2% of the mean By). The RMSE ranges from
46 (7%) to 80Wm~2 (11%) for B, and from 53 (7 %) to
83Wm2 (10 %) for By. The bias and RMSE for KT p,, are
similar in relative value to those for B and By (Table 4).
The squared correlation coefficient for By and KT, is close
to 0.6; a large amount of changes in By or KTp, is unex-
plained by McClear. The squared correlation coefficient for
B is much larger and close to 0.93 because of the influence
of s on the correlation and the accuracy of its estimate.

An additional comparison was performed that dealt with
the ability of McClear to reproduce spatial variability. The
correlation coefficient between time-series of measurements,
respectively McClear estimates, was computed for each pair
of stations for G and By (Table 5). It is observed (upper right
part of the correlation matrix) that the measurements are very
much correlated for G (greater than 0.99), which can be ex-
plained by the fact that only clear-sky measurements are dealt
with. The correlation coefficient is less for By, especially be-
tween Yotvata and the two others for which it is respectively
0.630 and 0.728. This is in agreement with the remoteness of
Yotvata compared to the two others and the above remark on
its climate.

The closer the correlation coefficients of the lower part of
the matrix to those of the upper part, the more accurately Mc-
Clear depicts the variability in space. The correlation coeffi-
cients for G are almost identical for the measurements and
McClear meaning that the actual SSI field is well reproduced
by McClear. This is not the case for By for which discrep-
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Table 5. Correlation matrix between stations for measurements (up-
per right part of the matrix, in bold) and for McClear (lower left part,
in italic) for G and By.

G BEE SBO YOT ‘ BN BEE SBO YOT

BEE 1 0.995 0.991 | BEE 1 0.884  0.630
SBO  0.999 1 0.994 | SBO 0.990 1 0.728
YOT 0.994 0.996 1 YOT 0.846 0.908 1

ancies may be observed. There is an overestimation of the
correlation by McClear which can be attributed to the cor-
relation of its inputs due to the coarse spatial and temporal
resolutions. CAMS products on aerosols and total content in
water vapour and ozone are available every 3 h. The spatial
resolution is 1.125°, i.e. approx. 120 km along a longitude,
for the aerosol properties. This is the same resolution for the
total column content of ozone and water vapour before 2014
after which it became 0.8°. The By field estimated by Mc-
Clear will be smoother than the actual field. Note that the
ranking of the correlation coefficients is the same for both the
measurements and McClear; the local extrema are respected
though the intensity of the variation is decreased.

4 Discussion and conclusion

Like reported in other similar studies, the statistical quanti-
ties reported here vary with the period of analysis. A given
quantity may change noticeably from one year to another.
For example, the bias in By at Sede Boger varies from —63 to
—75W m~2 if years are considered separately. This indicates
that care must be taken in the analysis of these quantities.

The quantities vary with the month. Trends are more or
less marked. There is a tendency for lowest bias — in absolute
value — and lowest RMSE in the period May—August. There
is a tendency for the bias and the RMSE to increase with 6s,
yielding an increase — in absolute value — of the relative bias
and RMSE as the mean G and By decrease as s increases.
Nevertheless, the changes are limited.

Eissa et al. (2015a, b) have performed similar studies but
for respectively Egypt and the United Arab Emirates. Simi-
larly to this study, Aswan and the UAE sites exhibit underes-
timation of By. This underestimation is more pronounced for
Beer Sheva and Sede Boger. On the contrary, Yotvata exhibits
an overestimation of 13 W m~2. The comparison of these dif-
ferent studies shows that the overall picture of the possible
causes of the discrepancies between measurements and Mc-
Clear estimates is still unclear. The underestimation in By
may be partly caused by overestimation of the aerosol opti-
cal depth (AOD). Through comparisons between the AODs
measured by AERONET and estimated in CAMS for desert
areas in Egypt and UAE, Eissa et al. (2015b) and Oumbe et
al. (2012) concluded that one main source of the errors in
McClear originates from the CAMS AOD. Therefore, more
accurate inputs to McClear would improve its estimates. For
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example, Oumbe et al. (2015) have shown that a local empir-
ical correction of the CAMS AOD drastically decreases the
bias in the United Arab Emirates.

As for G, if one looks at the results of Eissa et al. (2015a)
for Aswan in Egypt — which is located in a desert far from
the Cairo megapole, — one would observe that the large over-
estimation of G by McClear over Aswan: 33 W m~2, is sim-
ilar to that observed at Yotvata in this study. Yotvata exhibits
the greatest bias of the three sites. The bias at Sede Boger
is 2Wm~2, expectedly similar to that of 7W m~2 reported
by Lefévre et al. (2013) for the same site though for 1 min
summarization. The bias for the more turbid sites in the UAE
ranges from —5 to 10 W m~2,

Estimates in G and D — and hence the statistical perfor-
mances — are sensitive to the type of aerosols that is esti-
mated by the means of the empirical algorithm presented
in Lefévre et al. (2013) applied to the partial aerosol op-
tical depths delivered by CAMS. It is found that in Beer
Sheva and Sede Boger — which are close compared to the
size of the CAMS cell, — the most frequent aerosol type is
“continental polluted”, then “maritime polluted” and finally
“desert”. The same types are found for Yotvata but “desert”
is most frequent than “maritime polluted”. An error may
arise if the wrong type is selected. Figure 1 in Lefevre et
al. (2013) displays a specific case of daily profile of G in
Carpentras (France) with a dramatic change by 30 W m—2
(approx. 3%) due to an error in the empirical algorithm. In
other cases reported in Eissa et al. (2015a) an overestimation
of the fine, strongly scattering pollution particles associated
with an underestimation of the coarse, less scattering, min-
eral dust particles would affect G and D. It should be added
that the coarse spatial and temporal resolutions of the CAMS
data on aerosols make it difficult to capture the exact atmo-
spheric effects on the incident solar radiation over a specific
site. Other causes of uncertainty are the uncertainties in the
OPAC model used in McClear (Lefevre et al., 2013). Zieger
et al. (2010) showed noticeable changes in single scattering
albedo with relative humidity for the OPAC “continental pol-
luted” and “maritime polluted” types. If relative humidity is
assumed too large, then the single scattering albedo is overes-
timated, yielding an overestimation in D. This may explain
the difference between the two sites Beer Sheva and Sede
Boger and the southern one Yotvata where “desert” is more
frequent. Simulations performed with the radiative transfer
model libRadtran have shown that in case of intense dust
storms, i.e. heavy load in dust particles, the single scattering
albedo in OPAC “desert” type underestimates that observed
in AERONET measurements, which yields an underestima-
tion in D. This is not observed in cases of low or medium
loads in dust. This adds to the complexity as intense dust
storms may also be observed in the northern sites.

Performances are still far from WMO standards: bias less
than 3W m~2 and 95 % of the deviations less than 20 W m—2,
Uncertainties in aerosol properties from CAMS are still too

Adv. Sci. Res., 13, 21-26, 2016




26 M. Lefévre and L. Wald: Validation of the McClear clear-sky model in desert conditions

large, and more efforts are necessary for a better modelling
of the aerosols.

Despite the identified drawbacks and paths for improve-
ments, this validation of the McClear service for the desert
conditions in Israel reveals satisfactory results. The compar-
isons between the McClear estimates and measurements of
global horizontal and direct normal irradiances for 3 stations
show that a large correlation is attained showing the abil-
ity of McClear to capture the temporal and spatial variability
of the irradiance field. The performances are similar for the
three sites for the global irradiance and for the DNI to a lesser
extent, demonstrating the robustness of the CAMS McClear
service.
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