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Abstract. In the frame of MEDSCOPE project, which mainly aims at improving predictability on seasonal
timescales over the Mediterranean area, a seasonal forecast empirical model making use of new predictors based
on a collection of targeted sensitivity experiments is being developed. Here, a first version of the model is pre-
sented. This version is based on multiple linear regression, using global climate indices (mainly global telecon-
nection patterns and indices based on sea surface temperatures, as well as sea-ice and snow cover) as predictors.
The model is implemented in a way that allows easy modifications to include new information from other pre-
dictors that will come as result of the ongoing sensitivity experiments within the project.

Given the big extension of the region under study, its high complexity (both in terms of orography and land-
sea distribution) and its location, different sub regions are affected by different drivers at different times. The
empirical model makes use of different sets of predictors for every season and every sub region. Starting from
a collection of 25 global climate indices, a few predictors are selected for every season and every sub region,
checking linear correlation between predictands (temperature and precipitation) and global indices up to one
year in advance and using moving averages from two to six months. Special attention has also been payed to
the selection of predictors in order to guaranty smooth transitions between neighbor sub regions and consecutive
seasons. The model runs a three-month forecast every month with a one-month lead time.

1 Introduction

Dynamical models for seasonal forecasting have noticeably
improved during the last decades mainly due to the advance,
both in the estimate of the atmospheric initial conditions as
well as the model physics supported further by computing
capabilities. However, they still show low skill over extrat-
ropical latitudes (Kim et al., 2012). The surroundings of the
Mediterranean Sea are specially affected by this low skill,
due either be to lack of predictability or to errors in fore-
casting systems, being exacerbated by its complex orogra-
phy and land-ocean distribution (Weisheimer et al., 2011;
Doblas-Reyes et al., 2013). Besides, the Mediterranean re-
gion is located in a transition zone between the arid belt
of Northern Africa and the temperate zones over Europe.
Another distinctive feature is the type of precipitation: over

most of the domain, a high fraction of annual precipitation
is convective, implying high spatial and temporal variabil-
ity. The average expected precipitation for a three months
period can be reached in one single day for particularly in-
tense events (Toreti et al., 2010). In this context, the Mediter-
ranean Services Chain based On Climate PrEdictions (MED-
SCOPE) project (see https://www.medscope-project.eu, last
access: 19 August 2019) and others, developed under initia-
tives like the European Research Area for Climate Services
(ERA4CS) (see http://www.jpi-climate.eu/ERA4CS, last ac-
cess: 19 August 2019) aim at improving Climate Services
over this region, searching for new sources of predictabil-
ity and developing different tools and products. In particular,
one of the MEDSCOPE work packages consists of a col-
lection of sensitivity experiments designed to explore new
sources of predictability that may lead to improvements in
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our understanding of mechanisms and processes involved at
seasonal timescales. As result of the sensitivity experiments
conducted within the MEDSCOPE project, new specific pre-
dictors will be proposed for the Mediterranean region. A by-
product of this exploration will be the development of an em-
pirical seasonal forecasting system bringing together predic-
tors coming from new sources of predictability unveiled by
the sensitivity experiments.

Choosing the model

Here we present a preliminary (beta) version of the empir-
ical seasonal forecasting system. The purpose of this beta
version is twofold: first, establish a reference version based
on standard predictors making use of known sources of pre-
dictability and, second, compare its skill over the Mediter-
ranean with the state-of-the-art dynamical systems. Results
coming from ongoing work within the project providing new
specific predictors for the Mediterranean region can be eas-
ily added to this preliminary version. The skill of the new
system will be evaluated with respect to this reference ver-
sion. Eden et al. (2015) developed a global empirical sea-
sonal forecasting system based on Multi Linear Regression
(MLR), using a few global climate indices as predictors, and
producing a probabilistic output using the residuals from re-
gression. This system shows ability to produce skilful fore-
casts over several world regions, despite the reduced number
of predictors used. Wang et al. (2017) showed, using MLR
too, that a careful selection of predictors can produce skilful
prediction of winter NAO.

The beta version of the empirical seasonal forecasting sys-
tem here described follows the same procedure based on
MLR suggested by these two studies as this kind of mod-
els only requires very modest computing resources and has
the additional advantage of being easy to modify. The second
version of the empirical seasonal forecasting system, incor-
porating results from MEDSCOPE project findings, will be
developed and evaluated in the second part of the project.

2 Methodology

2.1 Division in sub regions

Given the extension of the Mediterranean domain, its great
complexity (both orographic and land-ocean distribution),
and location, sub regions within the domain are affected by
different factors at different times of the year. In order to im-
prove the skill of the system, the empirical model will use
different sets of predictors for every climatologically homo-
geneous defined sub region within the Mediterranean domain
and every season. Selection of predictors, from the pool listed
in Table 1, is based on their high correlation with precipita-
tion over large areas within the sub region and for each par-
ticular season. One issue with this type of models where pre-
dictors may change spatially is the extreme noisiness of the

Figure 1. Domains for predictor’s selection proposed in this study.
First three Empirical Orthogonal Functions (EOFs) of annual pre-
cipitation (GPCCv7 data) over Mediterranean domain are repre-
sented as background.

forecasts showing very different results for neighbour grid
points. For example, probability values for lower tercile over
a grid point in southwestern Turkey are calculated for 2018
FMA using 2 different sets of predictors (Table S1 in the
Supplement, row FMA, columns Turkey and East Mediter-
ranean), obtaining 61 % and 37 %. As a compromise between
selecting the best predictors for every point and forecasting
smooth synoptic scale anomaly patterns, the domain is di-
vided in sub regions (see Table 3), and a subset of predictors
from the pool (see Table 1) will be selected for each one of
them as a whole. To avoid abrupt transitions in space and
time, predictors will be restricted to partially match among
neighbour sub regions and consecutive seasons (for exam-
ple, January–March and February–April). To further smooth
out transitions among sub regions, they have been defined
with a high amount of overlap. Those grid points belonging
to more than one sub region will be assigned a weighted aver-
age from values from different sub regions, based on distance
to respective borders.
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Table 1. List of the initial pool of predictors (25) (and their incremental values) based on atmospheric (A), oceanic (O) climate variability
indices and snow cover (S). Definition and data are available at the indicated webs.

Abs. Incr. Predictor Type Reference
value value

1 26 AAO A http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/aao/monthly.aao.index.b79.
current.ascii (last access: 19 August 2019)

2 27 AO A http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/monthly.ao.index.b50.current.
ascii (last access: 19 August 2019)

3 28 NAO A https://climexp.knmi.nl/data/icpc_nao.nc (last access: 19 August 2019)
4 29 EA A http://climexp.knmi.nl/data/icpc_ea.nc (last access: 19 August 2019)
5 30 EA/WR A https://climexp.knmi.nl/data/icpc_ea_wr_a.txt.nc (last access: 19 August 2019)
6 31 Scand A https://climexp.knmi.nl/data/icpc_sca_a.txt.nc (last access: 19 August 2019)
7 32 SAM A http://www.nerc-bas.ac.uk/public/icd/gjma/newsam.1957.2007.txt (last access: 19 August 2019)
8 33 WP A https://www.esrl.noaa.gov/psd/data/correlation/wp.data (last access: 19 August 2019)
9 34 PDO O https://www.ncdc.noaa.gov/teleconnections/pdo/data.csv (last access: 19 August 2019)
10 35 MEI A/O https://climexp.knmi.nl/data/imei.nc (last access: 19 August 2019)
11 36 SOI A http://www.cpc.ncep.noaa.gov/data/indices/soi (last access: 19 August 2019)
12 37 Niño 1+ 2 O https://www.esrl.noaa.gov/psd/data/correlation/nina1.data (last access: 19 August 2019)
13 38 Niño 3.4 O https://www.esrl.noaa.gov/psd/data/correlation/nina34.data (last access: 19 August 2019)
14 39 Niño 3 O https://www.esrl.noaa.gov/psd/data/correlation/nina3.data (last access: 19 August 2019)
15 40 Niño 4 O https://www.esrl.noaa.gov/psd/data/correlation/nina4.data (last access: 19 August 2019)
16 41 Pacific eq. heat O https://climexp.knmi.nl/data/icpc_eq_heat300.nc (last access: 19 August 2019)
17 42 Eurasian Sn S https://climate.rutgers.edu/snowcover/files/moncov.eurasia.txt (last access: 19 August 2019)
18 43 NAmerican.Sn S https://climate.rutgers.edu/snowcover/files/moncov.namgnld.txt (last access: 19 August 2019)
19 44 NH Sn S https://climate.rutgers.edu/snowcover/files/moncov.nhland.txt (last access: 19 August 2019)
20 45 DMI O https://climexp.knmi.nl/data/idmi_ersst_a.txt.nc (last access: 19 August 2019)
21 46 SETIO O https://climexp.knmi.nl/data/iseio_ersst_a.txt.nc (last access: 19 August 2019)
22 47 TNA O https://www.esrl.noaa.gov/psd/data/correlation/tna.data (last access: 19 August 2019)
23 48 TSA O https://www.esrl.noaa.gov/psd/data/correlation/tsa.data (last access: 19 August 2019)
24 49 TASI∗ O https://climexp.knmi.nl/NCDCData/ersstv4.nc (last access: 19 August 2019)
25 50 WHWP O https://www.esrl.noaa.gov/psd/data/correlation/whwp.data (last access: 19 August 2019)

∗ Calculated from https://climexp.knmi.nl/NCDCData/ersstv4.nc (last access: 19 August 2019) as defined at https://stateoftheocean.osmc.noaa.gov/sur/atl/tasi.php
(last access: 19 August 2019).

In short, sub regions have been defined seeking a compro-
mise between encompassing main land areas and countries
(adding an overlap area among them) and climatological ho-
mogeneity. In order to meet this last feature, empirical or-
thogonal functions (EOFs) for yearly precipitation have been
calculated and their patterns taken into account for defining
sub regions. Figure 1 depicts these three EOFs with chosen
sub regions superimposed. Table S1 provides the exact defi-
nition of 5 sub-regions employed.

2.2 Choosing predictands

As we intend to deliver synoptic scale anomaly patterns, low-
resolution predictands will be selected for this beta version
of the system. Precipitation data from the Global Prediction
Climate Centre (GPCC) dataset (Schneider et al., 2017) will
be used (2.5◦ version). Data consist of a blend of GPCC v7
(until 2013) and its monitoring (v5) from 2014 onwards. Sur-
face temperature is obtained from the ERA-interim reanaly-
sis (Dee et al., 2011). The period selected is 1979–2016. In
both cases, predictands will consist of the three months av-
erage for every season and grid point. The empirical model
runs every month with one-month lead time, i.e., computing

a forecast for the following season (3 months) and for both
predictands. For example, in January, the forecast will be cal-
culated for February–March–April.

2.3 Exploration of predictors

This beta version of the empirical model makes use of global
climate indices provided by external sources. The initial pool
of predictors includes 25 monthly time series of indices asso-
ciated to atmospheric and oceanic climate variability indices,
ocean heat content and snow cover (see Table 1). Addition-
ally, for each index, a new monthly time series is generated
calculating the incremental value from the previous month
(e.g., February incremental value would be February minus
January). The purpose of such incremental series is try to find
additional sources of predictability by analysing if a rapid
change in the state of a certain indicator could be linked to
anomalous atmospheric circulation. Before exploring these
50 indices (25 climate indices plus their 25 incremental se-
ries), moving averages from 2 to 6 months are applied, to
better capture mechanisms from different time scales.

The selection process of predictors for each sub region
starts by the computation for each season of the correlation
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Table 2. Percentage of grid points showing significant correlation [for p-value≤ 0.10] between Dipole Mode Index (DMI) (and its incre-
mental values) and January–March and February–April precipitation (GPCCv7). Table explores different moving averages (up to 6 months)
and lead-months for predictors (up to 10 months). Bold numbers correspond to percentages higher than 30 %, and italic higher than 20 %.

JFM FMA

Moving −2 −3 −4 −5 −6 −7 −8 −9 −10 −2 −3 −4 −5 −6 −7 −8 −9 −10
average/
lead

1M 12 18 12 24 3 3 6 0 12 0 15 18 18 27 18 6 9
2M 0 18 18 18 24 6 6 0 3 0 9 18 15 30 21 15 3

DMI 3M 0 0 24 24 24 15 9 0 0 0 0 15 15 18 21 21 9
4M 0 0 0 24 27 18 12 3 0 0 0 0 15 18 21 21 15 3
5M 0 0 0 0 30 18 18 9 0 0 0 0 0 18 18 21 24 18
6M 0 0 0 0 0 27 21 18 6 0 0 0 0 0 18 18 18 21

1M 9 9 0 15 12 0 12 9 9 18 0 12 3 9 0 21 6 3
2M 0 6 0 0 27 3 6 21 6 0 18 0 15 3 24 15 3 15

incr_DMI 3M 0 0 12 3 0 12 6 12 18 0 0 15 3 0 12 42 0 3
4M 0 0 0 0 15 3 18 18 9 0 0 0 24 0 3 21 15 6
5M 0 0 0 0 12 9 9 33 15 0 0 0 0 6 0 12 3 12
6M 0 0 0 0 0 12 18 15 27 0 0 0 0 0 3 6 15 12

coefficient between predictand and predictors from the pool
applying different lead times (from 1 to 12 months). Cor-
relation is also computed for six different options of mov-
ing average (up to 6 months). So, for a particular grid point,
predictor and season, a collection of correlation coefficient
values will be obtained. A predictor is finally selected con-
sidering the percentage of grid points with significant (for
p-value≤ 0.10) correlation. As an example, Table 2 shows
percentage of points with significant correlation for the pre-
dictor DMI for different lead times and moving averages.

Bearing in mind the known relative low predictability, and
consequently skill, for the studied area, this procedure will
try to unveil the best possible signal that a predictor from
the pool can offer playing with different lead times and mov-
ing averages. Considering correlation data from the different
predictors in Table 1, and applying constrains for the sake
of continuity among regions, a set of predictors is finally se-
lected for every region (see Table S1).

2.4 Running the model

The model makes use of multiple linear regression (MLR),
as described in Wilks (2006), over every grid point, using the
set of predictors selected for each specific sub region. Trend
is removed before calculating regression and then added to
regression results. In order to express the forecast in proba-
bilistic terms, first, terciles are calculated for predictands at
every grid point. Then, probabilities are assigned to every
tercile, using a normal distribution, centred in the determin-
istic output of the MLR and using information from resid-
uals to adjust its width. This distribution represents the ex-
pected probability density function (pdf) for the forecasted
predictand value. The computation of the area below this
curve and between observed terciles provides the probabil-

ity of the forecasted value to be in every one of them (Eden
et al., 2015).

This procedure requires predictands to adjust to a normal
distribution. As this is not the case with precipitation, square
root is previously applied over this predictand, to transform
it into a normal-like distribution (Pasqui et al., 2007). Addi-
tionally, the system performs a series of checks to ensure that
certain required assumptions are met, such as: no collinearity
among predictors, no overfitting, residuals are normally dis-
tributed and homoscedastic and do not show autocorrelation.

2.5 Verification of results

The performance of the empirical model is assessed by veri-
fying against observational grids for a hindcast calculated for
the period 1983–2014. Additionally, the verification scores
computed for the empirical system are compared with those
of some state-of-art seasonal forecasting systems based on
dynamical models for a common hindcast period to check the
possible benefit of the empirical method here described. Re-
gression is trained for same period, using “Leave-One-Out”
technique (Wilks, 2006), excluding a total of 5 years from the
series (two before and two after the year we are forecasting)
to avoid possible autocorrelation (Breusch, 1978 and God-
frey, 1978). Section 3.3 describes several verification indices
calculated for this version of the empirical system, and their
comparison with the corresponding indices calculated from
dynamical models.
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Figure 2. Example of precipitation forecasts. Probability for the
most likely tercile is shown at every grid point. Green (orange) cor-
responds to upper (lower) tercile.

3 Results

3.1 Precipitation and temperature forecasts

Figure 2 shows a few examples of forecasts maps for precip-
itation. Although some noisy features can still be seen over
certain areas, mainly Egypt and Arabian Peninsula, observed
patterns are synoptic scale and continuous, generally speak-
ing. Borders between sub regions are not evident, either, so
forecast maps are reasonably shaped, and defined sub regions
and proposed constraints for predictors seem to work well
(all this set up were imposed to produce smooth synoptic
scale anomaly patterns) This particular example corresponds
for the 1-month lead time 2014 DJF and JAS forecast, and
anomaly patterns resemble in terms of structures and spa-
tial variability those shown by dynamical models. In order to
compare results, the empirical model is also run using tem-
perature as predictand and using the same predictors as for
precipitation, under the assumption that same anomalous cir-
culation captured by these predictors can affect to tempera-
ture as well. Results can be seen in Fig. 3. The same conclu-
sions about the forecasts appearance also applies for temper-
ature.

Figure 3. Example of temperature forecasts. Probability for the
most likely tercile is shown at every grid point. Red (blue) corre-
sponds to upper (lower) tercile.

3.2 Verification

Verification scores are computed and visualized following
(Sánchez-García et al., 2018). For every predictand (temper-
ature and precipitation), season, score and verifying sub re-
gion, results from a selection of seasonal forecasting systems
based on dynamical models and the empirical system are put
together in a table for easy comparison.

The dynamical models and versions used for this compar-
ison were operational when this project started (2017) and
are the following: ECMWF system 4, Météo-France sys-
tem 5, Met-Office system 9 (GloSea5), National Center for
Enviromental Prediction (NCEP) system version 2, Canadian
Seasonal to Inter-annual Prediction System (CanSIPS) and
Japanese Seasonal Forecasting System 2. Both probabilistic
and deterministic scores have been computed for dynamical
models and the empirical system: Ranked Probability Skill
Score (RPSS), Relative Operating Characteristic (ROC) area
and Brier Skill Score (BSS), for upper and lower tercile prob-
abilities and anomaly correlation. Statistical significance of
all computed scores has been quantified by the p-value es-
timated using a bootstrapping non-parametric method (see
details in Wilks, 2006).

www.adv-sci-res.net/16/191/2019/ Adv. Sci. Res., 16, 191–199, 2019
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Table 3. Sub regions used in the seasonal forecasting empirical system.

Sub region Min longitude Max longitude Min latitude Max latitude
(degrees east) (degrees east) (degrees north) (degrees north)

Iberia −10 7.5 32.5 47.5
France −10 12.5 42.5 55
Morocco −20 0 17.5 37.5
Algeria-Tunisia −5 12.5 17.5 37.5
Libya 7.5 50 17.5 37.5
Italy 2.5 20 32.5 47.5
Balkans 12.5 30 32.5 47.5
Turkey 25 50 32.5 42.5
Eastern Mediterranean 20 40 27.5 37.5
Eastern Europe 15 50 37.5 55
Central Europe 2.5 20 47.5 62.5

To compare the skill of this first version of the empirical
model against this selection of dynamical models is neces-
sary to choose a common period of hindcast data, to ensure
that differences in scores are not attributable to changes in
predictability over the years. So, although hindcast for the
empirical system is available for a longer period, skill is
evaluated for the common period 1997–2009. Table 4 shows
some examples for the scores anomaly correlation, RPSS
and ROC area (lower and upper tercile) computed for pre-
cipitation over France and for temperature over the Eastern
Mediterranean region. For these particular areas, the empir-
ical system performs especially well. Generally speaking,
precipitation scores for the empirical system are better than
for dynamical models. Temperature scores are roughly the
same level for dynamical models and empirical system. Ad-
ditionally to tables for specific sub regions, Fig. 4 depicts
some examples of anomaly correlation maps for precipita-
tion calculated for 1983–2014 and for autumn (SON) and
spring (MAM) seasons. Certain areas like northern France,
Benelux, parts of Germany or Morocco, large areas of East-
ern Mediterranean and west of Black Sea show good corre-
lation with observations for these particular two examples.
However, other places, e.g., most of Iberian Peninsula and
Italy, most of the Eastern part of the domain for SON and
large parts of Northern Africa for MAM, hardly show any.
The relatively high skill reached over some regions show the
potential of the empirical system. As there is still room for
improvement, additional efforts should focus on the identi-
fication of good predictors for large areas still showing low
skill.

4 Conclusions

Major research and climate services initiatives support ad-
vances in seasonal forecasting. In the frame of MEDSCOPE
project, we present here a beta version of a seasonal forecast
empirical system intended as reference version using as pre-
dictors mainly well-known climate variability indices. Next

Figure 4. Anomaly correlation between empirical model forecasts
and observed precipitation (GPCCv7) for autumn (SON) (a) and
spring (MAM). The hindcast period covers 1983–2014.

version will add new predictors based on a collection of tar-
geted sensitivity experiments – conducted also in the frame
of the MEDSCOPE Project – for exploring predictability
over the Mediterranean region. The proposed system is valu-
able as a starting point, and the addition of new predictors
resulting from targeted experiments will be rather straight-
forward. Bearing this in mind, the code has been designed in
such a way to facilitate both either modification or incorpo-
ration of new predictors.
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Table 4. (a) Selection of verification scores (anomaly correlation coefficient (upper left), Ranked Probability Skill Score (RPSS) (upper right),
and Relative Operating Characteristic area (ROC Area) for lower/upper tercile (bottom left/right) for seasonal forecasted precipitation over
France (41–52◦ N, 6.4◦W–10◦ E). Every table contains information of an individual verification score, representing each cell the average
value of the corresponding score over the selected verification domain (France) for a particular model (y-axis) and 1-month lead time
forecasted season (x-axis). The uppermost row in all tables corresponds to the empirical seasonal forecasting system. GPCC precipitation data
are used as verifying observations. Statistical significance of all computed scores has been quantified by the p-value [(∗) for p-value≤ 0.05;
(#) for 0.05< p-value≤ 0.1] estimated using a bootstrapping non-parametric method (Wilks, 2006). (b) Same as Table 3 but for temperature,
East Mediterranean (20–40◦ N, 27.5–62.5◦ E) domain and ERA-Interim temperature for verifying observations.

As indicated earlier, the nature and appearance of spatial
patterns observed on the forecasts seems to fulfil the origi-
nal aim of producing both synoptic scale structures and con-
tinuity among regions. Furthermore, as we have discussed,
this beta version has also some merit in itself – not only
as a reference version to check the improvements of fur-
ther developments – as it performs better than state-of-the-
art seasonal forecasting systems based on dynamical models
for certain seasons and over certain regions. Nevertheless,
with regard to other regions, skill is still poor and comparable
or below dynamical models. Plausible causes for this result
may be attributed to the fact that selection of predictors was
made subjectively and only for precipitation. Besides, selec-

tion was based in linear correlation between predictors and
accumulated precipitation, whereas the model uses its square
root. Another possible cause explaining low performance is
related with the procedure for selection of predictors, as it
checks the percentage of points showing some signal within
a region, but does not take into account where that signal
is: it may be possible that all predictors show signal over the
same part of the region, and at the same time, it may not exist
any good predictor for other parts. Next version of the sys-
tem will implement an automatic procedure for selection of
predictors, and efforts will focus on developing an objective
procedure that cover the issues above described.

www.adv-sci-res.net/16/191/2019/ Adv. Sci. Res., 16, 191–199, 2019
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Table 4. Continued.

On the other hand, the fact that selected predictors for
temperature are the same than for precipitation is a serious
limitation of the empirical model. We expect better results
when making an independent selection of proper predictors
for this predictand. Nevertheless, present results are encour-
aging, with scores being roughly at the same level as for dy-
namical models. In any case, using the same predictors for
temperature and precipitation makes easier to analyse circu-
lation anomalies for the incoming season and its physical in-
terpretation.

Therefore, this first version of the model shows relatively
good results and at least of similar skill as dynamical models.
Improvements currently being developed and planned for the
empirical system and the expected new specific predictors
from MEDSCOPE will be implemented in the next version
of the system. The new version is expected to be an additional
and reliable source of information to be used in combination
with dynamical models and aiming at improving the skill of
seasonal forecasts over the Mediterranean region.
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