Adv. Sci. Res., 17, 39-45, 2020
https://doi.org/10.5194/asr-17-39-2020

© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Advancesin

Science & Research

A possibilistic interpretation of ensemble forecasts:
experiments on the imperfect Lorenz 96 system

Noémie Le Carrer and Peter L. Green

Institute for Risk and Uncertainty, Department of Engineering, University of Liverpool, Liverpool, UK

Correspondence: Noémie Le Carrer (nlc@liverpool.ac.uk)

Received: 15 January 2020 — Revised: 28 April 2020 — Accepted: 13 May 2020 — Published: 3 June 2020

Abstract. Ensemble forecasting has gained popularity in the field of numerical medium-range weather predic-
tion as a means of handling the limitations inherent to predicting the behaviour of high dimensional, nonlinear
systems, that have high sensitivity to initial conditions. Through small strategical perturbations of the initial con-
ditions, and in some cases, stochastic parameterization schemes of the atmosphere-ocean dynamical equations,
ensemble forecasting allows one to sample possible future scenarii in a Monte-Carlo like approximation. Re-
sults are generally interpreted in a probabilistic way by building a predictive density function from the ensemble
of weather forecasts. However, such a probabilistic interpretation is regularly criticized for not being reliable,
because of the chaotic nature of the dynamics of the atmospheric system as well as the fact that the ensembles
of forecasts are not, in reality, produced in a probabilistic manner. To address these limitations, we propose a
novel approach: a possibilistic interpretation of ensemble predictions, taking inspiration from fuzzy and possi-
bility theories. Our approach is tested on an imperfect version of the Lorenz 96 model and results are compared
against those given by a standard probabilistic ensemble dressing. The possibilistic framework reproduces (ROC
curve, resolution) or improves (ignorance, sharpness, reliability) the performance metrics of a standard univariate
probabilistic framework. This work provides a first step to answer the question whether probability distributions

are the right tool to interpret ensembles predictions.

1 Introduction

As a result of its chaotic dynamics, the prediction of the at-
mospheric system is particularly sensitive to the limited res-
olution in the initial conditions (ICs), discrepancies intro-
duced by measurement error, computational truncation and
an incomplete description of the system’s dynamics (closure
problem). Ensemble prediction systems (EPS) have conse-
quently been developed to characterize the skill of single nu-
merical predictions of the future state of the atmosphere. As
suggested by Leith (1974), assuming that the error field is
dominated by observational error (i.e. error on the ICs prop-
agated forward in the model), we can perturb M times the
best estimate for the ICs, run forward the model from each IC
and interpret the M results in a Monte-Carlo like fashion. In
other words, we use the local density of the resulting M pre-
dictions (or members) to quantify the plausibility of a given
future scenario. Instead of the traditional point deterministic
predictions, probabilistic predictions are thus realized. To-
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day, the ICs are perturbed according to various schemes, de-
signed to sample in a minimalist way systems of millions of
dimensions (like numerical weather global models). These
schemes generally select the initial perturbations leading to
the fastest growing perturbations (e.g. singular vectors Hart-
mann et al., 1995).

Yet, in practice, the assumption of a near-perfect model,
where observational error is more significant than model er-
ror, is not always true. Thus, individual member trajectories
are not expected to stay in the convex hull of the ensem-
ble after a few hours (Toth and Kalnay, 1997; Orrell, 2005).
While ensemble predictions is built on the idea that the range
of the ensemble provides an idea of the the possible futures
and that its variance is representative of the skill of the sin-
gle deterministic forecast, in practice and despite the intro-
duction of stochastic parameterization schemes to represent
model error (Buizza et al., 1999), the operational ensembles
are overconfident: the spread is typically too small (Wilks
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and Hamill, 1995; Buizza, 2018). In particular, such proba-
bilistic predictions are not reliable; on average, the probabil-
ity derived for a given event does not equal the frequency of
observation (Brocker and Smith, 2007; Smith, 2016; Hamill
and Scheuerer, 2018). Although ensemble-based probabilis-
tic predictions present more skill than the climatology, they
generally cannot be used as actionable probabilities. By de-
sign (limited EPS size, biased sampling of ICs) and by con-
text (flow-dependent regime error, strongly nonlinear sys-
tem) they do not represent the true probabilities of the system
at hand (Legg and Mylne, 2004; Orrell, 2005; Brocker and
Smith, 2008). This is all the more true for extreme events,
that, for dynamical reasons, cannot be associated to a high
density of ensemble members; such events indeed result from
nonlinear interactions at small scales, which cannot be re-
produced in number in a limited-size EPS (Legg and Mylne,
2004).

A range of post-processing methods have been developed
to tackle these limitations (Vannitsem et al., 2018). The clas-
sical Bayesian model averaging (BMA; Raftery et al., 2005)
and non-homogeneous Gaussian regression (Gneiting et al.,
2005) fit an optimized (sum of) parametric distribution(s)
onto the ensemble of predictions. More recently, techniques
involving recalibration by means of the probability integral
transform (Graziani et al., 2019) or by using the actual prob-
ability of success of a given probabilistic threshold (Smith,
2016) were particularly designed to address the lack of re-
liability of the previous approaches. Similarly, (Hamill and
Scheuerer, 2018) improved notably the reliability of proba-
bilistic precipitation forecasts by means of quantile mapping
and rank-weighted best-member dressing over single or mul-
timodel EPS. Changing perspective, Allen et al. (2019) intro-
duced a regime-dependent adaptation of the traditional post-
processing parametric methods, to tackle the issue of pos-
sibly significant model error. All ensemble post-processing
techniques are trained on an archive set of (ensemble, ob-
servation) pairs, using the same model. Most often, the ob-
jective function to optimize is a performance score, like the
negative log-likelihood or the continuous ranked probability
score, whose individual results for each couple (ensemble,
verification) are aggregated over the whole archive.

However, if generic strategies for post-processing globally
improves the skill for common events, they tend to deterio-
rate the results for extreme events (Mylne et al., 2002). The
latter are indeed, for predictability reasons, less susceptible to
be associated to a high density of ensemble members (Legg
and Mylne, 2004).

For all these reasons, and especially the need to resort to
multiple post-processing steps to provide meaningful proba-
bilistic outputs, we may wonder, echoing Brocker and Smith
(2008), whether the probability distribution (PDF) is the best
representation of the valuable information contained in an
EPS. Rather, the description of possibility theory in Dubois
et al. (2004): “a weaker theory than probability (... ) also rel-
evant in non-probabilistic settings where additivity no longer
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makes sense and not only as a weak substitute for additive
uncertainty measures” presents new opportunities, in a con-
text where conceptual and practical limitations restrict the
applicability of a density-based (i.e. additive) interpretation
of EPS.

This is what we investigate in this work. Namely: can we
design a simple possibilistic framework for interpreting EPS
that would perform at least as well as a standard probabilistic
approach for most of the performance metrics, and improve
the known shortcomings of the probabilistic approach? We
investigate this question by means of numerical experiments
on a commonly-used surrogate model of the atmospheric dy-
namics, the Lorenz 96 system. Section 2 introduces the ba-
sics of possibility theory, then used to develop an original
possibilistic framework for the interpretation of ensemble of
predictions in Sect. 3. This framework is tested on the imper-
fect Lorenz 96 model in Sect. 4. A conclusion follows.

2 Possibility theory

Possibility theory is an uncertainty theory developed by
Zadeh (1978) from fuzzy set theory. It is designed to han-
dle incomplete information and represent ignorance. Con-
sidering a system whose state is described by a variable
x € X, the possibility distribution 7 : X —— [0, 1] repre-
sents the state of knowledge of an agent about the current
state of the system. Given an event A = {x € S4}, the pos-
sibility and necessity measures are defined respectively as:
IT(A) = supyes,m(x) and N(A) =1 — T1(A) where A repre-
sents the complementary event of A. [1(A) and N(A) satisfy
the following axioms:

1. TI(X)=1and [1(@) =0

2. TI(AU B) = max(TI(A), [1(B)) (similar to N(AN B) =
min(N(A), N(B))), where B = {x € Sp}.

The following conventions apply (Cayrac et al., 1994):

a. N(A)=1 < II(A) = 0 indicates that A has to happen,
it is necessary;

b. 0 < N(A) < lis a tentative acceptance of A to a degree
N(A), since min(N(A), N(A)) = 0 from axiom 2 (A is
not necessary at all);

c. (M(A)=TI(A)=1) & (N(A)=N(A)=0)  repre-
sents total ignorance: the evidence doesn’t allow us to
conclude if A is rather true or false;

Possibility and probability distributions are intercon-
nected, through the description of uncertainty by imprecise
probabilities (cf. the Dempster-Shafer Theory of Evidence’s
framework; Dempster, 2008). Under specific constraints, an
imprecise distribution can degenerate into either a probabil-
ity or a possibility distribution. One can consequently assess
the degree of consistency of a possibility and a probabilistic
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distributions. Among the definitions of consistency (Delgado
and Moral, 1987), we retain here the view of Dubois et al.
(2004), that a probability measure P and possibility measure
IT are consistent if the probability of all possible events A
satisfies P(A) < I1(A). It implies, from the definition of ne-
cessity, that the probability P(A) is bounded as well from
below by the necessity measure: N(A) < P(A) < II(A). Ne-
cessity and possibility measures can consequently be viewed
as upper and lower limits on the probability of a given event.

3 Possibilistic framework for EPS interpretation

The statistical post-processing of EPS generates forecasts
in the form of predictive probability distributions p(x|x, ),
noted p(x|X)y, where X = {X],...,Xp} is the ensemble, 6 a
vector of parameters and p a (sum of) parametric distribu-
tion(s). BMA distributions are weighted sums of M para-
metric probability distributions, each one centered around a
linearly corrected ensemble member. In this work, the mem-
bers are exchangeable, so the mixture coefficients and para-
metric distributions do not vary between members and the
BMA comes down to an ensemble dressing procedure. We
compare our method against a Gaussian ensemble dressing,
whose predictive probability distribution reads:

M
pCxlE) = %;N(mzi to.0?) (1)

where A (4, v) is the normal distribution of mean y and vari-
ance v. The parameters 6 = {a,w, o} are inferred through
the optimization of a performance metric, e.g. the ignorance
score (Roulston and Smith, 2002), or negative log-likelihood,
a strictly proper! and local? logarithmic score.

Here, instead of performing a probabilistic ensemble
dressing, we can perform a possibilistic ensemble dressing:
a possibilistic membership function is dressed around each
ensemble member first shifted and scaled. Similarly to its
probabilistic twin, the ith possibility kernel is assumed to
represent the possibility distribution of the true state of the
system, given the observation of X;. Because we have several
member observations i = {1,..., M} and there is only one
truth (the actual system’s state), we can interpret it as a union
(OR) of possibilities. Fuzzy set theory offers several defini-
tions for computing the distribution resulting of the union of
two fuzzy distributions. We adopt here the max-sum defini-
tion: 4up(x) = max(m4(x), Tp(x)), although some of our
tests, not presented here, show that alternative definitions do
not significantly change results.

Gaussian kernels exp_%“i2 are thus fitted to each member

X;, with u; = %ﬁ'w) a the scaling factor, w the shifting

Lj e. it takes its optimal value only when the forecast probability

is equal to the true distribution of the system.
2j.e. it does not depend on the full forecast distribution, but only
on the predictive probability associated to the true system’s state.
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of the kernels’ peaks from the individual member X; and o a
parameter accounting for the width of the individual kernels.
The resulting possibilistic distribution is given by the sum, in
a possibilistic manner, of all the individual kernels:

 —(ak;+w)?
w(x)=Uj=1..mexp 27
_ (¥ +o)?
= sup exp 202 2)
i=1..M

For any event of interest A = {x € S4}, we can extract
the possibility and necessity measures [1(A,0) and N(A, 6)
(noted ITy(A) and Ny(A)), given the knowledge encoded in
7 (x,0) (noted mp). [1y(A) evaluates to what extent A is logi-
cally consistent with g whereas Ng(A) evaluates to what ex-
tent A is certainly implied by mg. Ideally, this pair falls in an
area of the possibilistic diagram (N, IT) that is close to one of
the three notable points: (1, 1) for A certain; (0, 0) for ‘A cer-
tain; (0, 1) for total ignorance, i.e. both A and A are possible
but none is necessary given . Points on the line N =0 are
in favor of A, the more favorable the closer to (0, 0); points
on the line IT =1 are in favor of A, the more favorable the
closer to (1, 1). Other areas of the diagram are inconsistent
with the axioms defining IT and N.

From the geometric interpretation given by the possibilis-
tic diagram, several options are available for scoring each
point (Ng(A), TTo(A)) that is, for assessing the quality of the
prediction given by the pair (Ng(A), TTg(A)).

A brute-force method is to minimize the distance to the
correct pole (e.g. (1,1) for A true). Yet, such an approach
would try and push events towards (1, 1) or (0, 0) on the pos-
sibilistic diagram, thus ignoring the ignorance pole and, as
a result, the idea that some events are impossible to predict
from a particular EPS set. A more complete method could,
for instance, also consider the rank r of the EPS w.r.t. A.
Namely, if the actual observation x* is in S4, the associ-
ated point should belong to the line IT =1 but the distance
to the ignorance pole (1, 0) should be proportional to r. The
same applies for x* & S4; the associated point should be-
long to line N = 0 with the distance to (1, 0) proportional to
rg4 =M —r. Thus, an observation x* € §4 associated to an
erroneous EPS (r — 0) will fall close to the ignorance pole,
suggesting that we cannot trust the raw ensemble. A score
verifying these requirements is:

_ JINo(A) — 371+ [TTg(A) — 1|, x™ € Sa

$i(6) =
No(A) + [Tlg(A) — 471, x* & Sa

Given a training set containing n pairs (¥;, x;"), the final em-

pirical score is: S(0) = %Z?:pgi () and training consists of
finding the 6 that minimizes S.

4 Application to the imperfect Lorenz 96 system

To test our framework, we reproduce the experiment de-
signed by Williams et al. (2014), who used an imperfect
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L96 model (Lorenz, 1996) to generate ensemble predictions
and investigate the performance of ensemble post-processing
methods for the prediction of extreme events. The training
sets consist of 4000 independent pairs of EPS of size M =
12 and the associated observations, for each lead time 7 =
{1,3,5,7} d3. The EPS have beforehand been pre-processed
to remove the constant bias. The testing set consists of an-
other 10000 independent pairs of bias-corrected EPS and
associated observations, for each lead time. We consider
the prediction of an extreme event: A, = {x < gp.05}, Where
qo.05 is the quantile 5 of the climatic distribution of x and
a common event A = {qo5 < x <qo.6} . Results are com-
pared against those given by a probabilistic post-processing,
namely a Gaussian ensemble dressing.

We first assess the performance of each interpretation in
terms of the empirical ignorance score relative to the clima-
tology:

n

Su(p.c) = % > (16NGy, x7) ~ 1GN(e, 57))
i=1
ro(x})
=5 2 oms(55) @

where, following the work of Brocker and Smith (2008),
in the probabilistic framework, the predictive probability
po(x*]X) is blended with the climatology c¢(x*) of the verifi-
cation x*: rg(x*) = a pg(x*)+ (1 —a)c(x™). Our possibilistic
framework is a mapping RM — [0, 1] x [0, 1], while the ig-
norance applies to a probabilistic prediction RM — [0, 1].
We consequently need to find a mapping from the dual mea-
sures N and IT to an equivalent probability. Since possibil-
ity and necessity measures can be seen as upper and lower
bounds of a consistent probability measure, we can write
Py(A) =aN(A)+ (1 —a)II(A) with @ € [0, 1] for any event
A of interest. Varying « allows one to browse across the
range of associated probabilities P(A), consistent with the
possibility distribution 7. We use this technique to compute
the ignorance score of the possibilistic framework and com-
pare its range to the performance of a probabilistic Gaussian
ensemble dressing.

Both frameworks are characterized by negative relative ig-
norance, confirming that they have a predictive added-value
over climatology. The difference in ignorance equals the dif-
ference in expected returns that one would get by placing bets
proportional to their probabilistic forecasts.

As shown in Fig. 1, for both types of events, the possi-
bilistic framework performs as well or slightly better than the
probabilistic, for all « € [0, 1]. The slight increase in perfor-
mance remains relatively constant or even improve (extreme
event case) with lead time. The relative ignorance of the pos-

3r=1 corresponds to 0.2 model time units after initializa-

tion and can be associated with approximately 1d in the real
world (Lorenz, 1996).
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Figure 1. Ignorance relative to the climatology computed for the
possibilistic (colored lines) and probabilistic (black lines) frame-
works, in the case of the prediction of an extreme (EE; solid line)
and a common (NEE; dashed line) event of interest, as defined in
Sect. 4. The upper and lower bounds, as well as the median, ob-
tained by considering that N(A) < P(A) < I1(A) in the possibilistic
framework are reported.

sibilistic framework has a variance (due to the range of «)
that grows with the lead time, as expected.

To understand better the operational consequences of such
results, we report in Fig. 2 the relative operating charac-
teristic (ROC) of both frameworks at lead times of 3 and
7d. Given a binary prediction (yes/no w.r.t. event A), the
ROC plots the hit rate (HR; fraction of correctly predicted
A over all A observed) versus the false alarm rate (FA; frac-
tion of wrongly predicted A over all A observed). We use in-
creasing thresholds p; € [0, 1] for making the decision (yes
if P(A) > p;) and report the associated HR and FA in the
graph. Again, we vary « to see the range of HR and FA cov-
ered for each p; by the possibilistic prediction (N, IT). The
resulting points form a curve (probabilistic approach) or a
cloud (possibilistic method), which are a visual way to as-
sess the ability of a forecast system to discriminate between
events and non events.

The possibilistic curves all fit or are very close to the prob-
abilistic curves, for both extreme and common events and
for all lead times. The main difference is their extension:
the possibilistic framework remains located in areas of rel-
atively small FA, compared to the results of the probabilis-
tic approach for similar thresholds p;. This results indicates
that the HR remains smaller than what can be achieved by
the probabilistic framework, showing lower skill. The fact
that the possibilistic curves yet lies on the probabilistic ROC
curves shows that the reason behind this discrepancy is not
a lack of discrimination between events and non-events; for
a given FA, both methods provide the same HR. The rea-
son is connected to a bias in probabilities for the possibilistic
approach towards zero and towards 1: the possibilistic frame-
work is very sharp, as shown on the diagrams in Fig. 3. Be-
cause they are not blended with climatology, a large part of
the predictions have zero probability associated to the event
of interest, instead of a minimal one, which prevents the
current implementation of the possibilistic framework from
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Figure 2. ROC curves for the extreme event (a, ¢) and common
event (b, d) at lead time 3d (a, b) and 7d (¢, d). The probabilistic
results are reported by means of black circles and the possibilis-
tic results by means of colored crosses. The larger the symbol, the
larger the threshold probability used to compute HR and FA.
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Figure 3. Normalized histograms of the equivalent forecast prob-
abilities in the possibilistic framework for the observations of the
extreme event (a) and common event (b) at lead time 3 d. The corre-
sponding distributions of predictive probabilities in the probabilistic
framework come on top as thick black lines.

reaching higher HR. Side experimentation not reproduced
here has shown that weighting the scores attributed to ob-
served event A in the global empirical training score allows
to reproduce fully the probabilistic curve for each lead time.

Reliability diagrams presented on Fig. 4 plot the observed
conditional frequencies against the corresponding forecast
probabilities for lead time 3 and 7 d. They illustrate how well
the predicted probabilities of an event correspond to their ob-
served conditional frequencies. The predictive model is all
the more reliable (i.e. actionable) when the associated curve
is close to the diagonal. Noting that the diagonal represents
perfect reliability, the distance to the diagonal indicates un-
derforecasting (curves above) or overforecasting (curves be-
low). Distance above the horizontal climatology line indi-
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Figure 4. Reliability diagrams for the extreme event (a, ¢) and com-
mon event (b, d) at lead time 3 (a, b) and 7 d (¢, d). The probabilistic
results are reported in black line, while the upper, median and lower
bounds of the possibilistic ones are in thinner red lines. Standards
elements of comparison are reported in the diagram, as described
in Sect. 4, namely the diagonal (perfect reliability), the climatolog-
ical reference (horizontal dotted) and the cones of skill (inside the
dashed-dotted secants).

cates a system with resolution, a system that does discrim-
inate between events and non-events. The cones defined by
the no-skill line (half-way between the climatology and per-
fect reliability) and the vertical climatology line allow us to
define areas where the forecast system is skilled.

To draw a standard reliability diagram from possibilis-
tic predictions, we use again the transformation: P,(A) =
aN(A)+ (1 —a)II(A), where « is discretized on [0, 1]. From
a given set of n predictions (N(A), I1(A)), for each «; €
[0, 1], the n Py, (A) are computed and a traditional reliabil-
ity plot is drawn. Each o;-plot indicates how using Py, (A)
as probability for A is reliable and actionable on the long
term. The upper and lower bounds on the set of correspond-
ing plots correspond respectively to the cases P,(A) = N(A)
and Py(A) = I1(A). Seen as a whole, this bounded set of reli-
ability plots allows to characterize the reliability of the prob-
abilities given through the relation N(A) < P(A) < I1(A).

As pictured on Fig. 4, probabilistic curves are globally
aligned with the perfect reliability line, yet with growing
lead time, they are restricted to small probabilities only (be-
cause of wider EPS or pure predictability issues such as
mentioned for extreme events). On the contrary, the reliabil-
ity plots associated with the possibilistic approach cover all
range of probabilities. This approach tends to be underfore-
casting (resp. overforecasting) for small (resp. large) proba-
bilities, especially for the common event. A large part of the
area covered by the possibilistic solutions is contained in the
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skill cones for the rare event, denoting a skilled predictive
system for all but very low predictive probabilities. Results
are less interesting for the common event, where the possi-
bilistic framework leads to a flatter diagram, indicating less
resolution, especially with larger lead times.

Such a 2-dimensional fuzzy reliability diagram is neither
particularly operational nor easy to read. To adapt it to the
specificity of our dual predictive measures, we suggest to use
3-dimensional reliability-like diagrams. We consider the two
axes of the N — I1 diagram potentially occupied by predic-
tion points: N = 0 and IT = 1, other areas being inconsistent
with axiom (b) from Sect. 2. Each axis is binned and the fre-
quency of observation of the event A among the prediction
points that fall in each bin is computed. Results are plotted on
a third vertical axis, added to the N — IT diagram. It allows to
assess quickly and visually the distribution of the successful
predictions for event A over the diagram, by associating to
each bin a frequency of success. A good behaviour would be
to observe a decreasing frequency along both axis from (1, 1)
to (0, 0): the closer to the points of certainty (N(A) =1 and
NA)Y=1-TI(A) =1 respectively), the maximal the prob-
ability of observing A (resp. A). There is no constraint on
the ignorance point: over all the points that did not provide
enough information to decide, there is no reason that the fre-
quency of observation of A is 0.5. It could be the climatolog-
ical frequency c(A), if the lack of information is randomly
distributed among observations. The fact that the frequency
of observation of A at the ignorance point is actually larger
than ¢(A) may be an indication of model limitations for the
prediction of this type of event, e.g. due to particular dynam-
ics that fail to be captured: they systematically, more often
than not, lead to undecidability based on the information at
hand. Figure 5 presents such 3-dimensional reliability dia-
grams for lead times 1 and 7d. As suggested before, the
framework tends to show lower discrimination for the pre-
diction of the common event: predictions on the IT =1 axis
guarantee a high level of success for the extreme event, while
this level decreases quickly with smaller N for the common
event.

5 Conclusions

In this work, we have presented a possibilistic framework
which allows us to interpret ensemble predictions without
the notion of member density, or additivity that proved to be
incoherent with the conditions in which EPS were built. Pre-
liminary results show that such a framework can be used to
reproduce the probabilistic performances (ROC curves, res-
olution) and even slightly improve some of them (ignorance,
sharpness, reliability). The added-value of this framework is
more tangible for extreme events. Moreover, the proposed
approach addresses some of the well-known limitations of
the probabilistic framework (reliability, for example), in a
simpler setting than the multiple post-processing steps usu-
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Figure 5. 3-dimensional reliability diagrams for the extreme event
(solid red lines) and common event (dashed blue lines) at lead time
1 (a) and 7d (b). They assess the frequency of observation of the
event A when the possibilistic prediction (N (A), l'I(A)) falls in a
given bin on the N — I1 diagram.

ally necessary to address these limitations (e.g. (Hamill and
Scheuerer, 2018; Graziani et al., 2019). We can consequently
indeed wonder whether a framework based on imprecise
probabilities, like possibility theory or credal sets of distri-
butions (echoing Berger and Smith, 2019) is not indeed more
appropriate to make sense and extract in a simpler manner the
valuable information contained in an EPS.

We have introduced as well a first tool, namely the 3-
dimensional reliability diagram, to make operational sense
of the dual possibilistic predictions. However, further work
is needed to improve the design of the possibilistic distribu-
tions, by means for instance of dynamical information.

Finally, since our predictive model is based on the opti-
mization of a set of parameters (shaping possibilistic kernels
on EPS members), it involves a trade-off on the performance
of each individual case in the training set. The authors will
address this question by means of a new framework free of
parameters and consequently free of optimization. Such a
framework will allow the measures (N, IT) to be guaranteed
formally (which the current optimization step does not allow)
and to provide meaningful values for each individual predic-
tion.

Developments regarding the understanding and the oper-
ational use of such fuzzy results are necessary and will be
developed as well in the future work mentioned above.
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