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Abstract. Windstorms are natural disturbance agents in forests playing a role in natural forest regeneration. In
Finland, the most severe individual windstorms have commonly damaged 2–4 million m3 of timber. In addition
to financial losses caused to forest owners, windthrown trees have in many cases seriously disrupted the func-
tionality of the national power grid. Communicating windstorm risks in duty forecasting is difficult. In this study,
we aimed at developing windstorm impact estimates for forest damage in Finland to help the forecaster to im-
prove communication of the risks of windstorms. We have compared the volume of forest damage caused by the
most intense windstorms in Finland during the recent decade to the observed maximum inland wind gust speeds
associated with the same windstorms. It was found out that the volume of forest damage follows approximately
a power relation as a function of wind gust speed with a power of ∼ 10. This is a tentative estimate because of
a short time series and small number of inspected windstorms. Moreover, also wind direction, location of the
affected area and soil properties among other factors have an impact to the amount of damage as illustrated in our
inspection. Despite the shortness of the time series, we believe that our results demonstrating the steep increase
in the impacts of windstorms with an increasing windstorm intensity are valuable. However, more detailed in-
vestigations with longer time series are needed in order to more specifically communicate the windstorm risks
and their impacts in boreal forests.

1 Introduction

Windstorms are among the most hazardous abiotic distur-
bances affecting the northern European forests (Schelhaas
et al., 2003; Kuuluvainen and Aakala, 2011; Mitchell, 2012;
Gardiner et al., 2013; Gregow et al., 2017). Largest forest
damage have been proven to occur when forests are impacted
by wind gust speeds that exceed 35 m s−1 (e.g., Usbeck et al.,
2010a; Gardiner et al., 2013). Recently, it was argued that
year 1990 represents a change-point after which the wind-
storm induced large-scale forest damage have increased by a
factor of three in Europe (Gregow et al., 2017).

In Finland, approximately 10–25 large scale windstorms
occur every year but usually only a few of them are se-
vere. The Finnish forests are especially affected by southerly,
south-westerly and westerly winds, and in the central and
eastern parts also north-westerly winds are common (e.g.,
Gregow et al., 2011). The most severe wind damage to forests
have occurred during periods when there has not been soil

frost inhibiting damage (e.g., Jokinen et al., 2015). Typical
to the most severe large-scale storms in Finland is that the
mean wind speeds over the marine and coastal stations have
been above 25 m s−1 (Gregow et al., 2008).

The mechanistic impact models such as HWIND (Peltola
et al., 1999) and GALES/Forest-GALES (Gardiner et al.,
2000) have been used in assessing wind risk to forests in
Finland. The model simulations indicate that trees approx-
imately 20 m tall can be uprooted already if 10 min mean
wind speeds are between 15–25 m s−1 (e.g., Zubizarreta-
Gerendiain et al., 2012). Thus, Finland is rather vulnerable
to severe windstorms. In addition to financial losses caused
to forest owners, windstorms and windthrown trees have dis-
turbed seriously the functionality of the national power grid
(Pilli-Sihvola et al., 2016, p. 12). Efficient adaptation to wind
damage obligate adequate preparedness measures by the so-
ciety (Nurmi et al., 2019).
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Table 1. The most notable large-scale windstorms in Finland during the 2010s with their maximum observed wind gust speed at inland
stations (excluding fell stations) operated by the FMI. The column for wind direction describes the directions of strongest winds associated
with the storms.

Wind- Date Area affected WGmax Wind Forest Other remarks
storm (m s−1) direction damage

(106 m3)

Rauli 27 August 2016 Central Finland 24.9 W 0.15 Summertime event
Valio 2–3 October 2015 Central Finland 27.6 W 0.8
Lyyli 23 May 2015 Northern Finland 28.1 S . . . W 0.14 Summertime event
Seija 13 December 2013 Southwestern Finland 29.8 W . . . NW 1.0 Soil partly frozen
Oskari 1–2 December 2013 Southwestern Finland 26.4 NW 0.6
Eino 17 November 2013 Central Finland 29.2 W . . . NW 1.5
Antti 30 November 2012 Southern Finland 23.1 E 0.3 Rare wind direction
Hannu 27 December 2011 Eastern Finland 26.7 W . . . NW 0.5
Tapani 26 December 2011 Western and Southwestern Finland 31.5 W 3.0

Communicating windstorm risks and their impacts to the
public and authorities by the weather forecasters is be-
coming increasingly important. Already Stern (2006) and
Sills (2009) have foreseen the role of future forecasters to be
focused on communicating effectively the predicted impacts
of hazardous weather events. Traditionally, in operational
safety weather services, warnings concerning windstorms
and other weather hazards are issued based on the intensity of
the forecasted phenomenon, e.g., based on wind speed. This
is not sufficient, as an accurate and timely warning does not
necessarily prevent major economic disruption or even guar-
antee safety of life (WMO, 2015). When the status of adap-
tation to climatic risks in Finland was recently mapped (Gre-
gow et al., 2016), one of the key findings was that actionable
impact-based predictions and warnings should be developed
and be available. As well, the uncertainties and likelihood of
the severe impacts should be communicated (Harjanne et al.,
2017). Developing impact estimates to improve communica-
tion and as well, in order to concretize the windstorm risks to
the society is thus considered extremely vital.

In this study, we developed windstorm impact estimates
for forest damage in Finland. We first compare the amount of
reported forest damage (in cubic meters of timber) to the ob-
served maximum wind gust speeds associated with the most
notable synoptic scale non-convective windstorms in Finland
during the recent decade. We use the maximum wind gust
speed as it is known that forest damage due to windstorms is
best correlated with peak wind speed (Usbeck et al., 2010b).
We also consider wind direction and soil conditions in our
assessments. We believe that our findings can be valuable for
the weather forecasters when they estimate and communi-
cate the anticipated impacts of windstorms in Finland e.g. to
power companies and forest authorities and owners.

2 Material and methods

In this study we use information from the Finnish For-
est Centre, the Finnish Meteorological Institute (FMI) and
the European Centre for Medium-Range Weather Forecasts
(ECMWF). The number of damaged volume of timber in cu-
bic meters (m3) was obtained from the Finnish Forest Cen-
tre. The maximum 3 s wind gust speeds (WGmax) are from
the weather stations operated by FMI. Each large-scale wind-
storm was analysed using the WGmax observed at any inland
weather station. With an inland station we refer to all the sta-
tions neither located immediately adjacent to the sea nor on
fell tops in Lapland. We visualized the storm tracks by em-
ploying the ERA5 reanalysis which has 1-hourly output with
a horizontal resolution of 31 km (Hersbach and Dee, 2016).
The positions of cyclone centres and thus tracks were plotted
by using the latitude and longitude coordinates of the mini-
mum mean sea level pressure associated with the cyclones.
The tracks are plotted 12 h before and after the time step
when the cyclone centre reached Finland.

The inspected windstorms are listed in Table 1. Those are
the most severe non-convective synoptic scale windstorms
impacted Finland during the 2010s. We did not include wind-
storms prior to 2010 into our analysis because the observa-
tion network for wind gust speeds was earlier sparser. More-
over, information regarding the forest damage was not read-
ily available for all of the elder windstorms. As discussed in
the next section, six of the nine inspected windstorms, named
Valio, Oskari, Eino, Tapani, Hannu and Rauli had similar
characteristics. These windstorms were thus selected to rep-
resent typical windstorms affecting Finland and they were
used when forming the regression estimate between WGmax
and forest damage.

By employing WGmax and the known volume of forest
damage (FD) (m3) caused by each of the six windstorms in
Finland, a power relation was formed:

FD= a ·WGmaxb, (1)
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Figure 1. Storm tracks for the six typical windstorms affected Finland during the 2010s.

Table 2. Volume of forest damage as a function of maximum wind gust speed (WGmax) according to Eq. (1).

WGmax (m s−1) Volume of Volume of Verbal description of impacts
at inland forest damage forest damage
stations (m3) (m3) per 100 ha

15 1800 <0.04 Individual fallen trees
16 3400 <0.07
17 6200 0.12
18 11 000 0.22 Local power outages possible
19 19 000 0.38
20 32 000 0.64 A few hundreds customers without electricity
21 52 000 1.0
22 83 000 1.7
23 130 000 2.6 A few thousands customers without electricity
24 200 000 4.0
25 300 000 6.0
26 440 000 8.8 Tens of thousands customers without electricity
27 640 000 13
28 930 000 19
29 1 300 000 26 Substantial forest damage in localized areas
30 1 900 000 38
31 2 600 000 52
32 3 500 000 70
33 4 800 000 96 Hundreds of thousands customers without electricity
34 6 500 000 130
35 8 700 000 170
36 11 500 000 230
37 15 000 000 300 Substantial forest damage in wide areas
38 20 000 000 400
39 26 000 000 520
40 33 000 000 660 Widespread havoc in forests
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Figure 2. The maximum wind gust speed (m s−1) observed at the stations operated by the FMI (coastal and fell stations included) associated
with the six large-scale windstorms during the 2010s.

Here WGmax is in m s−1, a = (2.858± 14.58)× 10−15 and
b = 10.03± 1.49. The parameters a and b with their 95 %
confidence intervals were estimated by using the R pack-
age nlstools (Baty et al., 2015). We moreover estimated
the volume of forest damage per 100 hectares by assuming
that the damaged area has a spatial extent of approximately
50 000 km2.

3 Results

When considering the nine windstorms presented in Ta-
ble 1, it can be noted that six of them (Valio, Oskari, Eino,
Tapani, Hannu and Rauli) had similar characteristics. Firstly,
these storms developed over the North Atlantic and their
low-pressure centres propagated across central parts (63–
65◦ N) of Finland to Russia (Fig. 1). Hence, the storms im-
pacted southern and central parts of country (Fig. 2) and
the strongest winds associated with these storms blew from

west or northwest. Moreover, they occurred when soil was
not frozen. Windstorm Rauli (27 August 2016) occurred in
late summer when deciduous trees had their leaves and it im-
pacted a slightly different region with strongest winds con-
centrated on the coast of Bothnian Bay. Rest of these six
windstorms occurred between October and December. Storm
Antti (30 November 2012) was different from the six storms
having easterly blowing winds. Storm Lyyli on the other
hand (23 May 2015) only impacted Northern Finland. Lastly,
during storm Seija (13 December 2013) soil was already
partly frozen and thus there was already some anchorage to
the trees and they were locally less easily uprooted.

In Fig. 3 we show the volume of forest damage as a func-
tion of observed WGmax for the inspected windstorms. The
volume of forest damage estimated by the Eq. (1) is also
shown. The expected volumes of forest damage caused by
typical windstorms according to Eq. (1) are also given in
Table 2 with short verbal description of impacts. Accord-
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Figure 3. The volume of forest damage as a function of maximum
observed wind gust speed for the windstorms during the 2010s in
Table 1 and including also the windstorms Janika and Pyry. The
black curve depicts the best estimate for the power relation between
the maximum wind gust speed and forest damage for typical wind-
storms (open squares). Windstorm Antti with rare wind direction
(easterly) is shown with a red square, windstorm Seija with partly
frozen ground with a blue square and windstorm Lyyli that raged in
Northern Finland with an orange square.

ing to Eq. (1), a 10 % increase in the WGmax leads to al-
most three times larger forest damage. Local power outages
due to windthrown trees are expected when the highest wind
gust speeds approach 20 m s−1. When the WGmax exceeds
25 m s−1, already tens of thousands of customers are likely
to be left without electricity. Substantial damage is expected
with WGmax above 30 m s−1.

The power relation was obtained by employing the for-
est damage and WGmax of the six large-scale windstorms
in Finland. The power relation explains the damage caused
by the typical windstorms when the WGmax varies approx-
imately between 25 and 32 m s−1. A post analysis indicates
that the weakest windstorm Rauli is poorly estimated by the
power relation. The true value of forest damage caused by
Rauli was only 0.15 Mm3 but the power relation gave an
estimate of 0.5 Mm3. In case of the three storms that were
not considered as typical windstorms and were thus not in-
cluded in fitting the power relation, the forest damage could
not be estimated based on the power relation. In the case of
Seija storm, the observed damage (Table 1) were only half of
those given by Eq. (1) (Fig. 3). This was assumedly because
soil was already partly frozen in the affected area. Windstorm
Lyyli that raged in northern Finland damaged only 0.14 Mm3

of timber but the estimate based on Eq. (1) would have been

almost one million m3. Windstorm Antti having a rare east-
erly wind direction, on the other hand, caused three times
larger damage than estimated based on Eq. (1).

4 Discussion and conclusions

Our results show that the volume of wind-induced forest
damage in Finland can conditionally be estimated based on
a simple power relation as a function of WGmax. The power
relation is applicable for large-scale windstorms that affect
southern, western and eastern parts of Finland when: (1) the
wind direction is between west and northwest, (2) the WG-
max ranges between 25–32 m s−1, (3) the soil is not frozen,
and (4) the deciduous trees are without leaves. Additionally,
the centres of the large-scale storms usually travel across
northern or central parts of Finland approximately between
63–65◦ N. With these conditions, the power relation gives
reasonable estimates for the likely volume of forest damage
in southern or central parts of Finland. On the other hand,
it is likely that rare wind direction, i.e., easterly or northerly,
substantially increases the forest damage. This is presumably
because south to north-westerly winds are most common in
Finland and the root systems of the trees have adapted to this
typical wind direction (e.g., Nicoll and Ray, 1996). Northerly
and easterly winds on the other hand uproot the trees more
easily as the root systems on the easterly to northerly sides
of the trees are weaker.

The power relation of this paper was derived for Finnish
conditions. Using this power relation and historical wind-
storms of the neighbouring countries, the potential dam-
age of similar storms in Finland can be estimated. For in-
stance, in Sweden the most devastating windstorm Gudrun
(9 January 2005), damaged approximately 70 million m3 of
wood (Holmberg, 2005; Bengtsson and Nilsson, 2007; Gre-
gow, 2013). The measured WGmax during Gudrun was 36–
42 m s−1 in coastal regions of southern Sweden and slightly
above 35 m s−1 in some inland locations (Holmberg, 2005).
If a storm like Gudrun would arrive to Finland, the damage
would thus be very high. With the range of wind gust speeds
36–42 m s−1 the damage would correspond to 10–55 Mm3

based on the power relation. Thus, if a storm is forecasted
with probabilities for this range of wind gust speeds, we
can also give an estimate of the danger it would imply to
our forests. And if the highest wind speeds (42 m s−1) are
only occurring over the sea, we can pick the highest wind
gust speeds that most probably occur over the land, and give
a corresponding estimate for the most likely windstorm in-
duced forest damage risk. This kind of communication would
also prepare the society to facing the risks and the uncer-
tainty range in a more concrete manner as was desired by the
Finnish authorities in support of adaptation planning (Har-
janne et al., 2017).

It is unclear whether the power relation of Eq. (1) can
be extrapolated to more intense windstorms with the maxi-
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mum wind gust speeds above 32 m s−1, like for the storms
comparable to intensities of storm Gudrun. Probably over a
certain limit, the volume of forest damage approaches some
saturation level and thus a sigmoid function could better de-
scribe the relationship between maximum wind gust speed
and damage to forests. Moreover, other additional factors
are likely to contribute to the amount of forest damage.
For instance, soil moisture is known to affect to the dam-
age (e.g., Kamimura et al., 2012). Forests are most prone
to wind damage when soil is wet and unfrozen (Usbeck et
al., 2010a). This is the situation typically in Finland in late
autumn and early winter when most of severe windstorms
occur. Notwithstanding, our results indicate that a 10 % in-
crease in wind gust speed leads to almost three times larger
forest damage if other conditions remain similar. Moreover,
it seems that in northern Finland the volume of forest dam-
age remain much smaller than in southern Finland. We ex-
pect this to be depended on the lower tree height and smaller
volume of growing stock in the northern forests. Rare wind
direction, on the other hand, is likely to substantially increase
the amount of forest damage. This was demonstrated by the
unexpectedly large amount of damage caused by storm Antti.

To conclude, we believe that the data as well as the ap-
proach presented in this study will be valuable for the duty
weather forecasters who need to communicate the risks and
impacts of windstorms on forests in Finland. More analy-
ses about seasonal, soil and forest related aspects resulting in
windstorm induced forest damage in the Finnish conditions
remain as future work.
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