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Abstract. The 2 m-temperature anomalies from the reforecasts of the CNR-ISAC and ECMWF monthly predic-
tion systems have been combined in a multimodel super-ensemble. Tercile probability predictions obtained from
the multimodel have been constructed using direct model outputs (DMO) and model output statistics (MOS),
like logistic and nonhomogeneous Gaussian regression, for the 1990–2010 winter seasons. Verification with
ERA-Interim reanalyses indicates that logistic regression gives the best results in terms of ranked probability
skill scores (RPSS) and reliability diagrams for low–medium forecast probabilities. Also, it is argued that the
logistic regression would not yield further improvements if a larger dataset was used.

1 Introduction

Multimodel ensemble forecasting has been proven to be suc-
cessful on different space-time scales (e.g. Casanova and
Ahrens, 2009). Using both a synthetic forecast generator and
a seasonal forecast dataset, Weigel et al. (2008) showed that
multimodel combination reduces overconfidence, i.e. ensem-
ble spread is widened while average ensemble-mean error is
reduced, implying a net gain in prediction skill. One of the
issues of the sub-seasonal to seasonal prediction (S2S) re-
search project, whose goal is to improve forecast skill and
understanding on this timescale (Vitart et al., 2017), is the as-
sessment of the benefits of a multimodel forecast, and how it
can be constructed and implemented. The S2S database pro-
vides a set of reforecasts over a past period for model calibra-
tion purposes. Each model participating to the S2S database
is furnished by a large number of reforecasts collected on
many initialization dates with a typically small number of
ensemble members. Then, it arises the question of how to ex-
ploit at best these reforecast sets in order to improve the skill
of multimodel combinations, in particular for what concerns
probability predictions.

In this work, we address this question by constructing a
multimodel combination between two of the S2S models,
namely the ECMWF-IFS and the CNR-ISAC monthly fore-
casting systems. When dealing with a small number of en-
semble members as in the present case, it must be taken into

account that model output statistics (MOS) based on ensem-
ble mean quantities, and calibrated over a long retrospective
dataset of reforecasts, can provide skilful probabilistic pre-
dictions that may be competitive with those obtained by di-
rect model output (DMO) counting algorithms. Whitaker et
al. (2006) give a clear example of MOS techniques applied
to multimodel reforecast datasets obtained from ECMWF-
IFS and NCEP-GFS global models. The main purpose of this
work is then to assess which techniques work best in this par-
ticular context.

The paper is organized as follows. In Sect. 2, we de-
scribe the datasets. In this study, we limit our attention
to the 2 m-temperature prediction for the winter season. In
Sect. 3, we illustrate how the two-model ensemble is devised.
Rather than constructing a poor man or simple multimodel,
as customary in similar studies, we optimally combine the
two models in a super-ensemble by computing the (uncon-
strained) weighting coefficients via a linear regression. In
Sects. 4 and 5 we compare the skill of different techniques
used to predict the probability that the 2 m temperature falls
in a given tercile. In Sect. 6, by means of learning curves,
we determine the convergence of the results. Conclusions are
presented in Sect. 7.
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2 Datasets

The reforecast simulations of the CNR-ISAC monthly pre-
diction system, as originally created for calibration purposes
in the S2S database (Vitart et al., 2017), constitute a “fixed”
dataset. It covers the 30-year period ranging from 1981
to 2010, with initialization dates every 5 days from 1 Jan-
uary to 27 December of each year (in leap years, a 6-day gap
between 25 February and 2 March is used). One simulation
is obtained initializing the GLOBO model (Malguzzi et al.,
2011) with ERA-Interim (Dee et al., 2011) reanalysis data at
00:00 UTC of each date. For this study, the reforecast dataset
has been enlarged to a 5-member lagged ensemble in which
the 4 new initial conditions are taken, from ERA-Interim, at
the initialization date plus or minus 6 and 12 h. We restrict the
analysis to the Northern Hemisphere winter season by choos-
ing initialization dates in the months of December, January,
and February.

The ECMWF-IFS monthly forecasting system currently
produces reforecasts “on the fly” covering the past twenty
years twice a week, every Monday and Thursday. For this
study, we consider the 5-member ensemble generated with
the ECMWF-IFS up to version CY40R1 (e.g. Vitart, 2014).
Reforecasts of 2 m temperatures are downloaded from the
MARS archive at the resolution of 1.5◦× 1.5◦.

By focussing on the winter season only, we can find
268 common initialization dates between the GLOBO and
IFS reforecasts for the years between 1990 and 2011. How-
ever, the 1990–1991, 1991–1992, and 2010–2011 winter sea-
sons contain few common dates, so they are excluded from
the subsequent analysis, leaving a total of 258 cases dis-
tributed in 18 winters (from a minimum of 10 to a maximum
of 15 cases per winter).

In both datasets, the 2 m temperature is taken at 00:00 and
12:00 UT for a forecast period of 28 days, and then averaged
over the leading weeks from 1 to 4. The same average is com-
puted on ERA-Interim reanalysis of 2 m temperature on the
1.5◦× 1.5◦ grid, which is used for regression and verification
purposes.

3 Multimodel super-ensemble

In order to compute the multimodel anomaly fields, some
preliminary operations have to be performed. We start by
taking the ensemble mean of both ISAC-CNR and ECMWF-
IFS models and the anomalies with respect to the corre-
sponding model climate, which is function of validity time.
Thus, let X1 and X2 represent the calibrated anomalies
of the ECMWF-IFS and CNR-ISAC, XMM the multimodel
anomalies, C1 and C2 the linear regression coefficients. The
anomaly fields are functions of the leading week w, latitude
and longitude (i, j ), and initial date d, while the coefficients
C1 and C2 are obviously independent from d. XMM is there-
fore computed as:

XMM(w,i,j,d)= C1(w,i,j )X1(w,i,j,d)
+C2(w,i,j )X2(w,i,j,d),

where C1 and C2 minimize the mean square difference be-
tween multimodel and observed anomalies, the latter esti-
mated from ERA-Interim reanalyses (Krishnamurti et al.,
2000). A similar approach is used in Whitaker et al. (2006),
where linear regression is used to combine ECMWF and
NCEP reforecasts.

The sum of the regression coefficients, displayed in Fig. 1,
deserves some considerations. This quantity does not have a
particular physical meaning, but a rule of thumb can be de-
rived: when the sum is close to zero, the climatology is the
best possible forecast given our data. Some interesting fea-
tures can be seen in the maps: there are two maxima over
part of Asia and the Antarctica, where the sum reach val-
ues greater than 1.5 and increases with the week number.
Some other maxima, with smaller values, can be seen over
the oceans near the equator, where C1+C2 remains always
around 1. In the fourth week, some areas show sum of the
coefficients almost null or even negative: over the sea on the
northern part of Europe (also visible in the third week), in
the northern part of Alaska and over the ocean southwest of
Australia. These patterns hint to a lack of predictability over
these regions.

The multimodel performance can be evaluated by adopt-
ing a cross-validation approach (Wilks, 2011), which divides
the whole dataset into a training and a validation portion.
The dataset is split into single boreal winter seasons, each
of them including December from one year and January and
February from the subsequent one. All winters are used for
the k-fold cross-validation with k= 18 (see Sect. 2): one of
them is chosen as validation set while the remaining k− 1
constitute the training set (“leave-one-out”), on which the
regression coefficients are computed. This procedure is re-
peated k times, choosing a different validation winter each
time (Wilks, 2011).

The multimodel skill in terms of anomaly correla-
tion (AC), computed over typical spatial regions, is shown
in Table 1. The chosen regions are the extra-tropical North-
ern Hemisphere (NH, 20 to 90◦ N), the extra-tropical South-
ern Hemisphere (SH, 20 to 90◦ S), the Equatorial Belt (EB,
20◦ S to 20◦ N), and the Euro-Atlantic region (EU, 30–80◦ N,
20◦W–60◦ E). The multi-model outperforms the best model
in all cases. This is of course expected for a deterministic
score like root mean square, which is minimized in the super-
ensemble construction, but it is less obvious for AC.

4 Probabilistic forecasts

A comprehensive forecasting system for a long scale such as
the sub-seasonal one should also convey probabilistic infor-
mation. In this section, we introduce the techniques used to
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Figure 1. Sum of the regression coefficients.

Table 1. Anomaly correlation coefficient averaged over the 18 val-
idation winters. The four pair of columns report the spatial average
over the different regions described in the text. Each pair contains
the results for the multimodel (MM) and the best result between the
two single models (BM). The first column reports the lead week for
the entire row. The value corresponding to the best performance is
highlighted bold.

NH SH EB EU

w MM BM MM BM MM BM MM BM

1 0.93 0.92 0.93 0.92 0.90 0.88 0.93 0.93
2 0.68 0.65 0.79 0.77 0.77 0.73 0.62 0.60
3 0.48 0.44 0.75 0.70 0.69 0.64 0.38 0.34
4 0.44 0.40 0.75 0.70 0.67 0.62 0.37 0.33

compute the predicted tercile probabilities, namely the prob-
ability that the 2 m temperature anomaly falls in each of the
three regions corresponding to the first, second, and third
tercile of the super-ensemble climatological distribution. We
used two different groups of techniques, described in the next
subsections. Example of the usage of the same techniques
can be found in Hamill et al. (2004), Whitaker et al. (2006),
Wilks (2006) and Wilks and Hamill (2007).

4.1 Direct Model Output (DMO)

In the direct model output (DMO) techniques, the probability
estimation is based on the direct count of ensemble members
that are below a given threshold. There are different ways to
define the super-ensemble members (Stefanova and Krish-

namurti, 2002); here, an alternative approach is proposed, in
which all possible pairs of members of the two model ensem-
bles are linearly combined with weightsC1 andC2, obtaining
a total of 25 equally reliable members.

The components of the DMO group are the Democratic
Voting (DV) method and the Tukey Plotting Position (TPP).
In both cases, the probability P is estimated starting from the
position of the given tercile inside the ensemble. The formu-
las used by these two methods are PDV1(T2≤ q)= rank(q)−1

N12

and PTPP1(T2≤ q)= rank(q)− 1
3

N12−1− 1
3

, respectively, where q denotes

the tercile, T2 the 2 m temperature anomaly, andN12 =25 the
total number of ensemble members.

Another possibility is to define the super-ensemble mem-
bers as the union of the members of each model, weighted by
the corresponding regression coefficient. In this case, the DV
probability estimate becomes: PDV2(T2≤ q)=C1

rank(q)−1
N1

+

C2
rank(q)−1

N2
, where N1=N2= 5 and where the rank must

be computed in the subset of each single model. A similar
expression holds for TPP. The super-ensemble variance in
this case is larger that the one computed with the previous
method.

4.2 Model Output Statistics (MOS)

Logistic regression (LR) is the first model output statis-
tic (MOS) that we consider. We test three “hypothesis func-
tions”, in which the probability is computed starting from dif-
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Table 2. Ranked probability skill score computed with the Tukey plotting position (RPSS(TPP)), logistic regression (RPSS(LR)), and non-
homogeneous Gaussian regression (RPSS(NGR)).

w RPSS(TPP) RPSS(LR) RPSS(NGR) w RPSS(TPP) RPSS(LR) RPSS(NGR)

NH SH

1 0.65 0.68 0.62 1 0.64 0.68 0.6
2 0.29 0.34 0.31 2 0.32 0.37 0.34
3 0.11 0.20 0.16 3 0.17 0.25 0.22
4 0.07 0.17 0.14 4 0.11 0.20 0.18

EB EU

1 0.49 0.55 0.44 1 0.67 0.69 0.63
2 0.31 0.39 0.31 2 0.21 0.27 0.23
3 0.24 0.32 0.25 3 −0.02 0.11 0.09
4 0.21 0.30 0.23 4 −0.04 0.10 0.08

ferent combination of the super-ensemble mean χ , its stan-
dard deviation σ , and their product. They are:

PLR1 (T2 ≤ q)=
1

1+ exp
(
−θ0− θ1χ − θqq

)
PLR2 (T2 ≤ q)=

1
1+ exp

(
−θ0− θ1χ − θ2σ − θqq

)
PLR3 (T2 ≤ q)=

1
1+ exp

(
−θ0− θ1χ − θ2χσ − θqq

) .
The terms θ0, θ1, θ2 and θq are regression coefficients, func-
tion of the grid point and forecast week. Due to the pres-
ence of θq , all the hypothesis functions are in the form so
called “unified logistic regression” (Wilks, 2009). This pro-
vides consistent probabilities for the three regions in which
the distribution function is divided by the terciles.

The other MOS that we test is the nonhomogeneous Gaus-
sian regression, which is defined as:

PNGR (T2 ≤ q)=8

[
q − (θ0+ θ1χ )

(θ2+ θ3χ )
1
2

]

where 8 is the cumulative distribution function of the stan-
dard Gaussian distribution. The terms θ0, θ1, θ2 and θ3 are
again regression coefficients.

5 Verification of probabilistic forecasts

The aim here is to evaluate the skill of the probability hind-
cast defined above. For the calibration and verification of
the probability hindcast using MOS techniques we adopt the
same cross-validation approach used in Sect. 3. The Ranked
Probability Skill Score (RPSS) is computed as a “single-
value estimate” for all terciles. Then, we examine the reliabil-
ity diagrams for the lower tercile in order to analyse the full
joint distribution of forecasts and verifying reanalysis. Exam-
ple of the usage of these verifying tools in the can be found in

Hamill et al. (2004), Wilks (2006), Wilks and Hamill (2007).
A full explanation is presented in Wilks (2011).

Table 2 reports the values of RPSS obtained in three cases.
For the DMO group, only TPP s reported because it generally
gives slightly higher scores than DV. For the MOS group,
LR1 (logistic regression with the super-ensemble mean as
the only predictor) and NGR are considered. As it can be
easily seen from Table 2, LR1 shows better performances in
all the four chosen regions and for all forecast periods. It is
interesting to notice that over the Euro-Atlantic region, while
the DMO techniques give us almost no predictability after
the second week, the use of LR1 improves significantly the
skill that can be extracted from the multimodel.

In addition to RPSS, we show the reliability diagrams
for the lower tercile in Fig. 2 where, for brevity purposes,
we condensed in a single set of graphs, and for the whole
globe, the diagrams obtained using DV, TPP, LR1, and
NGR; very similar results are obtained for the upper ter-
cile (not shown). Overall, the multimodel probabilistic pre-
diction overforecasts the observed occurrences, especially in
the first two weeks for medium–high probabilities. In the re-
maining weeks, the overforcasting tendency is reduced for
medium probabilities, while underforecasting appears with
DMO techniques for the lowest probability, which is also the
most frequent as indicated in the bar graphs showing the re-
finement distributions.

The advantage of the MOS techniques is evident along the
whole forecasting range for all the probabilities except the
highest one (0.8–1.0). In the first week, LR1 (the red curve)
is the closest to the bisector of the quadrant, improving the
low reliability of the medium forecast probabilities. In the re-
maining weeks, the MOS techniques reduce the lowest prob-
ability frequency (see the refinement distributions), improv-
ing the resolution of the forecast distributions and their reli-
ability for low–medium forecast probabilities. In particular,
the underforecasting resulting from the DMO techniques for
the lowest probability is completely removed. Between the
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Figure 2. Reliability diagrams for the four methods (see text) applied to the lower tercile multimodel prediction. The four panels refer
to the forecast weeks (average over the whole globe and over the 18 validation winters). Democratic voting (DV): green; Tukey plotting
position (TPP): cyan; logistic regression (LR): red; and nonhomogeneous Gaussian regression (NGR): blue. On the x axis of each graph
there are the five probability intervals, while on the y axis the conditional probabilities. In the refinement distribution (the bar graph), the
frequency of each probability interval is reported. The no-resolution threshold, given by the averaged observed frequency, is 0.336.

two MOS techniques, LR1 systematically outperforms NGR
for the 0.0–0.6 probability range.

For the highest probability value considered, DMO meth-
ods outperform MOS techniques. Specifically, in the ex-
tended range, LR1 seems unable to produce high-probability
forecasts, as evident from the strong reduction of the associ-
ated forecast frequency.

In summary, LR1 drastically improves the low probabil-
ity forecasts, slightly improves medium probability forecasts
and is unable to provide skilful high probability forecasts.

6 Learning curve

After having shown that the LR technique provides the best
performance, except for the high-probability forecasts, our
aim in this section is to determine the possible occurrence
of over-fitting or under-fitting, and therefore the potential for
improving this particular technique. The method of the learn-

ing curve consists in repeating the computation of LR coef-
ficients for different dimensions of the training set (10, 20,
30, 40, 50, 100, 150, and 200 elements). With the recom-
puted LR coefficients, we evaluate the RPSS averaged over
the globe for each of the four forecast weeks. The results are
summarized in Fig. 3. As expected, for small training sets the
algorithm performs exceptionally well in the training phase,
while in the validation mode it shows poor results. The two
values become closer for increasing training set dimensions
and, above the threshold of 100 elements, the scores remain
nearly constant. This is a definite indication that the LR has
extracted all the available information from the data. How-
ever, it cannot be excluded that there actually is some addi-
tional information that LR is not capable to catch or, in other
words, that LR is under-fitting. In this case, the results do
not improve by adding more training elements, and different
solution should be adopted, like using more complex fittings.
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Figure 3. Learning curve for the LR (using the ensemble mean only) for weeks from 1 to 4. The y axis reports the ranked probability skill
score averaged over the whole globe. On the x axis it is reported the dimension of the reduced training set. The scores obtained on the training
(validation) sets are shown in teal (orange).

7 Conclusions

The aim of this study is the evaluation of the predictive
skill of the super-ensemble obtained by combining through
linear regression the reforecasts of the ECMWF-IFS and
CNR-ISAC monthly prediction systems. The main focus is,
in particular, on probabilistic wintertime 2 m temperature
predictions: we compare different techniques for extracting
forecast tercile probabilities from the multimodel ensemble,
namely direct model output (DMO) and model output statis-
tics (MOS). We conclude that the logistic regression based
on the ensemble mean as only predictor gives the best per-
formance in terms of RPSS and reliability diagrams for low–
medium forecast probabilities.

We finally analyse the behaviour of logistic regression
with different dimensions of the training dataset. We con-
clude that no further improvements are possible from an ex-
tension of the dataset, unless a more complex algorithm is
used.

The results here presented depend on the rather limited
number of ensemble members at our disposal. Conclusions
may be quite different if more members are added to each
single model, or if more models are considered. However, the
outcomes obtained in the rather simple framework described
here suggest that the multimodel ensemble could be eas-
ily implemented to improve CNR-ISAC operational monthly
forecasts.

Data availability. The ECMWF reforecasts and ERA-Interim re-
analyses were downloaded, after log in, through the MARS cata-
logue http://apps.ecmwf.int/mars-catalogue/.
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