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Abstract. Africa is considered to be highly vulnerable to climate change, yet the availability of observational
data and derived products is limited. As one element of the SASSCAL initiative (Southern African Science
Service Centre for Climate Change and Adaptive Land Management), a cooperation of Angola, Botswana,
Namibia, Zambia, South Africa and Germany, networks of automatic weather stations have been installed or im-
proved (http://www.sasscalweathernet.org). The increased availability of meteorological observations improves
the quality of gridded products for the region. Here we compare interpolation methods for monthly minimum and
maximum temperatures which were calculated from hourly measurements. Due to a lack of longterm records
we focused on data ranging from September 2014 to August 2016. The best interpolation results have been
achieved combining multiple linear regression (elevation, a continentality index and latitude as predictors) with

three dimensional inverse distance weighted interpolation.

1 Introduction

Precise monitoring of climate variability and climate change
are challenges for many regions in the world. For Africa it
was noted that the lack of adequate data and observation sys-
tems seriously hinders the ability of scientists to assess the
past and current state of climate (ACC, 2013). This applies
to several developing regions in the world. Beside others,
Southern Africa lacks historical and current ground-based
climate records, which, in turn, hinders the capacity of under-
standing climate variability in the region (Niang et al., 2014).

As part of the SASSCAL initiative (Southern African Sci-
ence Service Center for Climate Change and Adaptive Land
Management), 148 automatic weather stations (AWS) have
been installed since 2013 to improve this situation (Kaspar et
al., 2015; Posada et al., 2016). Most of them have been in-
stalled in Angola, Botswana, Namibia and Zambia and few
of them in South Africa, and cover an area of approximately
3.4 millionkm?. SASSCAL is a multidisciplinary initiative
which aims to improve knowledge in several different sci-
entific areas such as agriculture, biology, and hydrology. In
these disciplines there is a strong need for climate infor-
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mation at high spatial resolution. A gridded climatological
dataset of the SASSCAL AWS Network could support cli-
mate monitoring and climate impact studies in the region.
Such datasets are an established tool for climate monitoring
in other regions (e.g. Kaspar et al., 2013).

In an earlier study, Krihenmann et al. (2013) published an
observational reference dataset for daily minimum and max-
imum temperature at 0.22° resolution for the African conti-
nent except for some regions over Southern Africa, Soma-
lia and Libya due to a lack of observational data. Here, we
have used observational data from the SASSCAL AWS Net-
work (Kaspar et al., 2015) and evaluated the quality of sev-
eral temperature interpolation methods for Southern Africa
to fill some of the identified data gaps. For evaluation pur-
poses a dataset of monthly mean minimum and maximum
temperatures with a resolution of 0.22° was produced cover-
ing the period between September 2014 and August 2016.

The selection of an adequate interpolation method to pro-
duce a gridded dataset can be challenging since various fac-
tors, such as station density, data coverage and orographic
features have to be considered (Krihenmann and Ahrens,
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2013). Several interpolation methods have been proposed in
the past (e.g. Meyers, 1994; Bolstad et al., 1998; Daly, 2006;
Stahl et al., 2006), but, as Tveito et al. (2006) suggested,
the interpolation of monthly mean temperature is simple —
at least in comparison to precipitation data — considering its
high correlation with elevation or land surface characteris-
tics.

Here, three often used different algorithms have been com-
pared using cross-validation (Isaaks and Srivastava, 1989;
Wackernagel, 2003): (1) regression kriging (RK), (2) re-
gression combined with two-dimensional inverse distance
weighting (2D-IDW) (R2D, distance measure based on
geographical coordinates) and (3) regression with three-
dimensional inverse distance weighting (3D-IDW) (R3D,
distance measure based on geographical coordinates and el-
evation). Kriging and 2D-IDW are common interpolation
methods in geostatistics and earth sciences in general (Bartier
and Keller, 1996; Oliver and Webster, 2015), whereas 3D-
IDW is a newly developed approach (Krihenmann et al.,
2013)

2 Methods

2.1 Study region

The study region (11 and 34°E, 4 and 34°S) is located
in Southern Africa (Fig. 1) and includes the four coun-
tries Angola, Botswana, Namibia and Zambia. It covers
3.4 millionkm?. The northern region is dominated by tropi-
cal climates while the southern part is dominated by subtrop-
ical semi-arid/arid climate. Large parts of the region are ele-
vated between 1000 to 2000 m, while the western parts close
to the coast in Namibia and Angola are lower and separated
from the plateau by the Great Escarpment (Stock, 2013). The
climate of the coastal region in Namibia and southern Angola
is influenced by the cold Benguela Current. The region en-
counters a dry season (April to September) and a rainy sea-
son (September to April). Most precipitation falls between
November and March.

2.2 Dataset

Our dataset includes 148 stations (Fig. 1) from the SASS-
CAL Weathernet (http://www.sasscalweathernet.org/) pro-
viding data at a temporal resolution of either 15 m or 1 h. We
used only data for the time period from September 2014 until
August 2016. Some station data are available for a longer pe-
riod, however they cover mainly parts of Namibia. Note that
there are only a few stations in eastern Angola. The daily and
monthly means have been calculated for each station. Sta-
tions with more than one quarter of missing values for a spe-
cific month have been discarded. Therefore, the number of
stations used in the interpolation process for each month was
reduced, to a minimum of 69 stations for September and Oc-
tober 2014, and a maximum of 113 in February 2016 (for sta-
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Figure 1. Digital elevation model (color coded) for the study area.
Circles show the location of the SASSCAL Weathernet stations.
The circle filling illustrates the data availability from black for data
completely available over the whole period to empty circle for no
data available for the period.

tion data availability see Fig. 1). Other freely available data
for region have not been available for the time period.

2.3 Interpolation methods

We compared three different hybrid interpolation methods
that combine multiple linear regression with residual inter-
polation. The general procedure of the three hybrid algo-
rithms is a three-step approach: (a) linear regression using
specific predictors to explain the variation of the monthly
variable, (b) interpolation of the monthly regression residuals
to account for the unexplained variation and (c) summation
to yield the final result. The following methods have been
applied to perform residual interpolation: two-dimensional
inverse distance weighting (2D-IDW), three-dimensional
IDW (3D-IDW), and simple kriging (SK). For all statistics,
methods and plots we used R version 3.1.2 (R Development
Core Team, 2016, http://www.r-project.org).

The regression coefficients necessary for the hybrid meth-
ods can be estimated from point data (observations and pre-
dictors at station locations) if the regression function applied
is linear (Heuvelink and Pebesma, 1999). Multiple linear re-
gression amounts to the following equation:

Y=bo+bixi+byxa+...+bixi+...+bnxn (D

where Y is the dependent variable, x; are the independent
variables, by is the intercept coefficient, b; are the regression
coefficients and N the number of independent variables. The
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regression coefficients are derived by minimising the squared
differences between the observed variable and its estimate.

2.3.1 Inverse distance weighting (2D-IDW and 3D-IDW)

IDW and kriging interpolation are based on the assumption
that points closer together are more alike than points further
apart. For IDW, the values are estimated from the weighted
linear combination of nearby observational stations (Naoum
and Tsanis, 2004):

n
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where z, , are the interpolated values at coordinates x and y,
the z; are the observed values, and the w; are the weights
determining the influence of the respective observed value z;.
The w; can be defined as:
wi=d !, 3)
where d, , ; is the distance between z, , and z;, and 8 is an
exponent (Bartier and Keller, 1996), which was determined
using cross-validation to minimize the interpolation error.

Cross-validation revealed 2 as the overall optimal beta
value (which is the distance weighting power). Therefore,
cross-validation was run over the whole period and for sev-
eral weighting powers ranging from 1.5 to 3. To prevent over-
fitting and due to the low number of available observing sta-
tions a constant distance weighting power (8) of 2 was cho-
sen for the whole interpolation period.

3D-IDW is based on an Euclidean distance measure,
which is expanded by accounting for the elevation z:

2

dy=la=nf =y + Py P @
with d; ; being the distance between points i and j, x; and
yi the coordinates of point i, and x; and y; the coordinates
of point j, and z; and z; the height above sea level of points i
and j, respectively. F is a factor to penalise the elevation
difference.

As with the 2-D case, cross validation revealed a distance
weighting power of 2 as most suitable. F is used to mod-
ify the distance between a grid node and neighboring sta-
tions as a function of elevation difference. Depending on the
weather condition at hand F may vary considerably to find
the minimum interpolation error. In fact F is considerably
larger than one. For the interpolation procedure F values
ranging from 50 to 2000 (the elevation distance is transferred
to degrees to match the unit of the geographical coordinates)
have been tested and cross validation revealed 1000 as the
most suitable F' value.
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2.3.2 Simple Kriging

Simple Kriging involves solving a set of linear equations to
minimize the mean squared error of the residuals from the
interpolating surface. To ensure spatial homogeneity of the
residuals, which is a requirement to solve this least squares
problem, a normal score transformation was applied to the
data before interpolation (Deutsch and Journel, 1998). For
the Simple Kriging process, we applied a spherical variogram
model including a nugget variance. The accurate estimation
of a variogram model requires a large sample size. However,
the station coverage over Southern Africa is poor. Therefore,
we have chosen to derive a global variogram from all avail-
able stations. Additionally, the previous regression is used to
remove major geographic features and to yield a more homo-
geneous distribution of the residuals.

The variogram parameters were determined using an ap-
proach suggested by Ahrens and Beck (2008). We used a
data pool containing all monthly values of the period Septem-
ber 2014 to October 2015, and estimated a range of approxi-
mately 12 °C and a nugget variance of 0.3 °C. Subsequent to
the residual interpolation using Simple Kriging, the gridded
residuals were back transformed to the original distribution
and combined with the regression-based estimates.

2.4 Validation statistics

For the validation of the three interpolation methods we em-
ployed a leave-one-out cross-validation approach, which in-
volves leaving out each station in turn and estimating its
value from the remaining observations using an interpolation
method. The estimated value is then compared with the actu-
ally observed value, which provides an estimate of the model
error at this point (Oliver and Webster, 2015).

The Root Mean Square Error (RMSE) is an often used skill
score in model evaluation. Small RMSE values indicate high
model accuracy with theoretical optimum at a value of O de-
noting a perfect model prediction. The RMSE is calculated
as follows:

1 N
RMSE = ¥ Z(P,- —Z;)? (5)
i=1

where N is the number of observations, P; the model value
at the coordinates of station i, and Z; the observed value at
the coordinates of station i.

As a second performance criterion we used a measurement
for the variance preserved in the interpolation data compared
to the variance in the observations “VARI” (Krihenmann et
al., 2013). VARI is the ratio of the variance of the interpo-
lated values (using cross-validation) and the observed val-
ues. It ranges from O to 1, with high values indicating that a
large portion of variance has been retained in the interpolated
data. A VARI greater than one depicts an enhancement of
the spatial temperature variation, whereas a value between 0
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and 1 implies the observed temperature variability is reduced.
The explained variance, however, explains how well the used
method/parameters explain the spatial temperature variabil-

1ty.
The VARI equates to:
o?(P)
VARI =
o%(2)

where P are the predictions and Z the observed values.

3 Results and discussion

3.1 Validation results

The suitability of the selected predictors for multiple lin-
ear regression for minimum temperature (7pni,) and maxi-
mum temperature (Tmax ) has been validated using the RMSE.
Thereby, the RMSE was calculated from the regression resid-
uals. For single predictors, the RMSE errors were highest for
longitude (x) and elevation (z), lower for zonal mean tem-
perature (b) while continentality index (K) and latitude (y)
performed best (Table 1). Successive combination of predic-
tors reduces the RMSE values, and the combination of all
available predictors performs best.

The VARI was used to assess how much variance of the
data was retained by the model, with low values indicating
little and high values high retention of variance. As a sin-
gle predictor, K clearly performs best, for y and b a lower
fraction of the spatial variability could be retained, and z and
x performed worst. Predictor combinations show improved
VARI values with the combination of all available predictors
performing best (Table 1).

In conclusion, the combination of all predictors yields the
best result in both, RMSE and VARI. However, the more
predictors are used within the linear regression, the greater
the risk of over-fitting becomes. Previous studies reported
high correlation between air temperature and elevation (Be-
navides et al., 2007; Kurtzman and Kadmon, 1999; Hud-
son and Wackernagel, 1994) and air temperature and latitude
(Wackernagel, 1994), respectively. One reason for the poor
elevation performance in the study region could be the effect
of other variables (e.g. continentality) and latitudinal effects
masking the elevation dependence of air temperature. This
can be explained by the vast size of the study area. This issue
may be reduced by splitting of the target area into several
more homogeneous climate regions which is, however, not
feasible due to the low station number. Furthermore, applica-
tion of a non-linear temperature profile may significantly im-
prove the gridding result. Yet, besides the low station density
also the underrepresentation of higher elevations prevents its
application.

Furthermore, we found an autocorrelation between lon-
gitude (x) and continentality index (K), since K outper-
formed x as single predictor, K has been preferred over x.
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Table 1. RMSEs and VARI averaged over first year of the inter-
polation period (September 2014—August 2015). Predictors: eleva-
tion (z), continentality index (K), zonal mean temperature (), lon-
gitude (x), latitude (y).

Predictor RMSE RMSE VARI VARI
Thin Tmax Thin Tmax
in °C in °C

~Zz 2.9 34 0.08 0.08

~K 2.7 3.0 0.21 0.25

~b 2.8 3.1 0.10 0.18

~X 2.9 34 0.09 0.04

~y 2.7 3.0 0.14 0.16

~z+K 2.5 3.0 0.34 0.28

~K+b 2.5 2.7 0.30 0.40

~y+K 2.4 2.7 0.35 0.40

~z+K+b 2.3 2.6 0.44 0.44

~y+z+K 2.2 2.6 0.50 0.44

~x+z+K+b 2.3 2.5 0.47 0.53

~y+z+K+b 2.1 2.6 0.53 0.48

~x+y+z+K 2.2 2.5 0.52 0.53

~x+y+z+K+b 2.1 2.4 0.55 0.57

Hence, in this study the combination (y 4+ z 4+ K) was cho-
sen.

3.2 Model evaluation

While the RMSEs (Fig. 2) for all methods exhibit a small
decline over the whole interpolation period for Tax and lit-
tle variation in general this is very different for Tii,. Here
the RMSEs show a distinct annual cycle. They are low-
est between December and March (i.e. summer), with min-
imum values around 1.0°C. However, they are consider-
ably higher between May and August, with values between
2.5 and 3.5°C. For Tpjn, the hybrid methods perform sim-
ilarly well and generally better than the mere linear regres-
sion (Fig. 2). For Tinax, R3D performs generally better than
RI and RK, while all hybrid methods clearly outperform lin-
ear regression. Overall, in terms of the RMSE, R3D performs
best, particularly for Tiax.

In general, the evaluated interpolation methods show sim-
ilar performance in terms of VARI (Fig. 3) as previously
observed regarding the RMSE. For Ty, high values (i.e. a
large proportion of observed variance preserved) occur from
October 2014 until April 2015 and from October 2015 until
March 2016. VARI was low from May to September 2015
and April to August 2016. For Tpax there is less variation
over the year with a remarkable performance drop of linear
regression and RK in April and May 2015, which is much
less profound for RI and especially for R3D. As with the
RMSE, all three hybrid methods outperform linear regres-
sion, with R3D again performing best. Yet, unlike with the
RMSE, RI also outperforms RK, which is evident from the
annually averaged values (Fig. 3).
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Figure 2. Results of the RMSE calculation for all interpolation
models, where R = Regression, RI = Regression + two dimensional
IDW, RK =Regression + Kriging, R3D =Regression + three di-
mensional IDW, for minimum temperature (a) and maximum tem-
perature (b).

Overall, there is a strong seasonal cycle in the RMSE for
minimum temperature, whereas there is no pattern in maxi-
mum temperature.

The southern winter season (June, July, and August) is also
the dry period, when lowest minimum temperatures occur,
particularly in lower elevations. This is due to the lower rel-
ative humidity in this season. As a result, temperatures drop
particularly in valleys and depressions, whereas air tempera-
tures do not drop as much in elevated areas.

This cascades by a temperature inversion with non-linear
temperature profiles to an increase in regression residuals,
whose interpolation is compound with increased interpola-
tion errors.

In such cases, modelling temperatures profiles using non-
linear regression or varying regression predictors (Hofer et
al., 2012) would be of benefit. However, the low station den-
sity (Fig. 1) and the under representation of summits and ele-
vated areas does not allow for a robust estimate of non-linear

temperature profiles.

Maximum temperature is less affected by changes in rel-
ative humidity. During southern winter months, near sur-
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Figure 3. Results of the VARI calculation for all interpolation
models, where R = Regression, RI = Regression 4 two dimensional
IDW, RK =Regression 4 Kriging, R3D =Regression + three di-
mensional IDW, for minimum temperature (a) and maximum tem-

perature (b).

face areas get high insolation rates and air temperature rises
markedly. The air temperature rises therefore more strongly
in low areas than in elevated areas, where temperature re-
mains more constant. This removes temperature inversion
leading to a more linear temperature gradient during day
time. Thus linear regression and residual interpolation yield
better interpolation results and lower interpolation errors
for Thax-

As recommended by Tveito et al. (2006) the interpolation
results were also visually examined. Figure 4 gives an exam-
ple of the interpolated residuals using SK, 2D- and 3D-IDW
for July 2015, where all the characteristics of the respec-
tive methods can be observed. In the case of the 2D-IDW
interpolation (Fig. 4, top panels), small circular high- or low-
value structures can be observed, with the measuring stations
at the centres, while in the area between stations the values
quickly tend to zero. In comparison, the SK (Fig. 4, middle
panels) yields structures of larger extent and more gradually
changing values. Also the value range of SK is smaller than
that of 2D-IDW, which can be attributed to the nugget effect
(i.e. non-explained variance in the short distances) and thus
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Figure 4. Maps of the interpolated residuals of RI (a, b), RK (c, d)
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Figure 5. Temperature map of July 2015 on basis of the linear regression. (a) Tiyin, (b) Tmax. Unit: °C.
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Figure 6. Temperature map of July 2015 on basis of RI (a, b), RK (¢, d) and R3D (e, f).

leads to stronger smoothing. The 3D-IDW (Fig. 4, bottom
panels) yields a larger value range and also smaller spatial
structures than SK, which tend to follow terrain structures
such as mountains and the coast line.

Examining the final interpolation results, linear regression
(Fig. 5) and RK (Fig. 6, middle panels) exhibit the least
small-scale variation, where temperature patterns follow the
continentality-index and the DEM. Some of these terrain fol-
lowing patterns may also be found in the RI-grids (Fig. 6,
top panels), however, the RI-based residuals maps contain
also some circular small-scale structures surrounding observ-
ing stations. R3D-based grids (Fig. 6, bottom panels) exhibit
some small-scale structures, however, they are mostly non-
circular and the station distribution is less evident. Overall,
the R3D method performed best in terms of RMSE, VARI

www.adv-sci-res.net/14/163/2017/

and visual inspection, and was thus chosen for the gridding
of the Tiin/Tmax maps over Southern Africa.

3.3 Application results

In this study, we generated a 0.22° gridded dataset of
monthly averaged daily maximum and minimum tempera-
ture covering the period September 2014—August 2016.

In this period, temperature values range from —3 to 41 °C
(Tmin between —3 and 26 °C, Tyhax between 16 and 41 °C).

Analysing the interpolation maps for T, (Fig. 7), the fol-
lowing structure is evident in most of the months: In the
southwest part of the study region (Namib dessert) the min-
imum temperatures are relatively low, while further north in
the coastal region of Angola the values are generally higher.
East of the Namib, there is a north—south oriented strip of rel-
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Figure 7. Minimum temperature maps on basis of three dimensional inverse distance weighting method from September 2014 until Au-
gust 2015. Unit: °C.
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atively high temperature, while in Angola the temperatures
are high along the coast, yet, just off the coast, temperatures
are considerably lower. Over the eastern part of the study re-
gion, temperatures are predominantly high.

In the maps of Tinax (Fig. 8) the cold Namib is also appar-
ent as well as the higher temperatures on the Angola coast.
In the north of Angola and Zambia the temperatures are quite
homogenous while further south is an evident seasonal pat-
tern with hot temperatures during the rainy season and cold
temperature during the dry season. In all maps it is evident
that some regions are still lacking ground based observation
data. Moreover, from August 2015 onwards no data were
available for east and north Angola. However, there was a
concurrent increase in the number of stations over Zambia,
which partly compensates the data decrease over Angola.

A general problem is the station data availability; to get
as reliable results as possible, we used all available data for
each month. Since several stations did not deliver data within
the whole period, we had to calculate the REM for each sin-
gle map. However, since the region is sparse in data, this
method was a compromise between data density and homo-
geneity over time. More stations, especially in Angola, and
a data transmission would improve the model outcome. Fur-
thermore, longer time series over a period of ten years are
required to evaluate the model results more robustly. Using
a multi model approach could improve the model result fur-
ther with regard to the seasonality of dry/wet seasons in the
region (e.g. Hofer et al., 2012). Our data set, therefore, en-
counters typical problems of gridded data (as widely docu-
mented in the literature) and, hence, information on the num-
ber of stations entering the gridding procedure is vital for the
user to assess the limitations for a specific place and time
(e.g. Mitchell and Jones, 2005). All data used in this publi-
cation are available at (http://www.sasscalweathernet.org).

4 Conclusions

A gridded dataset of monthly mean daily maximum (7ax)
and minimum (7p,,) temperature was developed for South-
ern Africa, covering the period September 2014 to Au-
gust 2016. Several interpolation methods and predictor sets
have been evaluated to determine R3D as the most suit-
able interpolation method for the study area. This dataset
has a spatial resolution of 0.22° and provides opportunity
for different kinds of applications, such as drought index,
heat stress maps and many more. Note that the length of the
dataset in this study is too short to provide climatological
statements. Overall the model performs well for Tp,ax, while
for Trin there are some patterns in the seasonal cycle where
the model performs poorer (May—August).

The splitting of the interpolation process using regression
combined with IDW increases robustness of the interpola-
tion, since the regression and IDW distance parameters can
be separately modified. Multi-dimensional IDW distance al-
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lows explicitly separating residuals in elevated areas from
those in valleys and depressions. Although several caveats re-
main, it was decided to use one model for the whole time pe-
riod to reduce the computational time (and therefore to make
later applications of the tool more feasible).

The topography of the regions is characterized mainly by
a flat area. Only at the Atlantic coast, the north of Angola
and the valley of the Sambesi River there are more complex
topological patterns. We assume that the results would not
improve significantly by using a more complex model.

In general the aim of this work was to implement simple
and easy to implement methods for temperature interpola-
tions, which require only station observations, geographical
coordinates, elevation and continentality — to provide an in-
terpolation tool for local meteorological services.

Further studies could show the information increase with
more complex models such as different model approaches for
seasons or non-Euclidean distance measures.

Also the splitting of the target area and the application of
a non-linear temperature profile would be of great benefit.
However, this is not feasible due to the low station density
and the under representation of elevated areas.

Data availability. The data used in this publication are available at
http://www.sasscalweathernet.org. All interpolated maps and resid-
ual maps are available as supplement to this publication.
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