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Abstract. Europe is facing the challenge of increasing shares of energy from variable renewable sources. Fur-
thermore, it is heading towards a fully integrated electricity market, i.e. a Europe-wide electricity system. The
stable operation of this large-scale renewable power system requires detailed information on the amount of elec-
tricity being transmitted now and in the future. To estimate the actual amount of electricity, upscaling algorithms
are applied. Those algorithms – until now – however, only exist for smaller regions (e.g. transmission zones
and single wind farms). The aim of this study is to introduce a new approach to estimate Europe-wide wind
power generation based on spatio-temporal clustering. We furthermore show that training the upscaling model
for different prevailing weather situations allows to further reduce the number of reference sites without losing
accuracy.

1 Introduction

A fully integrated European energy market is one of the pri-
ority policy areas of the European Commission (e.g. EC,
2016). Transmission system operators use estimates of the
energy production from variable renewable sources within
their transmission zones already today. Besides technical as-
pects, such as the reinforcement of the transmission grid (e.g.
Becker et al., 2014; Kies et al., 2016b), also the upscaling
algorithms behind these renewable power estimates need to
be revised when trading zones are extended – in particular
for increasing shares of renewables. In fact, the large-scale
integration of variable renewable energy sources (VRES) –
such as wind power – introduces additional factors of uncer-
tainty. This uncertainty poses new challenges to the power
system operator since it is necessary to keep the balance be-
tween production and consumption at every moment, in order
to ensure the stability of the power system (Holttinen et al.,
2011; Pérez-Arragia and Batlle, 2012; Estanqueiro, 2008). In
this sense, it is crucial to know the actual and future genera-
tion from the VRES within the system. While the future gen-

eration is subject of forecasting technologies, this work fo-
cuses on the introduction of an upscaling methodology to es-
timate the Europe-wide actual wind power generation based
on spatio-temporal clustering (e.g. Kisilevich et al., 2010).

With the application of upscaling methodologies on the
European scale additional potential benefits are expected:
Aggregating wind parks with a wide geographical dispersion,
for instance, is an effective way to reduce the short term vari-
ability and forecast errors by taking advantage of the statisti-
cal smoothing effect (Liu et al., 2014; Miettinen et al., 2014;
Marrone et al., 2008).

In the current literature, several upscaling approaches can
be found: In Ishihara et al. (2007) a typical upscaling func-
tion using a bi-exponential function to estimate the cross-
correlation is proposed. Pinson et al. (2003) performed a
benchmarking of different approaches based on dynamic
fuzzy neural networks. In Lobo and Sanchez (2012) the up-
scaling technique is based on smoothing techniques to con-
struct the predictions of the aggregated wind generation from
historical wind speed predictions and the associated wind
generation measurements. Recently, Li et al. (2015) proposed
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a probabilistic approach showing that this type of methodol-
ogy can provide competitive interval forecasts when com-
pared to conventional statistical approaches. However, all of
the upscaling methodologies described above are usually ap-
plied to a set of wind parks, and not to the European scale.

As wind is a meteorological quantity, weather conditions
may have a strong impact on the wind power variability as
well as on the uncertainty of its forecasts (Giebel et al., 2011;
Ernst et al., 2007). Lange and Heinemann (2003) for instance
show that the presence of cyclonic systems with strong dy-
namics – such as cold fronts – can be related to larger er-
rors in the forecast when compared with prevailing weather
conditions associated with stationary systems such as anti-
cyclonic systems. A similar methodology was also applied
to several wind parks in Portugal demonstrating the weather
dependency of the wind power forecast errors (Trancoso,
2012). Vincent (2010) shows that strong wind variability can
be associated with certain weather patterns and Couto et al.
(2015) show a strong impact of weather regimes on wind
power ramps in Portugal. Consequently, taking into account
the underlying role of the synoptic weather patterns could be
an important step towards reliable upscaling algorithms.

The objective of this work is to introduce a new upscaling
approach for Europe-wide wind power generation based on
spatio-temporal clustering (Sect. 2.1). The upscaling model
will be trained and evaluated for different circulation weather
types (CWTs, Sect. 2.2) using a set of Europe-wide wind
power generation data (Sect. 2.3). The training for specific
CWTs will be compared to the training over all time steps in
the training period in order to investigate its weather depen-
dency and the potential benefit from the weather dependent
training (Sect. 3). Conclusions will be drawn in Sect. 4.

2 Methodology and data

2.1 Reference site selection: spatio-temporal clustering

Focus of this work is the presentation of a reference site se-
lection scheme based on spatio-temporal clustering. In order
to derive a finite set of reference sites to upscale the genera-
tion of wind power across Europe at a certain point of time
the following procedure is applied:

1. Cluster the locations of wind farms (latitude/longitude
coordinates) into N (geographical) clusters via the
kmeans algorithm (Mac Queen, 1967).

2. For each of the N geographical clusters, select the site
with the highest wind power capacity. Obtain the set
�geo with size |�geo| =N .

3. Compute pairwise (temporal) correlations %(ri, rj )=
%
(
p(ri, t),p(rj , t)

)
∀ ri, rj ∈�geo of the historical gen-

eration time series p(ri, t) at the N sites ri, i = 1, . . .N
selected in the previous step.

r1 r2 r3 r4 r5 r6 rN-3 rN-2 rN-1 rN.......

h

.......

h = τ

r1 r2 ... rk-1 rkΩ0

Figure 1. Schematic dendrogram for illustration of steps 4 and 5 of
the spatio-temporal clustering approach.

4. Use the correlation information to apply a hierarchi-
cal clustering (e.g. Rockach, 2010) with the distance
between sites ri and rj being defined as d(ri, rj )=
1− |%ij |.

5. Cut the dendrogram obtained from the hierarchical
(temporal) clustering at height h= τ . Yield k = k(τ )≤
N clusters. Here, τ is the distance between two clusters.
For each cluster, again, select the site with the highest
wind power capacity as cluster centres to obtain the fi-
nal set of k reference sites �0. This step is illustrated in
Fig. 1.

Note that if the average group linkage method is used to ag-
glomerate clusters, τ can be interpreted as 1 minus the aver-
age intra-cluster correlation. In other words, the final set of
reference sites can be determined by choosing the average
intra-cluster correlation:

D(A,B) :=
1

(|A| + |B|)(|A| + |B| − 1)

∑
x,y∈A∪B

d(x,y)

=
1

(|A| + |B|)(|A| + |B| − 1)

∑
x,y∈A∪B

(1− %(x,y))

= 1− %C

(1)

For two clusters (sets)A andB andC = A∪B, i.e. the cluster
resulting from the union of set A and set B. Choosing the av-
erage intra-cluster correlation as key-parameter to determine
the reference sites allows to further investigate the behavior
of the clustering approach from a physical-meteorological
perspective. This is the major advantage of the proposed
methodology compared to, for instance, st-DBSCAN (Birant
and Kut, 2007), which does not allow for using different dis-
tance measures than the euclidean distance.
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Figure 2. Modelled spatial distribution of rated wind power capac-
ity across Europe.

2.2 Upscaling and evaluation

The upscaling estimate itself for time t = t ′ is computed as
a weighted sum of the generation measured at the reference
sites:

E(t = t ′)=
∑
ri∈�0

w(ri)p(ri, t = t ′) (2)

Where the weights wi are computed from a multiple linear
regression of the generation at the k reference sites rk ∈�0
on the total Europe-wide generation performed over a pre-
chosen training period. Note, that in general the wi may vary
in dependency of τ and N .

For this study, the upscaling estimate derived from Eq. (2)
will be evaluated based on the Pearson correlation and the
root mean square error (RMSE) between the upscaling esti-
mate E(t) and the reference time series for a testing period.
Here, the sum of all grid cells of the wind power generation
data (Sect. 2.3) is used as reference. RMSE values have been
normalized to the average hourly wind power production.

In order to investigate the dependency from the prevailing
weather situation and the eventual benefit from training the
model for specific weather situations, both training and test-
ing will be performed for the nine most common circulation
weather types in Europe (see Sect. 2.4).

We use five years (2008–2012) for training and one
year (2013) for testing.

2.3 Wind power generation data

The upscaling methodology introduced above is tested for a
data set of modeled hourly onshore wind power generation
across Europe. This data bases on two data sets: COSMO-
EU analysis data provided by the German Weather Ser-
vice (Doms et al., 2011) used for the statistical downscal-
ing of MERRA reanalysis data provided by the National
Aeronautics and Space Administration of the United States
(Bosilovich, 2008). MERRA was used to capture a longer
period of time.

The spatial distribution of rated wind power across Europe
is modeled as a function of the average (computed over the
period considered) wind speed for each location (grid cell)
in Europe. The relation between wind speed and rated power
is estimated based on the available data of deployed wind
power capacity in Germany. Since this relation is not very
distinct, artificial noise has additionally been added:

y(r)= aw(r)+ b+ ε (3)

Here, y(r) is the rated wind power at location r , w(r) is the
average wind speed at the same location, a and b are coef-
ficient and intercept fitted from the available data and ε is
artificial gaussian noise with zero mean.

The spatial distribution is shown in Fig. 2. Note, that it
does not – and is not meant to – represent the real spatial dis-
tribution. Furthermore, offshore locations are not included.

Wind speed is converted to wind power by applying the
regional power curve model for the largest German trans-
mission zone developed by Späth et al. (2015). The proce-
dure described here is similar to the one used by Kies et al.
(2016a). For this study, the years 2008–2013 are considered.

2.4 Circulation weather types

Classification of atmospheric circulation into distinct states
is a widely used tool for describing and examining weather
patterns and their impact on meteorological phenomena,
e.g., rainfall (Philipp et al., 2010). In the literature, sev-
eral methodologies of weather circulation classification are
available (Jenkinson and Collinson, 1977; Huth et al., 2008;
Philipp et al., 2010; Couto et al., 2015). In this study, an au-
tomatic version of the Lamb weather type classification is
applied to MERRA sea level pressure fields in order to ob-
tain a time series of prevailing circulation weather types. This
method was initially proposed by Jenkinson and Collinson
(1977) and thereafter applied by several authors (e.g., Trigo
and da Camara, 2000; Costa et al., 2006).

The algorithm bases on the sea level pressure at the 16
points depicted in Fig. 4. Assuming geostrophic conditions,
westerly and southerly winds can be computed from the
meridional and zonal pressure gradient respectively. Do-
ing so, six circulation indices (southerly flow SF, westerly
flow WF, resultant flow FT, southerly shear vorticity ZS,
westerly shear vorticity ZW and total shear vorticity ZT) can
be computed from the sea level pressure data via:

SF= A ·
1
4
· (p5+ 2p9+p13−p4− 2p8−p12) (4)

WF=
1
2
· (p12+p13−p4−p5) (5)

FT=
√

SF2
+WF2 (6)

ZS= B ·
1
4
· (p6+ 2p10+p14−p5− 2p9−p13 (7)

−p4− 2p8−p12+p3+ 2p7+p11)
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Figure 3. Location of the cluster centres and the weights assigned to them by the linear regression (size scale) for %C = 0.8 (=̂τ = 0.2) and
training over all time steps (a) and over the time steps with prevailing CWT SW (b).

Figure 4. Locations of the 16 points used for the circulation
weather type identification.

ZW= C ·
1
4
· (p15+p16−p8−p9)− (8)

D ·
1
4
· (p8+p9−p1−p2)

ZT= ZS+ZW (9)

Southerly and westerly shear vorticity are estimated from the
wind shear in the center of the domain. Subscribed numbers
indicate the location. The four coefficients A, B, C and D
are determined by the central latitude of the chosen raster ϕ0
(here: ϕ0 = 45◦):

A=
1

cos(ϕ0)
(10)

B =
1

2cos2(ϕ0)
(11)

C =
sin(ϕ0)

sin(ϕ0− 5◦)
(12)

D =
sin(ϕ0)

sin(ϕ0+ 5◦)
(13)

From the six circulation indices 26 circulation weather types
(CWTs) can be deduced as follows:

– If |ZT|< FT the mean flow dominates over the vor-
ticity (local curvature of the wind field). These CWTs
are called directional and named after the eight direc-
tions North (N), Northeast (NE), East (E), Southeast
(SE), South (S), Southwest (SW), West (W) and North-
west (NW). The flow direction is given by tan−1 WF

SF if
WF≤ 0 and tan−1 WF

SF + 180◦ if WF> 0, respectively.

– If |ZT|> 2FT the vorticity exceeds the mean flow. The
circulation is either cyclonic (L) if ZT> 0 or anticy-
clonic (H) if ZT< 0

– If FT< |ZT|< 2FT both, vorticity and mean flow, are
equally strong. These CWTs are called hybrid and
named after the prevailing circulation, i.e. either cy-
clonic or anticyclonic, plus one of the eight flow direc-
tions.

For this study, the nine most common CWTs in Europe are
chosen for evaluation. These are the directional types except
for Southeast, the cyclonic type and the anticyclonic type.

3 Results

3.1 Cluster centres and reference site weights

As mentioned above, the number of reference sites varies in
dependency of the chosen average intra-cluster correlation.
Figure 3 shows the locations of the reference sites obtained
from the spatio-temporal clustering exemplary for the train-
ing over all time steps (a) and the time steps with prevailing
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Figure 5. Correlation versus the average intra-cluster correlation
%C for CWT SW obtained from the specific training for this CWT
(black) and from the training over all time steps (green) respectively.

Southwestern circulation type (b). The average intra-cluster
correlation was exemplary set to %C = 0.8. The size of the
dots additionally indicates the weights given to the reference
sites by the linear regression. Points with |w(r)|< 0.5×σ are
considered as neutral. Here, σ denotes the standard deviation
computed from all weights.

Obviously, the number of reference sites for the CWT
SW (3 right) is lower (88 to 97). Hence, the correlations of
wind power generation at the geographical clusters is higher
than average during time steps of Southwesterly flow – es-
pecially on the Iberian Peninsula where the reduction of ref-
erence sites is most apparent. Here, wind power production
exhibits a relatively coherent spatial structure. This can be
related to the passage of large-scale atmospheric phenom-
ena associated with southwesterly circulation, such as cold
fronts, able to cover the whole region (Jim et al., 2009; Peña
et al., 2011). However, not all of the nine CWTS consid-
ered exhibit this higher-than-average correlation. In contrary
to southwesterly circulation, some CWTS are usually asso-
ciated with relatively weak and diffused synoptic scale phe-
nomena. These may cause a less coherent spatial structure of
the wind field. Therefore, the number of reference sites for
%C = 0.8 ranges between 88 for SW and 105 for the Easterly
flow type (not shown).

From Fig. 3 it can also be seen, that the weights given to
the selected reference sites vary as well. The reference sites
on the Iberian Peninsula get relatively higher weights for the
Southwesterly circulation type than for all time steps.
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Figure 6. As Fig. 5 but for the RMSE normalised to the average
generation.
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Figure 7. Time series of the upscaling estimate [GWh] versus the
reference time series [GWh] for all time steps (green) and time steps
with prevailing Southwesterly circulation (black).

3.2 Upscaling evaluation

The skill of the methodology introduced in Sect. 2 measured
by correlation and RMSE is exemplary shown in Figs. 5
and 6 for the Southwesterly circulation type. It can be seen,
that very high (> 0.95) values for the correlation can be
achieved for average intra-cluster correlations above 0.1. For
the Southwesterly CWT this corresponds to a number of ref-
erence sites k = 17 for whole Europe. For higher %C the cor-
relation asymptotically approaches 1.

A similar behaviour is found for the RMSE. For %C > 0.1
the RMSE drops below 10 % of the average wind power
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Figure 8. Range of correlation values achieved by training the up-
scaling for the specific CWTs (black) and from training over all
time steps (green).

generation in Europe. For average intra-cluster correlations
above 0.45 – corresponding to k = 41 – RMSE values below
5 % of the average generation can be achieved.

The good agreement between the upscaling estimate and
the reference time series can additionally be seen from the
scatter plot (Fig. 7, again for %C = 0.8). A systematic er-
ror only appears for extreme high (above 75 GWh) wind
power generation values. Here, the upscaling model system-
atically underestimates the generation. Furthermore, all these
extreme values occur during Southwesterly circulations. This
reduces the skill of the upscaling model for this CWT dispro-
portionately strong.
%C = 0 does not involve any hierarchical clustering. The

corresponding data point is considered as non-representative
and therefore neglected from the further analysis.

3.3 Benefit from training for weather types

In general, the Southwesterly CWT is the one, for which the
introduced upscaling methodology works best with respect
to the correlation (Fig. 8, black bars). Other CWTs exhibit
lower correlations. With respect to the RMSE, the SW type
only skills average (Fig. 9, black bars). Here, especially the
Easterly type benefits from the specific training.

Figures 8 and 9 show the range of the correlation and
the RMSE for all %C ∈ ]0,1] obtained from (i) the training
specifically for the particular CWTs in black and (ii) train-
ing over all time steps in green. Evidently, the upscaling skill
benefits from the specific training. The range of both, corre-
lation and RMSE, can be reduced significantly. It can further-
more be observed that the cyclonic CWT and the Southerly
CWT perform worst – with respect to both correlation and
RMSE – while the Easterly, Southwesterly and Cyclonic type
perform best. The benefit from the CWT specific training is
strongest for the Northeasterly and Northwesterly type with
respect to correlation and RMSE, respectively.
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Figure 9. As Fig. 8 but for the RMSE normalised to the average
generation.

4 Discussion and conclusions

In order to derive a reduced set of reference sites to estimate
Europe-wide wind power production, a new spatio-temporal
clustering approach has been developed. To test the method-
ology, model data is used, which is known to be smoother
than measured data. Keeping this in mind, we have shown
that a rather low number of around 40 reference sites – when
chosen carefully – is sufficient to estimate the actual wind
power generation across whole Europe with adequate accu-
racy. We have also shown that it is beneficial to train the
upscaling model for different prevailing circulation weather
types.

Data availability. All underlying research data of this work is pub-
licly available.
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