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Abstract. The subseasonal forecasts from the ECMWF (European Centre for Medium-Range Weather Fore-
casts) were used to construct weekly mean wind speed forecasts for the spatially aggregated area in Finland.
Reforecasts for the winters (November, December and January) of 2016–2017 and 2017–2018 were analysed.
The ERA-Interim reanalysis was used as observations and climatological forecasts. We evaluated two types of
forecasts, the deterministic forecasts and the probabilistic forecasts. Non-homogeneous Gaussian regression was
used to bias-adjust both types of forecasts. The forecasts proved to be skilful until the third week, but the longest
skilful lead time depends on the reference data sets and the verification scores used.

1 Introduction

Wind speed forecasts have many potential users that could
benefit from skilful forecasts in different time scales, rang-
ing from hourly to monthly forecasts. For example, short-
and medium-range forecasts of extreme wind speeds are of-
ten utilised in early warnings for severe weather (e.g., Neal
et al., 2014; Matsueda and Nakazawa, 2015). The growing
wind energy industry needs accurate wind speed forecasts in
shorter time scales (Pinson, 2013) as well as in the subsea-
sonal (from two weeks to one month) time scale (White et al.,
2017).

Forecasts for the subseasonal time frame have improved
greatly in recent years (e.g., Vitart, 2014; Buizza and Leut-
becher, 2015). In the subseasonal time scale, daily forecasts
for a single point are no longer skilful, but by aggregating
forecasts either in time or space (or both), the random errors
might cancel out, while the possible signal is preserved.

This study concentrates on subseasonal wind forecasts in
winter, as forecasts for winter in northern Europe are known
to be more skilful than forecasts for other seasons (e.g.,
Lynch et al., 2014). Further, we consider only wind speed,
not direction. We evaluated two types of forecasts: determin-
istic and probabilistic forecasts. Forecasts are spatially and
temporally averaged.

It is well known that, especially with longer lead times,
the ensemble forecasts often have a systematic bias and the
spread of ensemble members can be too small (e.g., Vitart,
2014; Toth and Buizza, 2018). Therefore, raw model output
as forecasts should not be used, but forecasts should be bias-
adjusted. In this study, we explore the use of heteroscedas-
tic or non-homogeneous Gaussian regression (NGR) (Wilks,
2006) for the bias-adjustment. NGR is also known as EMOS,
or ensemble model output statistics (Gneiting et al., 2005).
We used the NGR implementation in the R package crch
(Messner et al., 2016).

This work was a part of the Climate services supporting
public activities and safety (CLIPS, 2016–2018) project (Er-
vasti et al., 2018) and we use the data collected during the
project.

2 Data and Methods

2.1 Forecasts and reference observations

The forecasts used in this study were extended-range fore-
casts of 10 m wind speed, provided by the ensemble pre-
diction system (EPS) from the ECMWF (European Cen-
tre for Medium-Range Weather Forecasts) (ECMWF, 2016).
The forecasts were issued twice a week, on Mondays and
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Thursdays. The horizontal resolution of the reforecasts was
0.4◦ and the temporal resolution 6 h. Reforecasts have been
made for the same dates as operational forecasts for the past
20 years. While forecasts have an ensemble of 51 members
(the control run and the perturbed members), reforecasts have
only 11 members (the control run and the perturbed mem-
bers).

Following Lynch et al. (2014), we concentrated on winter
forecasts and the lead times up to the start of the third week.
The CLIPS project covered two winters (2016–2017 and
2017–2018), but two winters of operational forecasts would
have been a rather small data set to make meaningful infer-
ences about how operational wind forecasts perform, and we
decided to concentrate on the reforecasts. Thus, reforecasts
of winters 2016–2017 and 2017–2018 were analysed; the
winter months included November, December and January.
Starting from the beginning of each reforecast, we compute
a weekly forecast every two days and try to determine how
long the forecasts remain skilful (as defined in Sect. 2.3).
Weekly forecasts are the mean of seven days of forecasts
(7× 4= 28 time steps). In all, there were about 1000 re-
forecasts for each lead time, that is, 20 reforecasts for every
50 operational forecasts (two years× three months× four
weeks in a month× twice a week). The years 1987–2017
from the ERA-Interim reanalysis (Dee et al., 2011) were
used as observations and as climatological reference fore-
casts. These climatological forecasts are based on the dis-
tribution we get from the weekly values of the different years
for the same date. These can then be used either as an ensem-
ble or, after taking the mean, as a deterministic forecast.

The same data cannot be used to both fit and evaluate
the performance of the NGR, so we split the reforecasts and
ERA-Interim data into two data sets: the training data set of
winters starting on odd years and the validation data set of
winters starting on even years. The training data set was used
to fit the NGR, while the validation data set was used to eval-
uate the adjusted reforecasts. As the ERA-Interim data set
included 31 years, the reference forecasts from ERA-Interim
were based on 30 years, omitting the year under study.

We evaluated both the deterministic forecasts and proba-
bilistic forecasts. The forecasts were the weekly means of the
wind speed, spatially aggregated for the area shown in Fig. 1.
The area under study was chosen to be rather homogeneous
while inside Finnish borders, as the coastal and more moun-
tainous northern areas were mostly not included. Note that
it would have been possible to hunt for the longest possible
skilful lead time by strategically changing the area shown in
Fig. 1, but we did not pursue this further. The exact area to
be forecasted depends on the end-user requirements and is
for future studies to determine.

The effect of seasonality on the forecast skill was removed
by subtracting the first three harmonics of the annual cycle.

Figure 1. The area used in the spatially averaged forecasts in Fin-
land.

2.2 Non-homogeneous Gaussian regression

In this study, NGR was used to correct the mean weekly fore-
cast, not the forecasts at each time step, as in, e.g., Thorarins-
dottir and Gneiting (2010) or Baran and Lerch (2016). This
simplifies the modelling somewhat; according to the central
limit theorem (e.g., Wilks, 2019), the distribution of means
will tend to be Gaussian in shape.

NGR provides the Gaussian probability distribution

yt =N [µ,σ ] (1)

where µ is the mean, and σ is the standard deviation. In con-
trast to the regular Gaussian regression, σ is not a constant.
The mean µ is

µ= a+ b x (2)

where x is the ensemble mean and the standard deviation σ
is

logσ = c+ d s (3)

where s is the ensemble standard deviation. The constants
a, b, c, and d are then fitted (or trained) with the data. The
logarithm in Eq. (3) is used to keep the estimated σ positive
and is not strictly necessary, but Messner et al. (2016) note
that problems in the numerical optimisation can occur if it is
not used.

In this study, deterministic forecasts were the mean µ pa-
rameter of the NGR. The probabilistic forecasts utilise both
the mean and the standard deviation parameters, so both the
bias and spread of forecasts are adjusted.
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2.3 Verification methods

For the verification terminology, we follow Messner et al.
(2016). For the deterministic forecasts, the commonly used
measure is the mean squared error (MSE)

MSE=
1
n

n∑
i=1

(yi − oi)2, (4)

where y is the forecast (here the mean µ parameter of the
NGR) and o is the observation (here the weekly mean of
ERA-Interim). The MSE can be shown as the function of
the mean error (ME, 1

n
6(yi − oi)), the standard deviation of

observations and forecasts (so and sy), and their Pearson cor-
relation (ryo) (Wilks, 2019)

MSE= (ME)2
+ s2

y + s
2
o − 2sysoryo. (5)

For the perfect forecast, the MSE should be zero, implying
that the ME should be zero, so and sy should be equal, and
ryo should be one.

The continuous ranked probability score (CRPS) is used
for the probabilistic forecasts

CRPS=
∫
|F (y)−Fo(y)|2dx (6)

where F (y) and Fo(y) are the cumulative distribution func-
tions of the forecast and the observation. Scores were calcu-
lated using the scoringRules package (Jordan et al., 2019).
The CRPS can also be decomposed, but published methods
(Hersbach, 2000) involve ensemble forecasts, not probability
distributions as in this study, so we did not pursue decompo-
sition further.

For a score S, with the best possible score being zero, the
general form of a skill score (SS) is

SS= 1−
S

Sref
, (7)

where Sref is the score of the reference forecast. Here skill
scores of the MSE (MSESS) and the CRPS (CRPSS) are
used with the reference forecasts being climatological fore-
casts based on the ERA-Interim. The MSESS based on the
climatological reference forecasts is comparable to the co-
efficient of determination (R2) in linear regression (Wilks,
2019).

Now we can define skilful forecasts as forecasts with a
skill score higher than zero. And to be more precise, the fore-
cast is skilful at a statistically significant level, if zero is not
within confidence intervals (CIs). As we used both Monday
and Thursday forecasts, there is autocorrelation in the data,
so the effective number of forecasts is not as high as 1000
for each lead time. This must be taken into account when CIs
are calculated. Therefore, the CIs of verification measures
are calculated with block-bootstrap (e.g., Wilks, 2019). The
block size L= 15 was used, with L being calculated with the

software provided in Patton (2009). The number of bootstrap
samples was 5000.

The size of the reforecast ensemble (11 members)
is smaller than the size of the climatological ensemble
(30 members), and the CRPS values of NGR reforecasts
are not readily comparable with the climatological forecasts.
Therefore, we used the formula given by Ferro et al. (2008)
to estimate the CRPS as if the NGR ensemble would have
had the same number of members as climatological forecasts

CRPSadjust =
m(M + 1)
M(m+ 1)

CRPSoriginal, (8)

wherem= 11 is the original size andM = 30 is the new size.
The quality of probabilistic forecasts was also evaluated

using the relative operating characteristic (ROC) curves (see,
e.g., Wilks, 2019). Here we concentrate on the area under
the ROC curve (AUROC) that can be shown as a time series.
Values larger than 0.5 show skill, the best value being 1.0.
The ROC is often interpreted to show potential skill (Kharin
and Zwiers, 2003). We validated the probability of the fore-
casts of mean winds being greater than the 50th percentile
(calculated from the training data set).

3 Results

3.1 How the NGR changes unadjusted reforecasts

The NGR is not a black box and the change of the con-
stants of Eqs. (2) and (3) as the function of the lead time
gives insight into the performance of the method. The co-
efficient a, the constant of Eq. (2), grows as the lead time
increases, while b, the coefficient of the ensemble means, de-
creases (Fig. 2a). In practice, this means that as the lead time
increases the NGR pushes the forecast towards the climatol-
ogy. In our data set, the range of mean wind observations is
roughly from 2 m/s to 5 m/s, the mean being roughly 3.4 m/s.
Then, if we calculate fictive forecasts of 2–5 m/s as the func-
tion of the lead time (Fig. 2b), we see that the forecasts larger
(smaller) than the mean are increasingly reduced (increased)
as the lead time increases, so they tend to the climatological
mean, about 3.4 m/s.

For the data set here, d of Eq. (3), the coefficient of the
ensemble standard deviations was rather noisy and often not
statistically significant, and, without any notable change in
the results, only the constant c could be used (Fig. 2c). For
all lead times, the NGR standard deviation is slightly larger
than the unadjusted ensemble spread, and for longer lead
times both tend to the standard deviation of the observations
(Fig. 2c).

3.2 Verification results

The ME of both NGR adjusted reforecasts and climatologi-
cal forecasts is nearly zero (Fig. 3a), the zero being inside the
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Figure 2. The fitted coefficients for NGR as the function of lead time: (a) the mean (Eq. 2), and (b) how the ensemble mean of the unadjusted
or raw forecast is then modified by the NGR. (c) The standard deviation (Eq. 3, using only the intercept term) shown along with the ensemble
standard deviation of the unadjusted forecasts and the standard deviation of observations (based on ERA-Interim). To help interpreting the
standard deviation values, the logarithm was not used in Eq. (3). The training set, odd winters during 1997–2017, was used.

CIs. This is encouraging, as the ME of climatological fore-
casts should be zero, and the very small ME of reforecasts
suggests that the NGR succeeds in bias correction.

The correlation of NGR reforecasts decreases as the lead
time increases but remains positive at the last lead time cal-
culated (Fig. 3b). The correlation of climatological forecasts
is zero or slightly negative, but the zero remains encourag-
ingly inside the CIs because climatological forecasts should
not have any skill. The standard deviation of NGR reforecasts
is almost equal to that of the observations in the first lead
time (Fig. 3c), but decreases steadily, even though it remains
slightly larger than the standard deviation of climatological
forecasts. It is not surprising that the standard deviation of
NGR reforecasts decreases from larger values (similar to the
observations) to smaller values (similar to climatology), as
we have shown how the means of NGR reforecasts tend to
climatology (Fig. 2b).

The MSESS remains statistically significantly positive un-
til the lead time of 21 d, when the CI includes zero (Fig. 4a).
Skilful weekly forecasts cover almost all of the third week.
The original CRPSS (with 11 members in the ensemble)
remains statistically positive until the lead time of 19 d
(Fig. 4b), while its value is smaller than the MSESS for all
lead times. After estimating the CRPS for 30 members by
using Eq. (8) (Fig. 4c), the CRPSS remains positive for all
lead times. This might not be a sensible result. However, the
CRPSS values stabilise after the lead time of 21 d. There-
fore, not accounting for the smaller ensemble size might give
us too pessimistic a result, but using Eq. (8) might give us a
too optimistic a result.

The AUROC (Fig. 4d) remains higher than 0.5 for all lead
times considered here. This is not realistic, and it clearly
shows that we were not able to remove the effect of seasonal-
ity just by subtracting the first three harmonics. The AUROC

stabilises around a lead time of 21 d, so the result is consis-
tent with the MSESS and the CRPSS.

4 Discussion

Our results are comparable to those of Lynch et al. (2014),
who concluded that there is statistically significant skill in
predicting weekly mean wind speeds over areas of Europe at
lead times of at least 14–20 d. Lynch et al. (2014) used five
years of operational forecasts; their CIs were narrower than
ours, and they could make better inference using operational
forecasts.

Prior to analysis, we anticipated that the CRPSS (Fig. 4b
and c) would have remained skilful longer than the MSESS
(Fig. 4a), and the CRPSS would have been higher, because
the probabilistic forecasts contain more information than de-
terministic forecasts. While the MSE and the CRPS values
cannot be directly compared, deterministic and probabilis-
tic forecasts can be directly compared using the mean ab-
solute error (MAE) of the deterministic forecasts, because
the CRPS reduces to the MAE when the forecast is deter-
ministic. Therefore we calculated the MAE (or the CRPS,
as they are equal) of the deterministic forecasts and com-
pared it to the CRPS of the probabilistic climate forecasts,
and the MAE was smaller than the climatological CRPS
(or the CRPSS is greater than zero) only for the first two
lead times (not shown). So, not surprisingly, the probabilistic
forecasts do contain more information than the deterministic
forecasts, but as the skill scores show, deterministic forecasts
are better compared with their reference forecasts. How, then,
should we interpret this result? Maybe the deterministic ref-
erence forecasts could be improved; therefore, perhaps their
skill scores presented here are spuriously high and we should
concentrate on probabilistic results for a more realistic skill
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Figure 3. The verification measures of reforecasts (using the validation set, even winters 1996–2016) for the averaged area (Fig. 1). Refore-
casts are the mean of one week of 6-hourly reforecasts and start every two days. For reforecasts and climatological forecasts, the parts of the
MSE decomposition (Eq. 5) are: (a) the mean error, (b) correlation, and (c) standard deviation.

Figure 4. The verification measures of reforecasts (using the validation set, even winters 1996–2016) for the averaged area (Fig. 1). Re-
forecasts are the mean of one week of 6-hourly reforecasts and start every two days. The skill score for (a) the MSE, (b) the CRPS without
adjustment, (c) the CRPS adjusted with Eq. (8). (d) The area under ROC for the forecasts of mean winds greater than the 50th percentile.

assessment? Or maybe our probabilistic forecasts could be
improved, and meanwhile, the deterministic forecasts show
what kind of skill can be achieved in the future? A prudent
answer is always to choose the less skilful results, and to not
be overconfident.

The use of Eq. (8) should be carefully considered: Ferro
et al. (2008) developed the results for discrete ensemble fore-
casts, and it is unclear how applicable it is when the NGR is
used for forecasts. The smaller ensemble size still makes it
harder to estimate µ and σ , but is Eq. (8) an applicable esti-
mator for that?

It is also important to further investigate the impact of
the seasonal cycle on the verification results, as an uncriti-
cal reading of figures might suggest unrealistic trust in the
forecasts.

4.1 The usability of wind speed forecasts

The forecasts might be skilful even for the third week, but
the skill is still very low, even if the skill scores are non-
zero or positive. For example, an MSESS of around 0.1 can
be interpreted as 10 % of the variance explained, which is
very little for most applications. So it is not straightforward
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to see who is the potential user that could benefit from the
third-week forecasts. Using the categorisation of users by
Raftery (2016), we can assume that a casual, low stakes user
(“Should I wear a sweater or a short-sleeved shirt?”) might
not benefit much from these forecasts, but a user who un-
derstands how to use the probabilities in a decision theory
framework should be able to utilise the forecasts and benefit
from them if they ”play the game” long enough. For the wind
forecasts, such a user might be an energy company using re-
newable energy sources.

In general, the utility of forecasts is defined by the users, so
close co-operation and co-development of forecasts with the
users is useful, if not essential. Moreover, the mean weekly
wind itself might not be useful for most end users. For ex-
ample, warnings of extreme wind would need percentiles
higherthan 50 % (see, e.g., Friederichs et al., 2018) and wind
power forecasts would need the whole probability distribu-
tion as wind power has a non-linear response to wind speed
(Pinson and Messner, 2018).

4.2 Future research

It seems reasonable to assume that different reanalyses gen-
erate somewhat different climatologies and observations, im-
plying somewhat different skill scores based on different re-
analyses. This is especially relevant for a variable such as
wind, which is not so straight-forward to measure. So, the
use of more than one reanalysis might be useful in future
studies. In this study, we used the ERA-Interim as our refer-
ence, but more recent reanalyses, such as MERRA-2 (Gelaro
et al., 2017) and ERA5 (Hersbach et al., 2020) (which be-
came available after this project ended), would be natural
candidates to be used in further studies.

The bias-adjustment methods used here are only rudi-
mentary and could be improved. For example, Siegert and
Stephenson (2019) note that explicit spatiotemporal statis-
tical models are largely unexplored in subseasonal studies.
For weather forecasts, Rasp and Lerch (2018) compare NGR
with machine learning methods, and show that auxiliary in-
formation is needed to improve forecasts. For a subseasonal
range in northern America, one source of such information
might be indices such as the MJO or ENSO (Vigaud et al.,
2018). For Northern Europe, suitable indices might be the
QBO (e.g., Kidston et al., 2015) or the strength of the polar
vortex (Korhonen et al., 2020). Including such information
in NGR is rather straight-forward. Furthermore, the most ad-
vanced non-linear methods (such as deep learning, e.g., Liu
et al., 2016) need a large amount of training data to avoid
overfitting, and the data sets available in subseasonal fore-
casting are of relatively modest size. Therefore, NGR, train-
able with reasonable small data, is a feasible choice for future
applications.

5 Conclusions

We evaluated the weekly mean wind forecasts for Finland
based on the ECMWF forecasts. The NGR was used to cor-
rect the reforecasts. The skill of forecasts appears to be pos-
itive for the third week, but the longest skilful lead time de-
pends on the reference data sets, the scores used, and the cor-
rection methods. Also, two winters would have been a rather
short time span to make meaningful inferences on how op-
erational wind forecasts perform, so reforecasts with longer
time span are essential for comparison. Even then some un-
certainty remains. The needs and the competence of the end
users determine whether the forecasts are useful or not. The
forecasts would be most beneficial for users applying the
probabilities in the decision theory framework.
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