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Abstract. A precipitation nowcasting system (SATIN) is presented which relies entirely on satellite based pre-

cipitation products and rain gauge measurements. Thus, the proposed system is most suitable for areas where

ground based radar observations are not available, or potentially suffer from low quality. SATIN delivers analy-

ses on a 1 km grid every 15 min and nowcasts (obtained through motion vectors) in 15 min time steps. Nowcasts

are gradually merged with NWP precipitation forecasts. An extensive validation including comparisons to dif-

ferent NWP models yields superior performance for SATIN analyses as well as nowcasts for lead times up to

1 h. Reducing the station density still yields better performance than operationally available NWP’s.

1 Introduction

Satellite based observations play an important role in

many different disciplines, such as meteorology, climatology,

oceanography and many more. Specifically, derived precipi-

tation estimates from space already deliver valuable informa-

tion on a global scale. In regions with sparse ground based

observation networks (rain gauge stations and ground based

radars – simply referenced as “radar” in this paper), detailed

knowledge about precipitation patterns and climatologies is

largely missing and satellite observations are a key contribu-

tor for a better understanding of the regional weather and cli-

mate. Furthermore, regions with complex topography, where

radar and station networks exist, may also profit from satel-

lite observations, as radars suffer, among others, from beam

blocking and usually only few station observations are avail-

able. Satellite based precipitation measurements could de-

liver additional information to mitigate the mentioned short-

comings.

The obtained precision of satellite based precipitation

products is predominantly governed by the type of satellite

orbit (polar orbiting, geostationary), instrument types (fre-

quency bands used) and integration times (seasonal products

to minutes). In this study we focus on nowcasting with very

high temporal and spatial resolution, thus, the most challeng-

ing framework for satellite based precipitation products.

A prototype of a nowcasting system based on satellite

precipitation in combination with rain gauge measurements

(explicitly omitting radar observations) is developed. Such

a system is of interest for data sparse regions where radar

observations do not exist and rain gauge measurements are

also scarce. Nevertheless, our target area is Austria where a

dense observation network exists. This gives us the possibil-

ity of extensively validating the developed nowcasting sys-

tem and comparing it to operationally available numerical

weather prediction (NWP) models.

This satellite driven nowcasting system is based on the

concepts of the INCA (Integrated Nowcasting through Com-

prehensive Analysis, Haiden et al., 2011) precipitation now-

casting and can be summarized as follows:

– Analyses are computed as a combination of rain gauge

measurements and satellite derived precipitation. For

each grid point, an average distance to neighboring sta-

tions enters the algorithm.

– Nowcasting is based on extrapolation by motion vectors

computed from previous analyses.

– Very short range forecasting sets in after pure extrapo-

lation: nowcasts are merged with precipitation forecasts

from NWP through a prescribed weighting function un-

til the forecasts entirely consist of downscaled NWP.

Results from long term validation and one case study are

presented. Both yield good results for the analyses compared

to operationally available NWP precipitation fields. Now-

castings deliver higher accuracy for lead times up to around

Published by Copernicus Publications.



28 I. Meirold-Mautner et al.: SATIN–Satellite driven nowcasting system

one hour compared to NWP forecasts. Additionally, sensi-

tivity studies are presented to show the influence of station

density on the results.

2 Data and methods

2.1 Target grid and NWP models

The target domain for the presented nowcasting system cor-

responds to the operational INCA domain in Austria. The

grid spacing is 1 km× 1 km with 700× 401 grid points. By

choosing this grid, validation of the results with INCA anal-

yses becomes straightforward. Additionally, the following

NWP models are used for comparisons and are interpolated

onto the same grid: ALARO, AROME, AROME1km.

The ALARO model (Gerard and Geleyn, 2005) is a spec-

tral limited area model (LAM) running four times per day

operationally at ZAMG up to+72 h in hydrostatic mode with

4.8 km horizontal grid spacing on a domain of 600× 540 grid

points covering Central Europe. It has 60 vertical hybrid lev-

els (Simmons and Burridge, 1981) and its physics package

3MT is especially suitable for resolutions of few kilometers,

where deep convection is only partly resolved.

Application of Research to Operations at Mesoscale

(AROME) (Seity et al., 2011) is the second operational LAM

at ZAMG running 8 times per day up to +48 h with a hori-

zontal grid space of 2.5 km, 600× 432 grid points and 90

hybrid levels in non-hydrostatic mode. Different to ALARO,

deep convection is explicitly treated and the initial state of the

atmosphere is generated by its own 3-D-Var data assimila-

tion system (Brousseau et al., 2008). Both LAMs are coupled

with the global model Integrated Forecasting System (IFS)

of the European Centre for Medium-Range Weather Forecast

(ECMWF) using Davies relaxation (Davies, 1976; Radnóti,

1995). For several test cases also a 1 km grid space version

of AROME was run with a reduced time step (30 s instead

of 60 s for AROME 2.5 km) on a domain of 800× 500 grid

points covering Austria and its surroundings with the same

vertical resolution as AROME 2.5 km. It was coupled to and

initialized by downscaled data from either IFS or ALARO

4.8 km or AROME 2.5 km.

2.2 Satellite data

Requirements to satellite data for precipitation nowcasting

are high spatial and temporal resolution. To compete with

radar based nowcastings, spatial resolution of a few kilome-

ters and temporal resolution of a few minutes are necessary.

Additionally, a low latency is required to ensure a rapid up-

dating frequency and temporal availability of products.

Satellite products getting close to these requirements have

been identified to be EUMETSAT’s Support to Operational

Hydrology and Water Management (H-SAF) and Support to

Nowcasting and Very Short Range Forecasting (NWC SAF)

products as well as the HydroEstimator from NOAA. The

products investigated are summarized in Table 1.

To determine the quality of the individual satellite prod-

ucts, a point validation against measurement stations and spa-

tial validation against INCA analyses has been carried out

(not shown in this study). While INCA analyses can not be

considered to represent the truth (see Kann et al., 2015, for

details on the quality of INCA precipitation analyses), they

are the best option available for carrying out spatial compar-

isons. This validation included the computation of standard

statistical scores (Root Mean Square Error RMSE, Bias) as

well as objective verification measures (SAL, see Table 2).

Both, point verification as well as spatial verification, indi-

cate a consistent underestimation of satellite based precipita-

tion, especially for the Convective Rainfall Rate (CRR) prod-

uct (see Table 1 for details). Hydro-Estimator (HE) and H03

(precipitation product from HSAF) exhibit overall similar

performance with lower biases for H03 but better representa-

tion of precipitation structures for HE (results from SAL ver-

ification, Wernli et al., 2008). As a consequence from these

evaluations, the H03 product of HSAF was selected as input

for SATIN as it shows best overall agreements with the ref-

erence and furthermore has the advantage of being available

at 15 min temporal resolution (in contrast to 1 h for the HE

product in Europe).

2.3 SATIN analysis

The SATIN analysis model is designed to take advantage

from both constituent data sources: it combines the spa-

tial characteristics of the precipitation patterns derived from

satellite measurements with the accurate point measurements

of the stations.

For a selected date/time combination, the developed sys-

tem retrieves the corresponding satellite product from the

HSAF data portal and interpolates the data to the INCA 1 km

grid. This allows running SATIN for an arbitrary date/time

combination (within the limits of availability of H03 data).

The second constituent of SATIN is precipitation measure-

ments at stations. For the Austrian domain there are about

200 point observations from the “TeilAutomatisches Wetter

ErfassungsSystem” (TAWES), equipped with tipping-bucket

rain gauges, available. Processing of these station measure-

ments corresponds to the algorithms developed for the oper-

ational INCA system. Besides aggregation to 15 min sums,

station measurements are exposed to extensive quality con-

trol routines (Bica, 2012) in order to minimize the deterio-

ration of nowcasting results through erroneous station mea-

surements. These station observations are input to SATIN.

Once, all necessary input data for SATIN is collected and

preprocessed, the combination algorithm with the following

principal steps is launched:

– At each grid point of the domain, an average distance

t to the surrounding observation stations is computed.
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Table 1. Overview of satellite products evaluated.

H03 CRR HE

Provider Hydrology SAF Nowcasting SAF NOAA STAR

Spatial resolution 8 km 8 km 5 km

Temporal resolution 15 min 15 min 1 h (Europe)

Satellite Meteosat (SEVIRI),

LEO MW instrument

(SSM/I, AMSU-A)

Meteosat (SEVIRI) Meteosat (SEVIRI)

(or others, e.g. GOES)

Characteristics 10.8 µm LUT, calibrated with

MW LEO data

IR, VIS, WV channels, AUX

data (NWP, etc.) for several

correction algorithms

Single channel: 11 µm

Reference Mugnai et al. (2013) Rodríguez and Marcos (2014) Scofield and

Kuligowski (2003)

LEO: Low Earth Orbit; LUT: Look Up Table; MW: MicroWave; SAF: EUMETSAT Satellite Application Facility

Table 2. Statistical scores used in this study. See Wilks (2011) and Wernli et al. (2008) for details.

FBI TSS ETS SAL

Name Frequency Bias Index True Skill Score Equitable Threat Score Structure Amplitude Location

Range 0–∞ −1–1 −1/3–1 −2–2 −2–2 0–2

Perfect 1 1 1 0 0 0

Characteristic How did the forecast

frequency of “yes”

events compare to the

observed frequency of

“yes” events?

How well did the

forecast separate the

“yes”events from the

“no” events?

How well did the

forecast “yes” events

correspond to the

observed “yes” events?

Positive if cells are too

large and/or too flat

Relative deviation of

domain averaged

precipitation

Displacement of

precipitation cells
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Figure 1. This figure depicts the SATIN domain (same as INCA op-

erational domain). Black dots represent automatic weather stations

entering the SATIN algorithm. Average distance for three nearest

neighbors is shown (with a cutoff at distances larger than 30 km).

This is done by searching for N nearest neighbors and

averaging the obtained distances. Tests have been made

with different numbers of nearest neighbours to include

in the computation. Small numbers yield a larger vari-

ability in the average distance and thus lead to more

granularity regarding the influence of satellite data on

the SATIN analysis. N = 3 (as depicted in Fig. 1) was

chosen for this study as it gives more weight to satellite

data in areas with smaller station density and shows a

pronounced granularity in the transition from station to

satellite derived precipitation, when compared to larger

values of N . This step is redone for each time step be-

cause station density is varying.

– Station observations are interpolated to the INCA grid

by inverse distance weighting (IDW) of the 8 nearest

neighbor stations to each grid point. Weights are com-

puted proportional to 1/d2, i.e. with decreasing weights

for increasing distance d . This results in the station pre-

cipitation field RRSTAT.

– Weighting factors at each grid point for merging satel-

lite data with station data are computed. This weight-

ing factor is computed from a logistic function which

describes the transition from station to satellite data:

w = 1/(1+ exp(−k(t − u))). The above computed av-

erage distance enters the logistic function as t . Equal

weights to satellite and station are attributed at an aver-

age distance of u= 30 km. The parameter k (set to 0.2)

determines the steepness of the function, i.e. the rate

at which weights are changing with distance. Experi-

ments with different parameters of the logistic function

have been performed, with the above described setting

found to provide a good balance between station mea-

surements and satellite precipitation for the characteris-

tics of the Austrian domain. The weighting factor as a

function of distance is plotted in Fig. 2.
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Figure 2. Weights w computed as a logistic function and plotted

against distance d. Parameters of the logistic function are described

in the text.

– The final precipitation rate based on satellite and sta-

tion at each grid point is then obtained by RRSATIN =

wRRSAT+(1−w)×RRSTAT, where RRSAT denotes the

preprocessed satellite precipitation.

The described algorithm is thus taking the satellite derived

precipitation product and merges this with the interpolated

station observations. Depending on average station density,

more weight is either given to the satellite product or the sta-

tion observations. In regions with very sparse station density,

the SATIN analysis will therefore resemble the raw satel-

lite precipitation product, whereas regions with high station

density will benefit from accurate point measurements. Fig-

ure 1 shows the average distance computed with three nearest

neighbors. Including more nearest neighbors in the compu-

tation results in a smoother spatial distribution of the weight

factor (not shown). Figure 2 depicts the weight factor as a

function of average distance which indicates that grid points

within an average distance of around 20 km are mostly in-

fluenced by station measurements. Beyond this distance, the

influence of satellite precipitation is rapidly increasing.

The SATIN analysis and nowcasting model is coded in

Python with a modular approach. A pre-processing module

is responsible for fetching necessary satellite products and

interpolating them to the target grid. Some functionalities

are taken directly from the operational INCA model, such

as the computationally demanding motion vector estimation,

and the quality filtering of station measurements.

2.4 SATIN nowcasting

Pure nowcasting is based on motion vectors computed from

previous satellite precipitation fields. The same cross corre-

lation algorithm as the one in INCA is applied (see Haiden

et al., 2011) to obtain the motion vectors. However, no cross-

checking with upper air flow from NWP output is done (as

opposed to the INCA algorithm). This decision is made in or-

der to stay independent of NWP input. The resulting motion

vectors are however less stable and spurious correlations ex-

ist, which introduces errors in the translational nowcasting.

In order to minimize the deterioration of the relatively good

SATIN analyses, the translational motion is obtained from

averaging the motion vectors.

Beyond the pure nowcasting, merging with NWP is ap-

plied. This is done to benefit from the different strengths of

each forecasting system, the observation based nowcasting

for very short time ranges and the physically based NWP for

longer time ranges. Finding the optimal transition from now-

casting to NWP amounts to identifying when NWP yields

superior results than pure nowcasting. Varying results are ex-

pected, especially when looking at rather convective weather

types opposed to stratiform precipitation events.

To investigate the characteristics of NWP and nowcasting

performances for both types of precipitation (convective and

stratiform), scores have been computed for one winter month

(January 2014) and one summer month (July 2014) with

INCA analyses serving as reference. Figure 3 shows relative

RMSE, MAE (Mean Absolute Error) and Bias while Fig. 4

shows the skill scores FBI, TSS and ETS (for a threshold

of 1 mm 15 min−1) averaged for July (cf. to Table 2 and e.g.

Wilks, 2011, regarding skill scores). Rather than discussing

in detail the individual scores (which all suffer from weak-

nesses, such as double-counting penalty), it is important to

note the variation with lead time. Average RMSE, MAE and

Bias for the NWP’s remain almost constant for lead times

up to 6 h, with ALARO exhibiting a better performance than

AROME except for bias in the convective season. SATIN

performance is very good for very short lead times and de-

creases rapidly with increasing lead times. RMSE and MAE

of ALARO reach similar values to SATIN for lead times be-

tween 30 min and 1 h (for July and January, respectively). A

similar picture arises for the skill scores in Fig. 4 where lead

times of roughly 1h mark the time when NWP outperforms

the SATIN nowcasting. In this paper only results from July

are shown as the results from January reveal a similar be-

havior with better performance of SATIN in the first hour of

forecasts. In January the error levels are generally smaller

for all models (SATIN, ALARO, AROME), which indicates

a better performance in the non-convective season.

3 Validation of SATIN and comparison to NWP

3.1 Validation of SATIN analysis

The SATIN algorithm strives to obtain an optimal combina-

tion of satellite data and station observations to provide pre-

cipitation analyses. In this section the SATIN analyses are

compared to the pure satellite product that serves as input to

SATIN as well as to the currently operational local area NWP

at ZAMG (ALARO5).
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NWP: relative RMSE, MAE and Bias averaged over July for
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For the comparison with SATIN analyses, NWP output is

taken as it would be available in an operational environment

(i.e. at a given SATIN analysis time an NWP analysis is not

available, thus an NWP forecast valid for this time has to

be taken for comparison purposes.). Reference in these com-

parisons are the INCA precipitation analyses. At 5 selected

days with heavy precipitation, standard verification measures

RMSE, MAE, Bias as well as the objective SAL verification

has been carried out. Figure 5 represents the SAL result. It

can be seen from this figure, that SATIN analyses signifi-

cantly reduce the spread in the data and have narrower dis-

tributions than the satellite and NWP products. Structure and

Location are very well represented by SATIN in most cases.

The results for Amplitude exhibit much lower spread as e.g.

in the NWP output, however the mean values of NWP some-

times yield better results than those of SATIN.

Additionally to the case studies of the previous compar-

isons, statistics have been computed for two months, one in

winter and one in summer. SATIN has been computed with 9
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Figure 5. Validation of SATIN analyses with INCA analyses and

comparison to ALARO and H03 (SAT) satellite precipitation prod-

uct. Box plots of daily Structure, Amplitude, Location values for 5

cases with heavy precipitation.

Table 3. Mean relative RMSE, MAE and Bias obtained from cross

validation at 9 stations for January and July 2014. NWP refers to

ALARO 5 km while SAT refers to the HSAF H03 product.

January July

NWP SAT SATIN NWP SAT SATIN

RMSE 0.86 1.12 0.71 1.26 1.58 0.99

MAE 0.72 0.99 0.60 0.89 1.19 0.64

Bias −0.52 −0.87 −0.45 −0.76 −0.39 −0.35

TAWES stations not entering the algorithm (see Fig. 6). By

excluding these stations, a cross validation can be carried out

by computing statistics at these exact stations. For compari-

son, SAT (H03) and NWP (ALARO5) are also investigated

and compared to SATIN. Relative RMSE, MAE and Bias are

averaged over the summer and winter months and the results

for January and July 2014 are shown in Table 3.

SATIN clearly outperforms both, ALARO5 and H03 in all

standard verification parameters. Specifically, the bias during

the convective season in July 2014 is much smaller in SATIN

than in the NWP fields.

3.2 Nowcasting compared to NWP

At lead times beyond the pure nowcasting range, the SATIN

system is blended with an NWP model. This is done because

pure nowcasting (shifting of cells according to motion vec-

tors) does not include any dynamical or physical aspects (as

in NWP’s) and thus is not able to describe the future state of

the atmosphere for lead times larger than a couple of hours.

The combination of pure nowcasting and NWP provides the

advantage of merging current observations and derived now-

casts with physically based NWP models. It is crucial to de-

termine the optimal timing for switching from one system

www.adv-sci-res.net/13/27/2016/ Adv. Sci. Res., 13, 27–35, 2016
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Figure 6. INCA domain and topography. Information on excluded TAWES stations for cross validation of SATIN analyses is included.

(nowcasting) to the other (NWP) in order to optimally profit

from the advantages of both systems.

A transition phase marks the lead times where the differ-

ent models, nowcasting and NWP, are combined. Before the

transition phase, SATIN consists of pure nowcasting, after

the transition phase SATIN is governed by NWP exclusively.

Within the transition phase the weights of the NWP model

are gradually increased while the contributions from pure

nowcasting are decreased. Therefore, at lead times beyond

the transition phase, the SATIN system entirely relies on the

NWP model output, delivering the forecasts interpolated on

the 1km INCA grid.

Deciding which NWP model should be used for the blend-

ing with nowcasting is not an easy task, as each of the avail-

able models has its strengths and weaknesses. Rather than

evaluating the NWP models (which is beyond the scope of

this study), we compare several models to pure nowcasting.

The NWP models investigated are ALARO (5 km),

AROME (2.5 km) and AROME (1 km). For the same cases

as in Fig. 5, daily average error scores (RMSE, MAE, Bias,

SAL, FBI, TSS, ETS) are computed and plotted as a function

of the lead time. The resulting scores are then averaged (over

the cases) to obtain Figs. 7–9.

Relative RMSE, MAE and Bias in Fig. 7 show for pure

nowcasting (SATIN) a clear increase of error with increasing

lead time. At analysis time, the error measures are all below

the values obtained from the different NWP models. Relative

RMSE and MAE reach the level of ALARO (best performing

NWP for the selected cases) after about 1h lead time. Rela-

tive Bias of SATIN becomes larger than the one of AROME

(2.5 km) after less than 30 min lead time.

Objective verification measures Structure, Amplitude and

Location as shown in Fig. 8 exhibit much less dependency

on lead times. Only the Location measure shows an increase

0.9

1.0

1.1

1.2

1.3

1.4
R

M
S
E

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

M
A

E

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

LT (h)

0.65

0.60

0.55

0.50

0.45

0.40

B
IA

S
SATIN

ALARO

AROME

AROME1KM

Figure 7. Comparison of pure (translational) nowcasting with NWP

models: relative RMSE, MAE and Bias versus lead time, averaged

over five days with heavy precipitation.

for SATIN with lead time and reaches values as those from

the NWP’s at around 1.5 to 2 h lead time. This suggests, that

localisation of precipitation cells are very well captured in

the analysis but the translational motion in pure nowcasting

rapidly deteriorates the result. In contrast NWP Location val-

ues are almost constant over lead time. As was already noted

in Sect. 2.4, the computation of motion vectors can lead to

unrealistic translational movement of cells and needs further

optimisation and revision which is beyond the possibilities of

this project.

Amplitude and Structure values of SATIN remain rela-

tively constant with lead time and show similar values as

AROME (1 km) and AROME (2.5 km) respectively. The re-

sults for Amplitude and relative Bias do not match exactly,

with positive Amplitude values for ALARO and AROME

(2.5 km) and negative relative Bias of the same models.
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Figure 8. Comparison of pure (translational) nowcasting with NWP

models: Structure, Amplitude, Location versus lead time, averaged

over five days with heavy precipitation.

Structure is best represented by SATIN and the AROME

model in 2.5 km resolution. ALARO (5 km) is overestimat-

ing Structure while AROME (1 km) is underestimating this

parameter. Thus, ALARO tends to overestimate the extent of

precipitation fields and AROME (1km) tends to underesti-

mate them – compared to INCA analyses.

Skill scores FBI, TSS and ETS, as depicted in Fig. 9,

show again a dependency on lead time for SATIN. Results

for the NWP models are relatively constant. The scores for

SATIN yield better results than NWP models for lead times

below about 1.5 h. The bias related index FBI for the NWP’s

shows best results for ALARO and worst results for AROME

(1 km). This again indicates the different characteristics of

the scores (Bias, Amplitude and FBI). Scores were computed

for a threshold of 1 mm 15 min−1.

The presented results are based on a few heavy precipita-

tion cases and may not be representative for low impact situ-

ations. Nevertheless, they give an impression of what can be

expected from a satellite based nowcasting system. Analyses

tend to give excellent results, with a pronounced decrease in

performance for increasing lead times. According to these re-

sults, transition from pure nowcasting to NWP’s should take

place somewhere between 30 min and 2 h. As the investigated

scores show quite different behavior, it is not easy to exactly

determine the best transition time exactly, but rather depend

on the scale of interest, the weather type and the application.

3.3 Sensitivity to station density

In Austria (and most European countries), the density of au-

tomatic weather stations of different providers (e.g. national

meteorological services, hydrological services, etc.) for pre-

cipitation measurements is relatively high, with a mean dis-

tance between neighbouring stations of about 12 km, or

roughly 700 stations. However, in many regions of the world,

where a satellite based precipitation nowcasting would be

most beneficial (due to the absence of radar), station density
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Figure 9. Comparison of pure (translational) nowcasting with NWP

models: FBI, TSS, ETS versus lead time, averaged over five days

with heavy precipitation.
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Figure 10. Relative RMSE, MAE and Bias per lead time (LT) aver-

aged over July 2014. Several SATIN runs are shown with progres-

sively less stations entering the algorithm. ALARO and AROME

are shown as reference.

is much lower. Therefore, the influence of station density on

the skill of the analysis is quite important to estimate the ben-

efit of such a system in data sparse regions.

Experiments have been run to investigate the effect of

reduced station density on the SATIN nowcasting perfor-

mance and consequently on the optimal transition time to

NWP model output. For each of the experiments an in-

creasing amount of stations measuring non-zero precipitation

has been selected and excluded from the SATIN nowcast-

ing computation. SATIN runs were performed for 10, 30, 50,

70 and 90 % of stations missing. Results are averaged over

July 2014 and are shown in Fig. 10. Reducing the station

density by half (50 %) shows for RMSE and MAE around

half of the original (no stations excluded) lead time as opti-

mal transition time. For the analysis, a 10 % increase of the

error measures can be observed when comparing 90 % ex-

cluded stations with standard SATIN runs. These results sug-

gest, that in regions with very low station density, an anal-
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Figure 11. Satellite image (MSG IR), surface pressure analysis and

frontal zones for 15 May 2014 at 12:00 UTC.

Figure 12. 24 h precipitation sum from different models for

15 May 2014.

ysis and nowcasting system as proposed in this study, still

yields better results than NWP models for the analysis and

lead times of up to 30 min. Low station density will not only

affect a poorer nowcasting quality but also poorer NWP per-

formance, thus the quality of NWP forecasts will also deteri-

orate.

3.4 Case study – 15 May 2014

The synoptic situation is characterised as a high pressure sys-

tem over the British Isles and a low pressure system over

Romania with a cold air flow from the north reaching Aus-

tria. On the backside of this low pressure system, intensive

precipitation is observed which is accompanied by strong

north-westerly winds. The center of the low pressure sys-
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Figure 13. Comparison of pure (translational) nowcasting with
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Figure 14. Comparison of pure (translational) nowcasting with

NWP models on 15 May 2014: Structure, Amplitude and Location

of forecasts per LT.

tem is gradually moving westwards which leads to increas-

ing precipitation rates across the Alps. Heavy precipitation is

mostly centred over the eastern parts of the domain (Figs. 11

and 12).

Average scores per lead time are computed for each fore-

cast and plotted in Figs. 13 and 14. Results on this day clearly

show the superior performance of SATIN (in pure translation

mode without model merging) compared to the other models

for lead times up to 1 h. At longer lead times the SATIN re-

sult deteriorates and gradually drops below the worst NWP

results (in this case AROME 1 km). For this case a gradual

merging of SATIN with ALARO gives best results. This is

also the principal configuration chosen in the SATIN system.

The good performance of SATIN for this case can certainly

be attributed to the measurement stations, as the H03 product

almost completely misses the heavy precipitation (compare

Fig. 12).
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4 Conclusions

The satellite based nowcasting system SATIN yields more

accurate analysis fields compared to operationally available

NWP forecasts. This finding also holds when the rain gauge

station density is artificially reduced significantly.

Pure translational nowcasting with SATIN yields better

scores than NWP forecasts for lead teams of around 1 h. Re-

sults indicate, that a transition from pure nowcasting to NWP

should take place between 1 and 2 h.

A simple approach of merging station observations with

satellite precipitation has been applied. As satellite precipi-

tation products occasionally suffer from massive underesti-

mation of precipitation and generally exhibit quite varying

performance, a more sophisticated merging algorithm might

improve the analysis (e.g. Kriging methods).

The computation of motion vectors can lead to unrealis-

tic results and needs further improvement. Possibly, other

methods of computing translational motion should be inves-

tigated (e.g. use of atmospheric motion vectors from now-

casting SAF, or implementing other concepts such as optical

flow).

Nevertheless, the presented system is a simple and robust

method for obtaining accurate analyses and nowcasts in the

absence of radars. Besides possible improvements to the cur-

rent system with the mentioned techniques, further studies

could investigate on the combination with radar data, or the

implementation of the system in data sparse regions.

Acknowledgements. This work was supported by the Austrian

Space Applications Programme of the Austrian Research Pro-

motion Agency (FFG) as “Satellite-based short range weather

prediction with special emphasize on high impact events” with the

project no. 840117. The authors thank two anonymous referees

who provided valuable comments which led to improvements of

the paper.

Edited by: A. Cress

Reviewed by: two anonymous referees

References

Bica, B.: Filter algorithms in the INCA precipitation analysis, Tech-

nical Report, ZAMG, 1–2, 2012.

Brousseau, P., Bouttier, F., Hello, G., Seity, Y., Fischer, C., Berre,

L., Montmerle, T., Auger, L., and Malardel, S.: A prototype

convective-scale data assimilation system for operation: the

Arome-RUC, HIRLAM Techn. Report, 68, 23–30, 2008.

Davies, H.: A lateral boundary formulation for multi-level predic-

tion models, Q. J. Roy. Meteor. Soc., 102, 405–418, 1976.

Gerard, L. and Geleyn, J.-F.: Evolution of a subgrid deep convection

parametrization in a limited-area model with increasing resolu-

tion, Q. J. Roy. Meteor. Soc., 131, 2293–2312, 2005.

Haiden, T., Kann, A., Wittmann, C., Pistotnik, G., Bica, B., and

Gruber, C.: The Integrated Nowcasting through Comprehensive

Analysis (INCA) system and its validation over the Eastern

Alpine region, Weather Forecast., 26, 166–183, 2011.

Kann, A., Meirold-Mautner, I., Schmid, F., Kirchengast, G.,

Fuchsberger, J., Meyer, V., Tüchler, L., and Bica, B.: Evalu-

ation of high-resolution precipitation analyses using a dense

station network, Hydrol. Earth Syst. Sci., 19, 1547–1559,

doi:10.5194/hess-19-1547-2015, 2015.

Mugnai, A., Casella, D., Cattani, E., Dietrich, S., Laviola, S., Lev-

izzani, V., Panegrossi, G., Petracca, M., Sanò, P., Di Paola,

F., Biron, D., De Leonibus, L., Melfi, D., Rosci, P., Vocino,

A., Zauli, F., Pagliara, P., Puca, S., Rinollo, A., Milani, L.,

Porcù, F., and Gattari, F.: Precipitation products from the hy-

drology SAF, Nat. Hazards Earth Syst. Sci., 13, 1959–1981,

doi:10.5194/nhess-13-1959-2013, 2013.

Radnóti, G.: Comments on “A spectral limited-area formulation

with time-dependent boundary conditions applied to the shallow-

water equations”, Mon. Weather Rev., 123, 3122–3123, 1995.

Rodríguez, A. and Marcos, C.: Product User Manual for the “Con-

vective Rainfall Rate” (CRR – PGE05 v4.0), Techn. Rep., NWC-

SAF, http://www.nwcsaf.org/, 2014.

Scofield, R. A. and Kuligowski, R. J.: Status and outlook of opera-

tional satellite precipitation algorithms for extreme-precipitation

events, Weather Forecast., 18, 1037–1051, 2003.

Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier,

F., Lac, C., and Masson, V.: The AROME-France convective-

scale operational model, Mon. Weather Rev., 139, 976–991,

2011.

Simmons, A. J. and Burridge, D. M.: An energy and angular-

momentum conserving vertical finite-difference scheme and hy-

brid vertical coordinates, Mon. Weather Rev., 109, 758–766,

1981.

Wernli, H., Paulat, M., Hagen, M., and Frei, C.: SAL–A novel qual-

ity measure for the verification of quantitative precipitation fore-

casts, Mon. Weather Rev., 136, 4470–4487, 2008.

Wilks, D. S.: Statistical methods in the atmospheric sciences, vol.

100, Academic press, 2011.

www.adv-sci-res.net/13/27/2016/ Adv. Sci. Res., 13, 27–35, 2016

http://dx.doi.org/10.5194/hess-19-1547-2015
http://dx.doi.org/10.5194/nhess-13-1959-2013
http://www.nwcsaf.org/

	Abstract
	Introduction
	Data and methods
	Target grid and NWP models
	Satellite data
	SATIN analysis
	SATIN nowcasting

	Validation of SATIN and comparison to NWP
	Validation of SATIN analysis
	Nowcasting compared to NWP
	Sensitivity to station density
	Case study -- 15 May 2014

	Conclusions
	Acknowledgements
	References

