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Abstract. The temperature of photovoltaic modules is modelled as a dynamic function of ambient temperature,
shortwave and longwave irradiance and wind speed, in order to allow for a more accurate characterisation of
their efficiency. A simple dynamic thermal model is developed by extending an existing parametric steady-
state model using an exponential smoothing kernel to include the effect of the heat capacity of the system. The
four parameters of the model are fitted to measured data from three photovoltaic systems in the Allgäu region
in Germany using non-linear optimisation. The dynamic model reduces the root-mean-square error between
measured and modelled module temperature to 1.58 K on average, compared to 3.03 K for the steady-state model,
whereas the maximum instantaneous error is reduced from 20.02 to 6.58 K.

1 Introduction

Photovoltaic (PV) systems have become an integral part of
electricity grids worldwide, in particular due to a dramatic re-
duction in costs as well as the drive to mitigate anthropogenic
climate change using renewable energy sources. Accurate
modelling of PV power production in the field is important
for several reasons: (i) forecasts of solar PV power produc-
tion are becoming indispensable for grid operators, (ii) im-
provements in performance and efficiency need to be prop-
erly characterised under different environmental conditions
and (iii) in the meteorological context, it is conceivable that
PV power data could be used to gain more information about
atmospheric optical properties. Since PV module efficiency
is dependent on temperature, an incorrect thermal model will
in the end lead to errors in the overall power model, espe-
cially in the case of rapidly fluctuating atmospheric condi-
tions such as inhomogeneous cloudiness. Under high irradi-
ance variability, a simplified steady-state description of heat
exchange leads to a mismatch between irradiance and mod-
ule efficiency and thus a bias in the modelled power output.
In this work a simple four-parameter model is shown to be

sufficient to capture the dynamics of PV module temperature
as a function of ambient temperature, shortwave and long-
wave irradiance and wind speed, and the parameters are fitted
to measured data using non-linear optimisation.

Several authors have studied the thermal characteristics
of PV systems in some detail (see for instance the reviews
in Skoplaki and Palyvos, 2009a, b). Popular models cur-
rently employed in the field are the King model (King et al.,
2004) and the Faiman model (Faiman, 2008); these are sim-
ple steady-state models with only a handful of parameters,
in which heat exchange is assumed to be instantaneous. Both
models give satisfactory results when dealing with coarsely
resolved time series, i.e., hourly data, but they perform poorly
when applied to high frequency data, precisely because the
inherent relaxation time of the system due its heat capacity
and total heat exchange with the environment is not taken
into account. In particular the temperature response of a PV
module lags behind the rapid fluctuations in incoming short-
wave irradiance under patchy cloud cover, so that a steady-
state temperature model can deviate from reality by up to
25 K. For a modern PV module with 20 % efficiency and a
temperature coefficient of 0.4 % K−1 this leads to a relative

Published by Copernicus Publications.



166 J. Barry et al.: Dynamic model of photovoltaic module temperature

error of 10 % in the modelled efficiency and resulting power
output.

In order to describe the module temperature dynamically
one needs to solve the differential equation governing heat
exchange between the module and its environment, which
has been studied in detail before. Some examples include
Fuentes (1987), where an approximate analytical solution is
proposed, and Jones and Underwood (2001), who show that
the steady-state approach is not appropriate for 1 min time
intervals. Other works in this regard are Notton et al. (2005)
and Torres Lobera and Valkealahti (2013). In Torres-Lobera
and Valkealahti (2014) and Gu et al. (2019) a dynamic ther-
mal model is coupled to an electrical model in order to exam-
ine the effect on PV module performance as a whole. In all
cases this approach involves iteratively solving a differential
equation with several parameters.

In the present work a simple model built on the works of
Faiman (2008) and Del Cueto (2000) is modified by applying
an exponential smoothing kernel to represent the relaxation
time constant, which effectively includes the heat capacity of
the system using a matrix that introduces time dependence
into the equation. The four model parameters are then ex-
tracted from data from two measurement campaigns carried
out in autumn 2018 and summer 2019 in the Allgäu region
in Germany, as part of the BMWi-funded project MetPVNet.
The model was tested and validated on two free-standing sys-
tems and one roof-mounted system, respectively.

The model equations are described in detail in Sect. 2. Sec-
tion 3 outlines the measurements and data collection meth-
ods, and the results and conclusions are given in Sects. 4 and
5, respectively.

2 Dynamic temperature model

From physical considerations the module temperature can be
described by the heat balance equation

QSW rad−Qconv−Qnet LW rad−QPV−Qcond = 0, (1)

with the terms decreasing in approximate order of impor-
tance: the module is heated by shortwave solar radiation and
cooled primarily by convection and longwave thermal emis-
sion, with the energy losses due to the photovoltaic effect
QPV (corrected for resistive losses) and conduction Qcond
playing a minor role (see Gu et al., 2019 for an estimation
of the importance of each term). Writing this out explicitly
leads to a differential equation with the module temperature
on both sides (see Eq. A1 in the Appendix), since the cool-
ing due to convection and thermal emission depends on the
module temperature itself.

In this work a simplified parametric model is proposed as
follows: the module temperature time series T module is writ-

ten in matrix notation as

T module =Mτ

[
T amb+

G
6

tot,PV

u1+ u2 vwind

+ u3
(
T sky−T amb

)]
, (2)

where the empirical coeffient u1 in units of W m−2 K−1 con-
trols the shortwave heating, u2 in W s m−3 K−1 determines
the degree of convective cooling and the dimensionless pa-
rameter u3 controls the effect of longwave thermal emission.
The ambient temperature (T amb), plane-of-array irradiance
(G6tot,PV), wind speed (vwind) and sky temperature (T sky) are
time series vectors and the matrix Mτ is defined by

Mτ,ij =


0 for i− j < 0
exp(−(i−j )1t/τ )

C
for 0≤ i− j ≤N

0 for i− j > N

 , (3)

where τ is the characteristic time constant, 1t ≡ tn− tn−1 is
the time interval between data points and the normalisation
factor is given by

C ≡

i∑
j=max(0,i−N )

exp(−(i− j )1t/τ ) . (4)

In other words, Mτ is a lower triangular matrix with e0
= 1

on the diagonal and the off-diagonal entries along each row
are exponential functions decaying with the distance i− j
from the diagonal, cut off at i− j =N − 1 and normalised
by the sum of each row. Multiplying out the matrix terms
and assuming for brevity that there are at least N time steps
measured before the time point tn, one gets

Tmodule (tn)=
1
C′

N∑
k=0

exp(−k1t/τ )
[
Tamb (tn−k)

+
G
6

tot,PV (tn−k)

u1+ u2 vwind (tn−k)
+ u31Ts,a (tn−k)

]
, (5)

where 1Ts,a ≡ Tsky− Tamb and in this case the normalisa-
tion constant C′ is the same for each row of the matrix (in
reality the normalisation is only constant after N time steps
have passed). This shows that the value of module tempera-
ture from each time tn−k in the past contributes to the current
value at time tn , with an exponentially decreasing weight
proportional to k1t/τ , up to a time 1tN . In practice one
can simply cut off the exponential function at a small value,
which was chosen to be 10−6 in this work.

Although one would expect the effect of thermal emission
to be proportional to T 4

sky, by factorising the corresponding
term in the differential equation one can show that it is suf-
ficient to approximate the thermal emission by a term linear
in the sky temperature (see Appendix A).
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Figure 1. PV system and measurement station with horizonal and
plane-of-array pyranometer along with a small weather station mea-
suring ambient temperature at station 1, situated at 47.683233◦ N,
10.319028◦ E.

The model in Eq. (2) has four unknown parameters: the
coefficients u1, u2 and u3 as well as the time constant τ ,
which depend both on the characteristics of each individ-
ual PV system (i.e. its geometry, material properties or the
way it is mounted) as well as on the prevailing meteoro-
logical conditions of its surroundings. In order to be able to
apply the model to any system it is useful to perform a pa-
rameter estimation procedure using experimental data. This
so-called “forward model calibration” is performed using
non-linear inversion (Rodgers, 2000) with the Levenberg-
Marquardt method. The parameter values that give the best
fit between the model and the data can then be used to model
the module temperature at an arbitrary time point.

3 Field measurements

3.1 Photovoltaic systems

The model was validated using data from two different sta-
tions and three different PV systems. The first station is a
large free-standing solar park made up of 504 modules of
180 Wp each. The solar park is just outside Kempten, Allgäu,
close to the Iller river, and a pyranometer measuring station
(see Fig. 1) as well as an anemometer on a 3 m mast were
erected on site. PV module temperature (at the back of two
PV modules) was recorded in 15 s intervals, wind speed in
20 s intervals and irradiance and ambient temperature (mea-
sured at the pyranometer station) in 1 s intervals.

At the second station on a farm east of Kempten, two
different PV systems were used to validate the model. Sys-
tem 2A is a small system (roughly 6 kWp) with a steep eleva-
tion angle of roughly 60◦ and is well ventilated from behind
as can be seen in Fig. 2, whereas System 2B is a larger roof-

Figure 2. PV system 2A at station 2 (47.653161◦ N, 10.496584◦ E),
where the smaller system that reaches from the roof to the ground
was used for temperature modelling.

mounted system on top of a barn (see Fig. 3). In both cases
a temperature sensor was mounted behind the PV modules.
A pyranometer station identical to that in Fig. 1 measured ir-
radiance in the plane of the array of system 2A, whereas for
system 2B a Kipp & Zonen RT1 sensor was used for this pur-
pose, and an anemometer on a 5 m mast was erected closeby.

Table 1 summarises the different quantities measured dur-
ing the two measurement campaigns, with their respective
frequencies and uncertainties. For the temperature modelling
all data was downsampled to a period of 1 min using a mov-
ing average function.

3.2 Longwave atmospheric emission

The longwave downward welling irradiance was measured
with a frequency of 2 Hz and an uncertainty of 2 % using a
secondary standard Kipp & Zonen pyrgeometer, situated on
the roof of a high-rise building in Kempten. Although this
device is not exactly co-located with the PV systems it still
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Table 1. Data frequency, measurement uncertainty and measurement time periods for the three PV systems.

Station Time period
Tmodule Tamb G

6

tot vwind

f (Hz) σTmodule f (Hz) σTamb f (Hz) σ
G
6
tot

f (Hz) σvwind

1 September– October 2018 1/15 ±1 K 1 ±1 K 1 ±5 % 1/20 ±0.15 m s−1

2A September– October 2018 1/15 ±1 K 1 ±1 K 1 ±5 % 1/20 ±0.15 m s−1

2B July– August 2019 1 ±1 K 1 ±1 K 1 ±3 % 1/2 ±0.15 m s−1

Figure 3. PV system 2B at station 2, with a Kipp & Zonen RT1 sen-
sor mounted on the edge of the module in order to measure plane-
of-array irradiance and module temperature.

gives a general idea of the sky temperature and improves the
model fit, especially in the early morning and late evening.
The sky temperature is simply calculated from the irradiance
measurements using

T sky =
4

√
G
↓

LW
ε σ

, (6)

with an emissivity of ε = 1 and σ the Stefan-Boltzmann con-
stant. Any deviations from blackbody emissions as well as a
reduction in the field of view due to the tilt of the PV mod-
ules will be captured in the variation of the coefficient u3 in
Eq. (2).

4 Results

The model in Eq. (2) (referred to as the “dynamic” model)
was fitted to the module temperature for the three systems
described above, for different days during the measurement
campaigns in 2018 and 2019. To illustrate the effect of
adding time-dependence to the model, another fit with the
so-called “static” or time-independent model was performed,

Table 2. Number of days of each type and total number of data
points used for the parameter retrieval for each system.

System Time of year Clear Cloudy Total data points
days days (SZA≤ 95◦)

1 Autumn 2018 6 16 11 880
2A Autumn 2018 8 14 16 694
2B Summer 2019 2 8 8895

Figure 4. Histogram of the deviation between modelled and mea-
sured module temperature at system 1, for both the dynamic and
static models and under all-sky conditions (i.e., all available days).

with the parameters u1,2,3 allowed to vary but with τ = 0.
The number of days of each type are shown in Table 2, as
well as the time of year in which the measurements were
taken. The multiparameter fit was performed for all days at
once: the third column of Table 2 gives the total number of
data points for each system, i.e., the length of the time series
vectors in Eq. (2) in 1 min resolution. Note that only data up
to a solar zenith angle (SZA) of 95◦ were considered.
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Table 3. Results for all-sky conditions for both the static and dynamic models.

Parameter
System 1 System 2A System 2B

Dynamic Static Dynamic Static Dynamic Static

u1 (W m−2 K−1) 26.774± 0.051 35.045± 0.063 27.182± 0.043 32.699± 0.048 31.157± 0.119 37.360± 0.110
u2 (W s m−3 K−1) 4.355± 0.034 2.958± 0.038 4.155± 0.018 3.517± 0.019 3.653± 0.042 2.782± 0.038
u3 0.207± 0.001 0.038± 0.001 0.010± 0.001 −0.083± 0.001 0.158± 0.002 0.063± 0.002
τ (s) 588.8± 2.9 – 508.9± 2.5 – 547.4± 5.2 –

RMSE (K) 1.35 3.31 1.20 2.67 2.18 3.11
|1T |max (K) 5.83 21.84 6.28 18.96 7.63 19.27

Figure 5. Comparison of dynamic and static temperature modelling for system 1 on 14 September 2018. Measured module temperature
(red) is plotted together with the deviation between modelled and measured module temperature for the dynamic (blue) and static (orange)
models, along with ambient temperature (dark red dashed), in units of ◦C. Shortwave (green) and longwave (cyan) irradiance as well as wind
speed (magenta) are also shown.

The a priori values of the unknown parameters were taken
to be

u1,a = 25Wm−2 K−1, u2,a = 7Wsm−3 K−1,

u3,a = 0.25, and τa = 600s, (7)

with an a priori uncertainty of 20 % for the parameters ui,a
(i = 1,2,3) and 50 % for τa. The results of both modelling
approaches are compared in Table 3, for all-sky conditions
(i.e., all available days). It is evident that the dynamic model
shows a better fit to the data: the RMSE is roughly halved
from 3.03 to 1.58 K, on average. An even larger reduction
can be seen in the maximum absolute deviation |1T |max:
the static model has a maximum absolute deviation ranging
from 18.96 to 21.84 K, with a mean of 20.02 K, whereas the
dynamic model gives a range of 5.83 K≤ |1T |max ≤ 7.63 K
and a mean of 6.58 K. The histogram in Fig. 4 shows that
the error in the static model for system 1 has a much larger
spread than that of the dynamic model. This shows that in or-

der to correctly model the instantaneous temperature of PV
modules one has to consider a dynamic approach.

Figure 5 shows the model results for system 1 on
14 September 2018, a day with high variability in global ra-
diation. The measured temperature with its uncertainty can
be compared to the modelled temperature using both mod-
els, and the corresponding ambient temperature, irradiance
and wind speed are plotted for completeness. The dynamic
model can reproduce the measured module temperature, even
during times with fluctuating irradiance. The time constant is
found to be of the order of 10 min (see Table 3), which can
also be seen by examining the typical width of the troughs
and peaks in the temperature curve during cloudy conditions.
In addition, after sunset the module temperature falls below
ambient temperature and the inclusion of longwave thermal
emission in the model allows the temperature at this time of
day to be modelled accurately.
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Figure 6. Comparison of dynamic and static temperature modelling for system 2A on 27 September 2018, see the caption of Fig. 5 for
details.

Figure 7. Comparison of dynamic and static temperature modelling for system 1 on 4 October 2018, see the caption of Fig. 5 for details.

The model can also reproduce the thermal behaviour on
a clear sky day, as shown in Fig. 6. In this case the static
model reproduces the high frequency variations in temper-
ature due to the varying wind speed, whereas the dynamic
model smooths them out (the exponential term acts like a
lowpass filter). Note that the non-linear fitting procedure was
applied to all data at once (both clear and cloudy days), so
that the algorithm finds the optimal parameters that will min-
imise the cost function over the entire time series (see Ta-
ble 2). One case in which the model shows a larger deviation
from measurement is in the presence of low-lying fog, as can
be seen in Fig. 7, for system 1 on 4 October 2018. A cloud

camera next to the system confirmed the presence of fog, and
since the module temperature is higher than predicted it is
most probably due to an incorrect sky temperature, since the
measurement of thermal emission is situated north of the PV
system on a high-rise building with different overhead con-
ditions.

5 Conclusions

In this work a simple four-parameter dynamic thermal model
for the temperature of PV systems was proposed, and the
model was fitted to data from three different systems us-
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ing non-linear optimisation. By employing an exponential
smoothing kernel it was shown that the time constant (and
therefore the heat capacity) of the system can be extracted
from data, and the dynamic model could reproduce 1 min
instantaneous temperature measurements with an RMSE of
between 1.20 and 2.18 K and a maximum absolute deviation
of between 5.83 and 7.63 K. Further improvements to this
work could be achieved by considering reflection losses as
well as losses due to power generation. It could also be con-
ceivable to use the measured PV power to estimate the sky
temperature, so that a longwave irradiance measurement is
not needed. A comprehensive comparison of the differential
equation approach with the method presented here will be
carried out in future work.

https://doi.org/10.5194/asr-17-165-2020 Adv. Sci. Res., 17, 165–173, 2020



172 J. Barry et al.: Dynamic model of photovoltaic module temperature

Appendix A: Physically motivated approach

From the heat balance equation in Eq. (1) and ignoring con-
duction one can write down the differential equation for the
thermal exchange between a free-standing PV module with
inclination angle θ and its environment as

Cmodule

A

dTmodule

dt
= α
↓

PVG
6

tot,PV−hconv

(Tmodule− Tamb)

− σ

[
εglass

1+ cosθ
2

+ εtedlar
1− cosθ

2

]
(
T 4

module− T
4

sky

)
− σ

[
εglass

1− cosθ
2

+ εtedlar
1+ cosθ

2

]
(
T 4

module− T
4

ground

)
− ηmoduleG

6

tot,PV, (A1)

where ηmodule is the electrical efficiency, Cmodule is the
heat capacity in J K−1, hconv is the convective coefficient in
W K−1 m−2, α↓PV is the absorptivity for shortwave radiation
at normal incidence, εglass (εtedlar) is the emissivity for long-
wave radiation from the glass (tedlar) surface and σ is the
Stefan-Boltzmann constant.

Assuming that εglass = εtedlar ≡ ε, the thermal emission
term in Eq. (A1) can be rewritten as

ε σ (T 4
module− T

4
sky)=

[
ε σ

(
T 2

module+ T
2

sky

)
(
Tmodule+ Tsky

)](
Tmodule− Tsky

)
≡ hrad,s

(
Tmodule− Tsky

)
, (A2)

and it turns out that the term hrad,s is roughly constant. A
similar term hrad,g can be written for the term dependent
on Tground, for which the same conclusion applies. This ap-
proach is used in Fuentes (1987) in order to calculate an ap-
proximate analytical solution to Eq. (A1), and in this way the
simple parametric models can be shown to be approximately
equivalent to the physically motivated approach. A compre-
hensive comparison will be carried out in future work.
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