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Abstract. As variable renewable energies are developing, their impacts on the electric system are growing.
To anticipate these impacts, prospective studies may use wind power production simulations in the form of
1 h or 30 min time series that are often based on reanalysis wind-speed data. The purpose of this study is to
assess how several wind-speed datasets are performing when used to simulate wind-power production at the
local scale, when no observation is available to use bias correction methods. The study evaluates two global
reanalysis (MERRA-2 from NASA and ERAS from ECMWF), two high-resolution models (COSMO-REA6
reanalysis from DWD, AROME NWP model from Météo-France) and the New European Wind Atlas mesoscale
data. The study is conducted over continental France. In a first part, wind-speed measurements (between 55 and
100 m above ground) at eight locations are directly compared to modelled wind speeds. In a second part, 30 min
wind-power productions are simulated for every wind farm in France and compared to two open datasets of
observed production published by the distribution and transmission system operators, either at the local scale
in terms of annual bias, or aggregated at the regional scale, in terms of bias, correlations and diurnal cycles.
ERAS is very skilled, despite its low resolution compared to the regional models, but it underestimates wind
speeds, especially in mountainous areas. AROME and COSMO-REAG6 have better skills in complex areas and
have generally low biases. MERRA-2 and NEWA have large biases and overestimate wind speeds especially at

night. Several problems affecting diurnal cycles are detected in ERAS5 and COSMO-REAG®.

1 Introduction

In the past ten years, wind and photovoltaic powers have been
steadily developing in France. Their installed capacities have
risen above respectively 16 and 9 GW in 2019 (RTE, 2020a).
The development shall continue as the country’s goals of in-
stalled capacity by 2028 are about 40 GW for wind (includ-
ing 6 GW offshore) and 35 to 44 GW for photovoltaic power
(Ministere de la Transition écologique et solidaire, 2020).
As their shares increase in the electricity mix, so do their
impacts on the electrical system. They have physical impacts
on the distribution grid at the local scale and on the trans-
mission network at larger scales. They also have financial
impacts as they modify the prices on the electricity market
(Paraschiv, 2014). They impact the other generation units
through prices and also because they modify the residual
load (demand minus variable renewable generation) left to
the dispatchable power stations. Very high shares of variable
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renewable energy bring new challenges in terms of network
development, flexibility needs, frequency stability or market
design (Silva et al., 2018) and they increase the system sen-
sitivity to climate variability (Bloomfield et al., 2016).

To conduct prospective studies assessing those various im-
pacts, input data are usually simulations of the necessary
parametres: wind-power generation (which will be the fo-
cus here) but also other energy generations, demand, etc.
depending on the scope of the study. Recent years have
seen the development of several simulation datasets, such as
Ninja (Staffell and Pfenninger, 2016), EMHIRES (Gonzales-
Aparicio et al., 2016), RE-Europe (Jensen and Pinson, 2017),
the University of Reading (UR) dataset (Bloomfield et
al., 2019) or the upcoming data from Copernicus Climate
Change Service (C3S) for Energy, in the continuity of the
C3S ECEM project (Troccoli et al., 2018). These datasets
provide simulations at aggregated levels (regions or coun-
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tries; grid nodes for RE-Europe). Only Ninja offers local sim-
ulations through the web interface https://www.renewables.
ninja/ (last access: 10 May 2020). Some studies require local
simulations, for example to investigate impacts on the dis-
tribution grid from a future wind farm or set of farms in a
specific region. This study focuses on simulations used for
local-scale applications.

Simulations are usually based on wind-speed data from
climate reanalyses are they are useful data with large spatial
and temporal coverage. For example, the above-mentioned
datasets are based on global reanalyses: MERRA-2 (Ninja,
EMHIRES), ERA-Interim (ECEM), ERAS (UR, C3S En-
ergy) or on COSMO-REAG6 regional reanalysis for RE-
Europe, which is simulating at a finer scale (grid nodes). In-
deed, local simulations could benefit from using higher res-
olution models than the global reanalyses used for national-
scale simulations. In this study, three high-resolution datasets
are evaluated in addition to two global reanalyses.

Simulations use wind-power modelling techniques to con-
vert wind-speed data into power output. Those conversion
models are of two main types: statistical or physical. Statisti-
cal methods use observed production data to train a statistical
(e.g. machine learning) model (example in ECEM). They re-
quire that the farm exists (thus not applicable in prospective
studies) and that past production data are accessible (not con-
fidential). On the other hand, physical methods use turbine
power curve functions to convert hub-height wind speeds to
power output. Physical methods are used in all the above-
mentioned simulations (ECEM tests both methods). This ap-
proach requires at least basic information on the technology:
the model or type of wind turbine to select an adequate power
curve and the hub height to extrapolate wind-speed at this
level. The main drawback of this approach is that biases in
the underlying wind-speed data may create huge under or
over-estimations of power outputs. This is why this approach
is often combined with a bias correction model. For exam-
ple in Ninja, observed national productions are compared to
aggregated simulations to fit a wind-speed correction model
in each country. Another example is the use of statistical
downscaling of the global reanalysis using another higher-
resolution dataset. For example EMHIRES and UR use data
from the Global Wind Atlas to modify locally the distri-
butions of the reanalysis data. But using another numerical
dataset with its own biases is not necessary beneficial. The
same downscaling technique shows no improvement in Gru-
ber and Schmidt (2019). In this paper purely physical meth-
ods are investigated to be able to use them when no obser-
vation is available, neither wind-speed observation to unbias
the input data, nor past production to train a statistical model.
Statistical downscaling of reanalysis data are not studied here
except in the sense that the high resolution models evaluated
here might be used for bias corrections, if not used directly.

Other applications are also using wind-power modelling.
Even thought they are not the topic of this study, they are
worth mentioning as they share common data and meth-
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ods. One field of applications is wind resource assessment
prior to a farm installation (Brower, 2012). In early planning
stages, numerical datasets are used in the form of wind at-
lases, which commonly provide summarized statistics about
local wind speeds. In more mature phases, wind farm devel-
opers install masts or LIDAR to measure wind speeds at the
project’s location. Applications where local wind-speed ob-
servations are available are not the scope of this study. Such
measurements enable to either simulate directly from the ob-
served wind speeds or to apply bias corrections thus signif-
icantly reducing the uncertainty about the on-site winds and
the power simulations. Another field of applications is power
forecasting from hourly (Giebel and Kariniotakis, 2017, for a
review) to seasonal timescales (e.g. Lledo et al., 2019) based
on operational numerical weather prediction (NWP) models.
Forecasting is done for operational farms, so observed past
production is usually available to train a statistical model or
at least correct the biases of a physical model. Forecasts are
not the scope of this study and will not be discussed here.
Simulations however may be used in place of observations
in order to train a statistical forecasting system, for example
for a new wind farm that has no or not enough data to train a
statistical model.

This study aims at evaluating the strengths and weaknesses
of several wind-speed datasets from reanalyses and high-
resolution weather models for simulating wind power out-
puts for applications at the local scale when no observation
is available. Observations are not used to simulate but are re-
quired for this evaluation study. The lack of accessible wind-
speed measurements at turbine hub heights is usually the ma-
jor blocking point for evaluating modelled wind speeds in
the scope of wind-power applications. The new Tall Tower
Dataset is trying to address the problem and could benefit to
future studies (Ramon et al., 2020), at least for areas with a
high spatial coverage, which is not the case in France. For
the purpose of this study, confidential measurements were
obtained at eight locations in France. These locations cover
various types of terrain but are not enough to draw general
conclusions.

To complete this direct validation of wind speeds, an indi-
rect evaluation was conducted using a large number of wind-
power observations in France from two public datasets pub-
lished by the transmission and distribution system operators:
30 min power time series at the regional scale and annual sum
of energy at the local scale (cities). All wind farms installed
in France before the end of 2017 were simulated to create
30min time series. These simulations are compared to the
observed productions. In order to draw correct conclusions
in prospective studies using such data, the simulations should
have a realistic average but also a realistic variability. Diurnal
variability of the wind power simulations are of great impor-
tance: amounts of energy produced at peak hours or off-peak
hours will have very different impacts on balancing genera-
tion and demand.
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2 Data

This section presents the studied wind-speed datasets
(Sect. 2.1) and the observations that were used for their
evaluation: wind-speed measurements (Sect. 2.2) and wind-
power outputs (Sect. 2.3), followed by some information
needed for all wind farms in France in order to simulate their
productions (Sect. 2.4).

2.1 Wind-speed datasets

Five datasets are evaluated. Information on these datasets is
summarized in Table 1. They are of very various types:

— 2 global reanalyses: MERRA-2 (resolution of about
60 km) and ERAS (about 30 km),

— 1 regional reanalysis over Europe: COSMO-REA6
(6 km),

— 1 regional downscaling based on ERAS reanalysis:
NEWA mesoscale data (3 km),

— 1 numerical weather prediction (NWP) model: AROME
from Météo-France (about 3 km).

The two global reanalyses were selected because they are
reference datasets in the wind industry and a new state-of-
the-art reanalysis in the case of ERAS.

MERRA-2 reanalysis (Gelaro et al., 2017) from NASA’s
Global Modeling and Assimilation Office and its predeces-
sor MERRA have been much used in the wind industry (e.g.
Olauson, 2018, and references therein). It was indeed one of
the first reanalyses to produce data at an hourly resolution
and output winds not only at 10 m above ground but also at
50 m, closer to turbine hub heights.

ERAS is the new reanalysis produced by the European
Centre for Medium-range Weather Forecasts (ECMWF), as
part of the Copernicus Climate Change Service (C3S, 2017).
It has been released progressively since 2017 and is much
more wind-power friendly than its predecessor ERA-Interim:
hourly resolution compared to 6-hourly, wind at 100 m, not
only at 10m, as well as a finer horizontal grid spacing of
about 30 km compared to about 80 km. ERAS is already used
for energy applications and shows great improvements over
previous reanalyses (e.g. Olauson, 2018; Vortex, 2017; Ra-
mon et al., 2019).

The drawback of global models is their rather low spa-
tial resolution, even for state-of-the-art ERAS. A resolution
of a few dozens of kilometres is not able to capture small-
scale features which may be important for accurately simu-
lating production at the local scale. That is why some higher-
resolved limited-area models are also investigated.

Recent years have seen the development of many regional
reanalyses covering Europe. Some were developed within
the UERRA (Uncertainties in Ensembles of Regional Re-
Analysis) project (UERRA, 2020). In addition, C3S is cur-
rently developping the Copernicus regional reanalysis for
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Europe (CERRA), which will be forced by ERAS and will
cover Europe at a 5.5 km resolution. Alongside the UERRA
project, COSMO-REA6 was generated in the framework
of the Hans-Ertel-Centre for Weather Research — Climate
Monitoring and Diagnostics at the Universities of Bonn and
Cologne, and is operated by the German Meteorological Ser-
vice (DWD). This european reanalysis uses DWD’s opera-
tional NWP model COSMO with initial and boundary con-
ditions from ERA-Interim reanalysis. It assimilates mostly
the same observations as the operational NWP model, using
a nudging scheme (Bollmeyer et al., 2015). It was chosen
to be evaluated here for its high resolution (6 km), its large
spatial coverage over Europe and because it has previously
showed good results for surface winds (Kaiser-Weiss et al.,
2015).

This study also investigates a completely different type
of high-resolution dataset that was specifically designed for
wind energy applications: the mesoscale data from the New
European Wind Atlas (NEWA consortium, 2020), which is
a downscaling of ERAS at 3km and 30 min resolution us-
ing the Weather Research and Forecasting (WRF) model. A
major difference from the previous datasets is that WRF does
not assimilate observations. It is driven by ERAS with a spec-
tral nudging over the domain. WRF was run separatly over
10 domains to cover most of Europe. Another kind of simu-
lations, 50 m microscale simulations were also conducted but
are not available for download and thus not investigated.

Finally, the study also investigates the AROME-France
NWP model (Seity et al., 2011) for its high resolution over
France. AROME is not a reanalysis but an operational model
issuing a new forecast every 6 h. Therefore the forecast runs
were stitched together to create continuous hourly series.
This is done by taking 6 steps in each forecast, see Fig. 1
for a visual explanation. Here the steps 4+6 to +11 h of each
forecast were concatened. It is important to choose carefully
the steps. Using the steps +4 to 49 h led to similar conclu-
sions than the steps +6 to +11 h. But steps closer to the anal-
ysis should not be used: the analysis and first forecast steps
of each run in AROME exhibit large negative biases for wind
speeds. This is caused by imbalances in the 3D-Var analysis
(for more information on this spin-up issue, see Brousseau
et al., 2016). Whatever the choice in steps, the method is not
seamless, so jumps are observed every 6 h, at the hours when
changing from one run to the other.

The AROME database used by the author had missing
runs, especially in the years 2018 and 2017, which reduced
the overall availability of datasets used in the study.

2.2 Wind-speed observations

Wind-speed measurements at levels close to turbine hub
heights are difficult to get access to for confidentiality rea-
sons. In this study, measurements were gathered at eight
sites:
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Table 1. Information on the numerical datasets evaluated in the study.

MERRA-2 ERAS COSMO-REA6 NEWA AROME
Institution NASA GMAO ECMWF HErZ, DWD NEWA Météo-France
Model GEOS v5.12.4  IFS Cycle41r2 COSMO v4.25  WRFv3.8.1 AROME
Spatial coverage Global Global Europe Europe France
Boundary conditions - - ERA-Interim ERAS (nudging) ARPEGE
Data assimilation 3D-Var 4D-Var Nudging - 3D-Var
Horizontal grid spacing  0.5° x0.625° 0.25° 6km 3km 0.025°
Vertical levels (m)? 10, 50 10, 100 40, 60, 80, 100 10, 50, 75, 100 10, 50, 100
Time coverage 1980—present 1979b—present 1995-2018 2009-2018 2009—present
Time resolution 1h l1h l1h 30 min 1h

a Vertical levels refer to the available wind outputs used in the study, not the model levels. b ERAS is to be extended back to 1950.

Operational forecast runs

DO 00 »

DO 06 - >
DO 12

DO 18 A 0000
D1 00 . L
D1 06 - °
D1 12 A 000000

D1 18 A .

Reconstruction of a continuous signal

DO 6 12 18 p1 6 12 18 Dlz 6

Figure 1. Schematic of the reconstruction of a continuous hourly
signal by selecting 6 steps (+6 to +11 h here) in each forecast run
from an operational NWP model issuing a new forecast every 6 h.

— Seven from meteorological masts installed for wind
farm projects in various locations over France. Top
anemometers are ranging from 55 to 90m above
ground. There are also measurements from lower
anemometers, useful for filtering the data.

— One from a LIDAR at the SIRTA observatory (Haeffelin
et al., 2005) near Paris. The vertical resolution is 20 m
and the 100 m level was mostly used.

Information on the measurements (locations, heights, periods
and availabilities) are given in Table 2.

The 10 min wind-speed series were manually filtered to
remove erroneous measurements such as long periods of ze-
ros or abnormal behaviour of one anemometer compared to
the others. Not many anomalies were detected, the measure-
ments were of good quality. The series were then averaged to
30 min. One to three years of measurements are available for
each location, with an availability of at least 94 %. The avail-
ability declines when considering not only the observation
but also the datasets availabilities (because there were miss-
ing data in the AROME database used for this study), espe-
cially for the masts having data only in 2018 (year having the
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lowest availability for AROME). Still the overall availability
is always above 85 %.

2.3 Wind-power production observations

The lack of wind-speed measurements led to the use of wind-
power observations to indirectly evaluate the modelled wind
speeds. Two public datasets were used:

— 30min time series of wind-power production at the re-
gional scale (productions aggregated over the twelve
French administrative regions). This dataset is pub-
lished by RTE, the French Transmission System Opera-
tor (TSO). It covers the period from 2013 to 2017.

— Annual energy at the local scale (production from one
or a few farms in the same city, summed by year).
This dataset is published by Enedis, the main Distribu-
tion System Operator (DSO). The dataset contains the
years 2011 to 2017.

The contours of the twelve administrative regions can be
seen in Fig. 2. They are named by the following acronyms:
HDF (Hauts-de-France), NOR (Normandy), BRI (Brittany),
IDF (Ile-de-France), GE (Grand Est), PL (Pays de la Loire),
CEN (Centre-Val de Loire), BFC (Bourgogne-France-
Comté), NAQ (Nouvelle Aquitaine), ARA (Auvergne-
Rhone-Alpes), OCC (Occitanie), PACA (Provence-Alpes-
Cote d’Azur). IDF and PACA have almost no wind farms
(less than 70 MW installed by the end of 2017). Therefore
they are aggregated with a neighbouring region (CEN for
IDF, OCC for PACA), which leads to studying only 10 re-
gions.

Formatted CSV files for these two datasets are available in
the Supplement.

2.4 Wind farms information

To be able to simulate wind-power outputs using a physical
method (described in Sect. 3.3), the following information
was gathered for every wind farm in France:
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Table 2. Information on the wind-speed measurements used in the study: location (approximate for confidential data) and surrounding
environment; LIDAR/anemometers heights; measurement time period (1 to 3 years) and availabilities over this period: availability of the

observations alone and availability of combined observed and modelled datasets.

SIRTA S1 Fl1 F2 F3

Ml M2 M3

Northern France: rather flat terrain.

Southern France: mountains.

SIRTA (48.72° N, 2.21° E): hilly (plateau).

M1 (ARA): elevation ~ 1200 m.

Location S1 (region HDF): hilly, close to the sea (~ 15 km). M2 (OCC): sharp valley, close
F1 (HDF): flat terrain. to the sea (30 km).
F2 & F3 (CEN): very flat terrain. M3 (OCC): elevation ~ 1000 m.
Height above ground (m) 100 65 90 80 80 65 55 80
Period (years) 2014-2016  2017-2018 2017 2018 2018 2016-2018 2018 2018
Observation availability 94.1 % 993% 989% 993% 99.3% 959% 999%  97.3%
All data availability 93.5 % 90.1% 922% 87.6% 87.6% 894% 882%  855%

50°N

48°N

46°N

44°N

T T T
0 500 1000 1500
Terrain altitude (m)

Figure 2. Map of continental France: wind farms installed by the
end of 2017 (dots) with colours depending on the administrative
region (annotated acronyms, see full names in Sect. 2.3) and orog-
raphy (grey shades).

geographic coordinates, and corresponding city in the
Enedis database (Sect. 2.3),

commissioning date (and decommissioning date if the
farm was dismantled),

capacity,

turbine model and associated power curve,

hub height.

The main source of information was The Wind Power
database (TWP, 2020), checked and completed with infor-
mation coming mainly from Google Maps (satellite views),
Open Street Map, French Ministry for ecology and regional
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authorities (DREAL). The resulting list of all the farms in-
stalled before the end of 2017 is available as a CSV file in
the Suppplement.

There are 1217 wind farms, whose locations are shown
in Fig. 2. The hub height was missing at 199 locations. For
these farms, the median height of all farms with the same tur-
bine model was used. The turbines power curves were also
obtained from The Wind Power database. Turbines whose
power curve was missing in the database (it was the case for
64 farms) were replaced by a turbine with similar characteris-
tics (diameter, rated power, rated speed, cut-in speed, cut-out
speed).

3 Methods

This section presents the methods used to extract 30 min
wind-speed series from the five studied datasets (Sect. 3.1);
to compare observed and modelled wind speeds (Sect. 3.2);
to convert wind speeds into wind-power series (Sect. 3.3)
and finally to compare observed and simulated power out-
puts (Sect. 3.4).

3.1 Extracting modelled wind speeds

Wind-speed fields are extracted from the numerical datasets
at two or more heights (see Table 1), either directly if the
wind speed is an available variable, or computed from merid-
ional and zonal wind components.

At each selected location, wind speeds are interpolated:

1. Spatially to the geographic coordinates using bilinear
interpolation, except for the highest resolution datasets
NEWA and AROME where the nearest land point was
used.

2. In time to a 30 min step (linear interpolation for each
available level).
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3. Vertically to the anemometer height or turbine hub
height using a power law fit on the 2 closest levels.
The wind speed wy at height / is computed from wind
speeds w; and wy at heights 4 and k> using Egs. (1)
and (2):

h o
wh = wi <E> ey

. In(wy) — In(wy)
T Wy -G @

The power law (Eq. 1, e.g. Bailey et al., 1997; Brower,
2012) is often used for extrapolating wind speeds from
a single height (typically 10 m) using a fixed value of
the wind shear exponent « (typically 0.143, e.g. Troc-
coli et al., 2018; Lled¢ et al., 2019). In reality, the shear
varies with atmospheric stability, so using an average o
introduces errors (Brower, 2012). Here, « is computed
at each time step using Eq. (2), which comes from solv-
ing the power law for heights /1 and h».

3.2 Comparing modelled and observed wind speeds

At each mast/LIDAR location, the observed 30 min wind-
speed series is joined with the wind-speed series extracted
from the five numerical datasets. A time step is removed from
all time series if any dataset or observation is missing. These
time series are used to compute several metrics. The results in
Sect. 4.2 show those that were found as the most interesting
ones: correlation coefficients, bias and the average diurnal
cycles.

3.3 Converting wind speed to power output

Modelled wind speeds are extracted as described in Sect. 3.1
at the coordinates and hub height of every wind farm in
France, and then transformed to production using the tur-
bine’s power curve. The theoretical power curve is smoothed
with a Gaussian filter in a similar way as Staffell and Pfen-
ninger (2016). The purpose of this filter is to better repre-
sent the hourly average output of a whole farm, instead of
the instantaneous output of a single turbine. Here the width
of the Gaussian filter, which is a function of wind speed w,
is 0 =0.240.1 x wms~!. It is smaller than in Staffell and
Pfenninger (2016) because the productions are averaged over
30 min instead of an hour. This filter changes the power curve
mainly at high wind speeds in order to smooth the sharp de-
crease of theoretical power curves at the cut-out wind speed.

The resulting 30 min wind-power time series are too op-
timistic because they do not take into account any loss. Re-
moving losses from gross production to get “real-life” net
production is a very important part of the wind resource as-
sessment methodology and under-estimating the losses have
led to over-estimating the resource in many past projects
(Brower, 2012, see Sect. 16.6). In simulations however they
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are not always considered. It is not a problem with statisti-
cal methods that train on observed production but it is with
purely physical methods. Note that methods combining phys-
ical modelling and bias corrections may take into account
losses in a hidden way. For example in Staffell and Pfen-
ninger (2016), the wind speed bias correction fit using ob-
served national capacity factors corrects not only the bias of
the underlying MERRA data but probably also the losses that
are not accounted for in their virtual wind farm model.
Losses come from:

1. non-optimal conditions that make the turbines produce
less than theoretically: lower air density than reference,
turbulences, misalignment to the wind flow, etc. (ac-
cording to Brower (2012), typical values range from 2 %
to 5 %), and also dirty blades and other environment im-
pacts [1 % to 6 %],

2. electrical losses of all components of the wind farm
[2 % to 3 %],

3. stops due to failures or to maintenance operations [2 %
to 10 %],

4. wake effects inside the wind farm or caused by a very
close farm [3 % to 15 %],

5. curtailments, i.e. voluntary reduction of power output
because of grid congestion or to reduce environmental
impacts such as noise or bat fatalities [0 % to 5 %].

The overall loss factor has a typical value of 18.5 % within
a wide range from 7.8 % to 37 % (Brower, 2012). It is site-
dependent but also varies in time as external factors change
and turbine performance tends to decrease with age (Staffell
and Green, 2013).

In this study the loss factor A is taken as 15 % as a most
probable value (the simulated wind-power series are multi-
plied by 0.85). This choice was confirmed by local energy
outputs of wind farms in the vicinity of the measurement
masts: at places with no wind-speed bias, using A = 15 % en-
abled to remove the wind-power bias. However this value is
surely not exact for all wind farms. For further discussion,
the results were also computed for several A ranging from
10 % to 30 %.

3.4 Comparing simulated and observed wind-power
outputs

The power-output time series are aggregated in two different
ways:

1. Spatial aggregation over regions. These regional times
series are compared to the RTE database. As for the
wind-speed time series, correlation coefficients, bias
and diurnal cycles are investigated.
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2. Spatial aggregation over cities and time aggregation
over the years. These annual sums of energy are com-
pared to the Enedis database, in terms of bias only since
they are not time series.

The spatial aggregation at the local scale takes into account
that a city may correspond to several wind farms but also that
a wind farm may be scattered over several cities (having to
sum a small number of cities from the Enedis database). A
year is discarded if the installed capacity of the city changed
during the year (if a farm was installed or dismantled). The
number of local aggregates varies from 386 in 2011 to 651
in 2017.

The results of these comparisons are presented in Sect. 4.3.

4 Results

After highlighting an issue discovered in ERAS wind speeds,
this Section presents the results from the direct validation us-
ing wind-speed observations (Sect. 4.2) and from the indirect
validation using power and energy observations (Sect. 4.3).

4.1 Issue in ERA5 diurnal cycles

The author discovered an issue with the diurnal cycles of
wind speeds in ERAS5. The wind speeds at 10m, 100 m
and also on lower model levels, exhibit gaps at 10:00 UTC
and following hours and similarly but in a lesser extent at
22:00 UTC. The wind deficit at 10:00 UTC may be larger
than 0.5ms~! on average. Examples are given below, in
Sect. 4.2 with average diurnal cycles drawn in Fig. 3b-h.

The issue was reported to ECMWF which acknowledged
the problem, which is linked to the assimilation process, af-
fects mostly low latitude oceanic regions but also Europe and
North America, and is not possible to correct (ERAS data
documentation, 2020). The issue appears at both 10:00 and
22:00 UTC but is more visible in convective atmospheric
conditions thus appearing mostly at 10:00 UTC, during the
day, over continental France.

To address this issue, ERAS forecasts (denoted “fc” here-
after) were downloaded and studied in addition to the usual
analysis data (denoted “an”). The forecasts do not exhibit
the issue at 10:00 and 22:00 UTC but there may be jumps at
07:00 and 19:00 UTC when moving from one forecast stream
onto the next. These jumps are small or not visible over con-
tinental France.

4.2 Wind-speed validation

The wind-speed inter-comparison at the eight measurement
locations are shown in Fig. 3: Fig. 3a summarizes the bias
and correlation at all locations; Fig. 3b—h show the average
diurnal cycles at all locations except F3, which is very similar
to F2.

https://doi.org/10.5194/asr-17-63-2020

Figure 3a shows that AROME (in red) and COSMO-REA6
(in yellow) are the only two datasets that have small bi-
ases (absolute value below 0.6 ms~1) and high correlation
coefficients (above 0.86) at all locations. AROME repre-
sents quite well the shape of the observed diurnal cycle in
simple terrains (sites SIRTA, F1-F3) and shows only small
departures in more complex environments: either a general
bias (sites M1 and M3) or a too small amplitude (sites S1
and M2). COSMO-REAG®6 has often slightly better correla-
tions than AROME (above 0.87) and small but rather neg-
ative biases. But it is struggling with diurnal cycles: at the
three locations in flat environments, the cycles are flatter than
the observed ones, with a negative bias at night. This can be
linked to the issue detailed by Heppelmann et al. (2017): dif-
ficulties with stable conditions, with nocturnal low-level jets
and with vertical mixing after sunrise, originating from the
boundary layer turbulence scheme in the COSMO model. In
the more complex environments (sites S1 and M1-M3), di-
urnal cycles have a form closer to the observed ones, but it
could be because the measurements in these locations hap-
pen to be at lower levels (below or close to 60 m), which are
less affected by the issue.

ERAS (in dark blues) shows the highest correlations
(mostly above 0.9) except in mountainous areas (sites Ms de-
picted with triangles in Fig. 3a), with a minimum of 0.77 at
site M1. ERAS exhibits negative biases around —0.5ms™!
in flat areas and larger in mountainous regions (down to
—1.7ms~! at site M3). Using the forecasts instead of the
analysis has little impact on the correlations and biases. The
main difference between the two is seen in the diurnal cy-
cles: while the analyses exhibit a sharp decrease between
09:00 and 10:00 UTC, the forecasts do not. The wind deficit
lasts several hours, up to 19:00 UTC. The deficit is larger in
northern regions and does not appear at one site, M2, which is
in a valley surrounded by high mountains in Southern France,
close to the Mediterranean Sea. Apart from this issue, ERAS
shows very good skills with the diurnal cycle, even in com-
plex environments: there is a bias but the form is good.

MERRA-2 (in light blue) has good correlations at sites
with simple terrain (above 0.85) but over-estimates the wind
speed, especially at night. The bias reaches 1.35ms™! at
SIRTA and 0.94ms~! at site F1. At the mountainous sites,
MERRA-2 has negative biases (minimum of —0.93 ms™! at
site M2) and the correlations drop (down to 0.75 at site M1).
The diurnal cycles are not well depicted, especially at the
sites with complex terrain.

NEWA (in orange) has biases ranging from —0.24 to
0.91ms~!, with a rather positive tendency. Biases are
smaller than those of the large-scale reanalyses in most cases
and comparable to the high-resolution datasets. The corre-
lations however are much worse. With a median of 0.82,
NEWA has the lowest correlation at all sites except M1 where
ERAS and MERRA-2 are worse. The fact that NEWA has
30 min outputs while the other datasets are linearly interpo-
lated from hourly outputs may be a disadvantage for this met-
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Figure 3. Comparison of modelled and measured wind speeds at 8 locations. (a) For each location (identified by marker style) and each
model (identified by marker colour): bias (model — observation, on the y-axis) versus correlation coefficient (on the x-axis) of the 30 min
time series. The time period depends on the location: see Table 2. (b-h) Average diurnal cycles of the observed (in black) and modelled (in
colours) wind speeds at all locations except F3 which is extremely similar to F2 (same time period and very close locations). See location

characteristics in Table 2.

ric: the higher 30 min variability being not in phase with the
observations, degrades the correlation coefficient. The low
correlations are also explained by the diurnal cycles, which
show that physical processes in the boundary layer are not
well reflected by NEWA. The diurnal cycles are far from the
observed ones with sometimes inversed variations (M2). All
sites exhibit a positive bias at night and a seasonal analy-
sis finds larger biases in winter (not shown). An interesting
example is site S1, where NEWA has a bias close to zero:
the diurnal cycle shows that there is in fact a positive bias at
night, offset by a negative bias during the day. The modelled
diurnal variations are not in phase with the observed ones.

This wind-speed analysis is limited by the small number of
sites, which impedes general conclusions. A wider analysis
is conducted using wind-power data.

4.3 Wind-power validation

The first approach using RTE 30 min time series informs
about the dynamics of the simulations. Figure 4 shows the
comparison between observed and simulated productions ag-
gregated at the regional scale: Fig. 4a summarizes biases and
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correlations for France and all regions; Fig. 4b—e shows the
average diurnal cycles for France and three example regions.
Wind farms are mostly located in HDF and GE. Each of these
two regions has almost a quarter of the national installed ca-
pacity. Their diurnal cycles are very similar to the country’s
cycle, drawn in Fig. 4b, and therefore are not shown here.
The third, fourth and fifth regions (between 10 % and 7 % of
the national capacity) are OCC, CEN and BRI. They show
rather different cycles, which are shown in Fig. 4e, d and c.

This regional approach is complemented by local (but
annual) information using the Enedis database. Figure 5
shows the local biases. A positive (resp. negative) bias in red
(resp. blue) means that the model-based simulation overesti-
mates (resp. underestimates) the observed production. Some
large local errors in Fig. 5 may originate from errors either in
the Enedis database or when linking the Enedis database to
the list of wind farms, or from an anomalous observed pro-
duction of an under-performing wind farm. The interest is not
about those isolated singular points but about the general pat-
tern over France and in particular inside each administrative
region.
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Figure 4. Comparison of modelled and measured wind-power production for France in 2015. (a) For each region (identified by marker style)
and each model (identified by marker colour): bias in percent of the installed capacity (model — observation, on the y-axis) versus correlation
coefficient (on the x-axis) of the 30 min wind-power time series. See region map in Fig. 2. (b—e) Average diurnal cycles of the observed (in

black) and modelled (in colours) wind-power capacity factors for the whole France (b), Brittany (c), Centre summed with Ile-de-France (d)
and Occitanie summed with PACA (e).
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Figure 5. Local biases of wind-power production simulations based on MERRA-2 (a), ERAS (forecasts) (b), COSMO-REAG (c), NEWA (d)
and AROME (e), compared to Enedis database at city scale. Bias (model — observation) in average power expressed in percent of the city
installed capacity. Year 2015, loss factor of 15 %.
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The following scores and figures are given:

— For a loss factor of 15 %. This assumption is discussed
in Sect. 5.1.

— For year 2015 as an example; they are similar for all
available years, see discussion in Sect. 5.2.

MERRA-2 has the largest biases (6.9 % for France) and
the lowest correlations (0.94 for France) (Fig. 4a). The diur-
nal cycles show that the overestimation comes mostly from
the night time (Fig. 4b). At the local scale (Fig. 5) the produc-
tion is largely overestimated in the northern part of France:
the median bias at the local scale is 9.2 % of the installed
capacity, whereas the average production of a wind farm is
around 25 % of the installed capacity. Therefore, if computed
in terms of the local observed production, the median bias in
northern regions is 39 %. In the southern mountainous re-
gions on the contrary, MERRA-2 largely underestimates the
production: the median bias is —5.5% (—22 % of the ob-
served production). This under-estimation is also seen in the
diurnal cycles of the corresponding regions: OCC & PACA
in Fig. 4e and ARA (not shown).

ERAS has the highest correlations for France (0.987) and
all regions except in mountainous areas (ARA, OCC, and
also BFC) (Fig. 4a). The diurnal variations are well repre-
sented (except for the problem at 10:00 UTC and ahead, in
the analysis). The biases are mostly negative (—3.4 % for
France) and very large in the mountains (Fig. 4). At the local
scale, the median bias is —2.0 % in the northern regions and
—10.9 % in the southern mountainous regions (resp. —8 %
and —48 % of the observed production). Some positive bi-
ases appear along the coasts, especially in Brittany (Fig. 5).

For NEWA, the position is slightly different than with the
wind-speed validation, where it had the worst correlations
but little bias. Here the correlations are a little better than for
MERRA-2 but the bias is large (5.1 % for France) (Fig. 4a).
The tendency towards positive bias is enhanced when going
to production, probably because of the large over-estimations
at night. The local biases are positive 90 % of the time; the
median is 5.4 % of the installed capacity (23 % of the ob-
served production) (Fig. 5).

AROME and COSMO-REAG®6 have very high correlations
(0.986 and 0.976 for France). They are just behind ERAS ex-
cept in mountainous regions where they do better (Fig. 4a).
Diurnal cycles are well represented by AROME but not by
COSMO-REA6 which tends to overestimate the production
during the day and underestimate it at night (Fig. 4b). They
both have low biases at the local scale (Fig. 5), with a median
bias close to zero and a distribution slightly skewed towards
positive (resp. negative) values for AROME (resp. COSMO-
REAG6). The first and third quartiles of the local biases
are —2.1% and 3.2 % for AROME; —3.5% and 2.5 % for
COSMO-REAG.
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5 Discussion

This Section discusses the results: the loss factor and its im-
pact on the bias scores in Sect. 5.1, the inter-annual vari-
ability in Sect. 5.2 and consistency with previous studies in
Sect. 5.3.

5.1 Loss factor

An assumption was made for the loss factor. A = 15 % was
chosen as a most probable value but is not the truth. This
impacts the bias scores but do not fundamentally change
the conclusions. Simulating with a loss factor of 10%
(resp. 20 %) instead of 15 % would add (resp. subtract) about
1.5 % to all biases. This is not such a big change, because
biases are expressed in % of the installed capacity while the
loss factor is expressed in terms of gross production whose
average value is usually below 30 % of the installed capac-
ity. Examples of local biases with AROME for various loss
factors are shown in Fig. 6. Therefore in the results, zero,
—2 % or 42 % are rather equivalent bias scores because it is
not possible to know the actual amount of loss at each farm.
With such small local biases as those found with AROME
or COSMO-REAG, the error due to wind-speed biases in the
numerical datasets reaches the same order as the uncertainty
about the physical modelisation of losses. It is impossible to
say that one dataset is better than the other. They both create
realistic simulations. But the other datasets have much larger
biases, in particular MERRA-2, which has still mostly posi-
tive biases in northern France even with a loss factor of 30 %.

When comparing all datasets, similar behaviours appear in
some areas. For example in the northern part of CEN and the
western part of GE, all datasets have lower biases (smaller
positive biases or larger negative biases) than in other north-
ern areas. It could be that these field areas are flatter than the
numerical models expect. If the surface roughness is overes-
timated, the wind speed would be underestimated.

Another region of interest is Brittany (BRI) where there
are many positive biases at the local scale. It is the only
region for which all datasets, even ERAS, overestimate the
aggregated production. Part of the explanation may be that
wind farms in this region experience much larger losses. In
Brittany, we need A = 25 % or 30 % to set most AROME lo-
cal biases to zero for example (Fig. 6). The regional diurnal
cycles in Fig. 4c show an interesting phenomenon at night.
You can see steps in the observed production (black line)
in the morning and in the evening. They correspond to end-
ing and starting hours of night-time curtailment: the turbines
are slowed down between 22:00 and 07:00 LT (local time)
(i.e. between 20:00 and 05:00 UTC in summer and between
21:00 and 06:00 UTC in winter) to reduce noise impacts on
neighbour inhabitants. A seasonal annalysis (not shown) in-
dicates that the curtailment is particularly important in the
winter. These curtailments contribute to the overestimations
at night but do not explain everything. There could be other
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Figure 6. Local biases of wind-power production simulations based on AROME for year 2015 for loss factors varying from 0 % to 30 %.

Same scale as Fig. 5.

losses, for example due to the rather old age of the farms in
this region. Part of the overestimation may also come from
numerical models underestimating wind speeds in this hilly
region encircled by the sea. In this study however, there was
unfortunately no available wind-speed observation in Brit-
tany to evaluate the relative contributions of losses and wind
biases.

5.2 Inter-annual variability

The results were presented for year 2015 but were conducted
for all available years. They all look the same (example with
ERAS5 in Fig. 7), except that the number of local aggregates
increases.

The period of the study is very short considering the large
variability of wind speed on inter-annual to decadal time
scales. In fact this period is biased low when compared with
past decades (and especially the period around 2000, which
saw much higher wind speeds in northern France, related
to a very positive phase of the North Atlantic Oscillation).
2015 is the only year above the long-term average and 2016—
2017 are very low years. To be thourough one would have
liked to see also a very high year in this period. But the fact
that the results are the same for all years, especially 2015
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and 2017, is reassuring about the robustness of the conclu-
sions in the long-term.

5.3 Consistency with previous studies

For MERRA or MERRA-2 simulations aggregated at the na-
tional levels in Ninja, Staffell and Pfenninger (2016) found
correction factors indicating negative wind-speed biases in
southern Europe and positive biases in countries bordering
the North, Baltic and Celtic seas. Monforti and Gonzalez-
Aparicio (2017) found concordant results for MERRA-based
simulations with their analysis on sensitivity to wind speed.
The present study at the local scale with MERRA-2 (Fig. 5a)
shows how this line dividing Europe is crossing France, sep-
arating the Mediterranean region from the western-northern
regions. For France, a unique bias correction fit at the na-
tional level is therefore not adapted.

Olsen et al. (2019) presented a validation of NEWA, and
the underlying ERAS data, using wind-speed measurements
from Vestas, which is part of the NEWA consortium. There
were almost 300 masts over Europe (including 30 in France
but the results are only shown on the whole set). Their re-
sults are that ERAS under-estimates the wind speed: aver-
age bias of —1.5ms™!, the bias increasing with the rugged-
ness index (RIX). It is in agreement with what is observed
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(a) ERAS5 (fc) ; 2011 ; A=15%

(b) ERA5 (fc) ; 2012 ; A=15%

(c) ERAS5 (fc) ; 2013 ; A=15%

(f) ERA5 (fc) ; 2017 ; A=15%

Figure 7. Local biases of wind-power production simulations based on ERAS5 (forecasts) for years 2011 to 2017, except 2015 shown in

Fig. 5b. Same scale as Fig. 5.

in this study. For NEWA, Olsen et al. (2019) finds no bias
on average (bias of 0.02ms_1), but there is a rather pos-
itive bias in flat terrains (0.21 ms~!, on average for masts
with RIX=0%) and a negative one for complex terrains
(—0.25ms~!, on average for masts with RIX > 2 %). More-
over simulations using a generic turbine power curve show
that, even though there is no wind-speed bias on average, the
power generation is overestimated by 6 % on average (11 %
in flat terrains). This study shows very compatible results.
One difference is that two of the mountainous sites have large
positive biases, not negative, but they still have absolute bi-
ases lower than ERAS. The bias was also seen enhanced
when going to production. The median local bias of 5.4 %,
lower in mountainous areas, is in line with Olsen et al. (2019)
findings.

This evaluation tends to advocate towards NWP model
with their own assimilation system, such as COSMO and
AROME, rather than dynamical downscaling. Their is also
a question about the WRF parameterizations chosen for
NEWA. The main sensitivity experiment that was conducted
to choose the parameterizations was using masts measure-
ments located only in Northern Europe and at locations ei-
ther offshore or close to the sea (Witha et al., 2019). Maybe
this choice was not very appropriate for France.
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Evaluating model skills is not an easy task, even when
proper observations are available, because many metrics are
possible and skills depend on the application. The study
shows that considering only averaged metrics, such as bias,
is not sufficient. It could not have detected the assimilation
problem in ERAS nor the turbulence problem in COSMO-
REAG6. The NEWA validation using average wind-speed bias
did not detect the offset between night-time overestimation
and day-time underestimation of wind speeds. Looking at di-
urnal cycles is really interesting, not only because they re-
veal hidden intra-day biases, but also because they are a good
measure of how well the boundary layer physical processes
are parameterized in the models. Drawing separate diurnal
cycles per seasons (not shown here) may be even more re-
vealing because many issues, especially those linked to con-
vection, impact differently winter and summer times.

6 Conclusions

When it comes to simulating wind-power production, no
numerical weather model is perfect but much progress has
been made over the last years. Considering large-scale global
models, the new reanalysis ERAS shows very good skills.
This study over France shows that it outperforms MERRA-
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2, which was largely used in the wind industry so far, with
lower bias, higher correlation, and better diurnal variabil-
ity. Yet, some problems appear. Firstly an assimilation prob-
lem that creates a negative bias in wind speed at 10:00 UTC,
takes hours to recover and therefore impacts the diurnal cy-
cle. Correcting this problem (for example by using the fore-
cast instead of the analysis) may be very important, depend-
ing on the application. Secondly ERAS underestimates the
wind speeds and this may lead to some major underestima-
tion of the wind energy production, especially in areas with
complex topography, if not corrected. Some higher resolu-
tion models, such as AROME or COSMO-REA6 show very
good skills too, reducing the bias and increasing the correla-
tion in complex topography. Yet, COSMO-REAG6 has wrong
diurnal variations probably due to its turbulence scheme and
AROME is not very homogeneous because it is not a reanal-
ysis. High-resolution models are not all equally skilled: the
mesoscale data from NEWA have disappointing results com-
pared to the other two models and even compared to ERAS
on which it is based.

For various applications at EDF, the present study led to
implementing a method using ERAS reanalysis (fc) with a
local wind-speed correction trained with either AROME or
COSMO-REAG6. The simple physical method makes it pos-
sible to simulate any future farm when no observation (nei-
ther wind speed nor production) is available, given only the
following information: geographical coordinates, hub height,
theoretical power curve and loss assumptions (the losses are
implemented in a different way than in this study in or-
der keep capacity factors ranging from O to 1). The use of
ERAS as the main data source enables to simulate over sev-
eral decades (starting from 1950 when ERAS extension will
be available), which is necessary for some applications. For
prospective studies on a larger scale, it is also possible to use
this method using a bottom-up approach, i.e. aggregating at
the regional or national scale the local simulations made for
a whole fleet of future wind farms.

New upcoming reanalyses could be evaluated in a simi-
lar way in the future, for example the Copernicus regional
reanalysis for Europe (based on ERAS), and a new ver-
sion of COSMO-REAG6 using ERAS instead of ERA-Interim
as boundary conditions and a more recent version of the
COSMO model, which could have an improved turbulence
scheme.

Data availability. Regional 30min power production data are
accessible from RTE website: https://www.rte-france.com/fr/
eco2mix/eco2mix-telechargement (last access: 30 January 2020)
(RTE, 2020b). Local annual energy production data are accessible
from Enedis Open Data website: https://data.enedis.fr/explore/
dataset/production-electrique- par-filiere-a-la-maille-commune/

information/ (last access: 30 January 2020) (Enedis, 2020).
Formatted CSV files containing these two datasets, as well as the
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list of wind farms information, are available as a Supplement to
this article.

ERAS reanalysis is available from C3S Climate Data Store, see
https://doi.org/10.24381/cds.adbb2d47 (C3S, 2017).

MERRA-2 reanalysis is available from NASA, see https:
//cmr.earthdata.nasa.gov/search/concepts/C1276812821-GES_
DISC.html (last access: 20 January 2020) (GMAO, 2015).

COSMO-REAG6 reanalysis is available from the University of
Bonn and DWD. Pre-processed wind speeds at fixed heights, easier
to use than the raw data, are available at ftp://opendata.dwd.de/
climate_environment/REA/COSMO_REAG6/converted/hourly/2D/
(last access: 20 January 2020) (HErZ and DWD, 2020).

NEWA mesoscale wind-speed data are available from the New
European Wind Atlas, a free, web-based application developed,
owned and operated by the NEWA Consortium. For additional in-
formation see https://www.neweuropeanwindatlas.eu/ (last access:
20 January 2020) (NEWA consortium, 2020).

AROME forecasts are available from Météo-France (freely
for the latest runs, with a provision fee for archives), see
https://donneespubliques.meteofrance.fr/?fond=produit&id_
produit=131&id_rubrique=51 (last access: 20 January 2020)
(Météo-France, 2020).

SIRTA data are accessible freely and free of cost, for public re-
search and teaching applications, see https://sirta.ipsl.fr/ (last ac-
cess: 20 January 2020) (Haeftelin et al., 2005). The masts measure-
ments used in the study are confidential, not accessible.
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