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Abstract. The European Committee for Standardization defines zonings and calculation criteria for different
European regions to assign snow loads for structural design. In the Alpine region these defaults are quite coarse;
countries therefore use their own products, and inconsistencies at national borders are a common problem.

A new methodology to derive a snow load map for Austria is presented, which is reproducible and could
be used across borders. It is based on (i) modeling snow loads with the specially developed 1SNOW model at
897 sophistically quality controlled snow depth series in Austria and neighboring countries and (ii) a generalized
additive model where covariates and their combinations are represented by penalized regression splines, fitted to
series of yearly snow load maxima derived in the first step. This results in spatially modeled snow load extremes.

The new approach outperforms a standard smooth model and is much more accurate than the currently used
Austrian snow load map when compared to the RMSE of the 50-year snow load return values through a cross-
validation procedure. No zoning is necessary, and the new map’s RMSE of station-wise estimated 50-year gen-
eralized extreme value (GEV) return levels gradually rises to 2.2 kN m−2 at an elevation of 2000 m. The bias is
0.18 kN m−2 and positive across all elevations. When restricting the range of validity of the new map to 2000 m
elevation, negative bias values that significantly underestimate 50-year snow loads at a very small number of
stations are the only objective problem that has to be solved before the new map can be proposed as a successor
of the current Austrian snow load map.

1 Introduction

The current European standard for structural design – Eu-
rocode EN 1991-1-3 (CEN, 2015) – defines rules to cal-
culate acceptable snow loads on constructions and build-
ings. It is based on snow load maps for different climate re-
gions, defining snow load zones. Within these zones a lin-
ear or quadratic “elevation–snow load relationship” is used
to calculate sk , the so-called characteristic snow load on the
ground, which in turn is based on an annual probability of ex-
ceedance of 0.02 and referred to as the return level of snow
load (in kN m−2) of a 50-year return period. EN 1991-1-3 de-
fines, for example, an “Alpine region” reproduced in Fig. 1,
where sk = (0.642 ·Z+ 0.009) ·

[
1+

(
A

728

)2]
, with Z being

the zone number as defined in the legend of Fig. 1 and A
being elevation of the location for which sk should be calcu-
lated (A≤ 1500 m a.s.l.). All strategies outlined in EN 1991-
1-3 for how to consider the various influences of roof shapes,
thermal properties, wind drift, etc. are ultimately connected
to sk , making it the most crucial snow-load-related quantity
for structural design.

The aim of this default snow load definition by the Eu-
ropean Committee for Standardization (CEN) is “to elim-
inate or reduce the inconsistencies of snow load values in
CEN member states and at borderlines between countries”
(CEN, 2015). It results from comprehensive research work
of the late 1990s under contracts of the European Commis-
sion (Sanpaolesi et al., 1998, 1999). However, Annex C of
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Figure 1. Alpine region snow loads at sea level as provided by the
Eurocode EN 1991-1-3 (CEN, 2015). Together with the respective
elevation–snow load relationship (see text), the characteristic snow
load on the ground (sk) can be calculated for every location below
1500 m elevation.

EN 1991-1-3, where maps and sk relations are defined, has
an informative character, not a normative. Member states
can define their own maps, as has already been done be-
fore the Eurocode suggestions were developed. In Austria,
ÖNORM B 4013, (ON, 1983), for example, already pro-
vides a map with much more attention to detail than the Eu-
rocode map. Snowfall in Austria is characterized by a com-
plex climatic setting (Auer et al., 2006) as well as the coun-
try’s structured topography, leading to small-scale shading
and enhancement effects for precipitation (e.g., Wastl and
Zängl, 2010), frequent valley inversions, and spatially and
temporally highly diverse snow lines (e.g., Unterstrasser and
Zängl, 2006). In 2006, when the Austrian standard was based
on Eurocode for the first time (ON, 2006), the zoning was
adopted to make use of the abovementioned relation. Still,
the richness of detail of the map was kept rather than us-
ing the coarse Eurocode suggestion (reprinted in Fig. 1; de-
tails on the development of the Austrian snow load standard
are given in Winkler et al., 2020). Austria’s neighbors also
use their own snow load maps (e.g., DIN, 2019; SIA, 2020;
Autonome Provinz Bozen Südtirol, 2002). Inconsistencies at
borderlines between countries are very common. The under-
lying methods of how snow load maps are developed are
roughly comparable: statistical analysis of yearly snow depth
maxima using extreme value theory, assigning snow densi-
ties, regionalization into climatic snow load regions, etc. (the
final draft for the coming Eurocode – CEN, 2020, Annex A.3
– provides guidance), but in the details they are very differ-
ent. Not least, some of these methods may be subjective and
not reproducible (e.g., the drawing of the zones), and others
might not be applied in a transparent way (e.g., how and why
certain snow density assumptions are made). In this respect

CEN’s Eurocode EN 1991-1-3 (CEN, 2015) currently misses
its target (cf. Croce et al., 2019). Furthermore, the current
Austrian standard (ASI, 2018) suffers from an old database
that largely ends in the 1980s. Besides the mentioned me-
thodical inadequacies concerning most standards, this par-
ticularly offers motivation to update the Austrian snow load
map (see also CEN, 2020, Annex A.5).

Here we propose a novel methodology which will lead to
an updated snow load map for Austria. It is based on updated
snow data and on transparent and reproducible methods de-
scribed in Sect. 2 that could also be used in other countries.
Section 3 provides comparisons to another methodical can-
didate and the current Austrian snow load standard as well as
accuracy measures. Concluding remarks and an outlook on
possible future developments are given in Sect. 4.

2 Data and methods

Long-term snow depth data from 2740 stations in Austria
and nearby (ca. 50 km) in Germany, Switzerland, Italy and
Slovenia were collected. The data were corrected in many
ways. Only a few tasks are shortly outlined here for a more
comprehensive illustration the reader is referred to the report
on the “Schneelast.Reform” project (Winkler et al., 2021b).
A common observational issue is to simply add new snow
values over several days and use that as snow depth. Such
cases were detected by comparing snow depths with empiri-
cal elevation-related thresholds. The wrong values were then
corrected by assuming an empirical densification rate with
the aid of neighboring stations. One of the essential prereq-
uisites of the 1SNOW model is a gapless snow depth record.
For Austrian stations gaps up to 31 consecutive days were
filled using the dual-layer snow model SNOWGRID (Olefs
et al., 2013, 2017). To replace missing observations at a sta-
tion, the corresponding snow depth time series of the closest
SNOWGRID grid point (maximum distance 0.71 km) was
linearly interpolated to the observations confining the gap.
Years with gaps larger than 31 d were rejected. For non-
Austrian stations years with data gaps longer than 6 d were
not used, up to 6 d the snow depth records were filled by lin-
ear interpolation. About 1.8× 107 daily snow depth values
were used; 8400 (0.05 %) were filled by the procedure de-
scribed. At two stations a new snow depth maximum for one
season was created; at one station the above-described gap
filling led to the second-highest value in one season. Finally,
snow depth series from 897 stations fulfilled the following
requirements:

– at least 30 years of regular daily snow depths be-
tween 1960 and 2019;

– latest year with data is 2009 or later;

– no multiple stations within 0.1◦ latitude or longitude
and within 100 m elevation difference.
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Figure 2. Relative number of stations in elevation classes, with the
actual number on top of each bar (897 stations).

The stations lie between 118 and 3109 m elevation (me-
dian: 655 m; Fig. 2), and the record lengths are between
30 and 59 years, with a median of 49 years. They cover most
of the eastern Alps; see Fig. 3.

The newly derived set of snow depth data series is the most
comprehensive of its kind in Austria. No other snow dataset
contains so many records with regular data at daily resolu-
tion for so many years – the most important prerequisites
for deriving return levels of snow load. Individual single-
day snow depth values are less important than completeness
and capturing the yearly maxima as accurately as possible.
Snow depth data still provide the base for snow load model-
ing rather than snow load or water equivalent observations,
for which only too short, too sparse and too irregular series
exist (cf. Winkler et al., 2021a). However, using snow depth
as a starting point necessitates the simulation of snow mass
by applying a snow (density) model.

2.1 Snow model

Former developments of snow load standards used constant
snow densities or parameterized elevation, snow type and/or
age dependencies. An overview is given in Sanpaolesi et al.
(1998). The methods are very heterogeneous. European stan-
dards also suggest snow densities (e.g., CEN, 2015; ASI,
2018). Given the complex layered structure and viscoelas-
tic behavior of snow as a porous material very close to its
pressure melting point, these simple density assumptions
fall short. Also “empirical regression models” (cf. Winkler
et al., 2021a) like Jonas et al. (2009), Sturm et al. (2010)
and Guyennon et al. (2019) are not applicable since they fail
to model yearly maxima sufficiently well (Winkler et al.,
2021a). On the other hand, sophisticated “thermodynamic
snow models” like SNOWPACK (Lehning et al., 2002) or
Crocus (Vionnet et al., 2012) need meteorological forcing
that is not available for those long-term snow data.

To simulate proper snow loads for the snow depth
records described above, 1SNOW was developed (Winkler
et al., 2021a; Schellander and Winkler, 2020). It is a semi-
empirical layer-resolving snow model which exclusively
needs regular snow depth series as input to model respective
series of snow loads. Winkler et al. (2021a) show that yearly
snow load maxima can be modeled with a very low bias and a
root mean square error of 0.36 kN m−2, which is much more
accurate than empirical regression models or using catego-
rized or constant snow densities. The1SNOW model was ap-
plied to the daily snow depth series described above, leading
to 897 snow load series used for spatial interpolation.

2.2 Spatial extreme value statistics

The characteristic snow load on the ground (sk) can be cal-
culated by assuming that yearly sk maxima follow a general-
ized extreme value (GEV) distribution (Coles, 2001). Among
many other environmental parameters, this has been already
proven to be reasonable for snow depth (e.g., Marty and
Blanchet, 2012; Nicolet et al., 2018). Given the strong corre-
lation between snow depth and snow load, the GEV has also
successfully been used for the estimation of extreme snow
loads (Le Roux et al., 2020). However, there are also other
choices like the lognormal distribution (Mo et al., 2016; De-
Bock et al., 2017).

Eurocode EN 1991-1-3 (CEN, 2015) demands a spatial
representation of sk . Different kriging variants were already
used to interpolate snow load extremes for hazard mapping in
Canada (Hong and Ye, 2014) and Croatia (Perčec Tadić et al.,
2015). There exist, however, more appropriate methods for
the spatial modeling of extremes, all trying to model the three
parameters location (µ), scale (σ ) and shape (ξ ) of the GEV
with spatially varying covariates. Another typical choice for
modeling spatial extremes are max-stable processes (Haan,
1984), which were used by, for example, Schellander and
Hell (2018) for snow depth. With max-stable processes also
the spatial dependence of extremes has to be modeled. How-
ever, for the accuracy of the marginal distribution this has
no noticeable effect (Schellander and Hell, 2018), discour-
aging max-stable processes for the simple case of mapping
50-year snow load return levels. Another approach which
models GEV parameters with smooth functions in space
(termed smooth spatial modeling, or SSM, hereafter) was al-
ready used to calculate snow depth extremes in Switzerland
(Blanchet and Lehning, 2010) and Austria (Schellander and
Hell, 2018). It is based on the maximization of the sum of
the station-wise log likelihoods. As an example, snow wa-
ter equivalents modeled with the 1SNOW model were also
spatially interpolated with a simple smooth model (see Ap-
pendix C in Winkler et al., 2021a).

In this paper we try to overcome known problems with
the smooth modeling approach, where responses are mod-
eled with a linear combination of parametric terms, which
results in difficulties; e.g., a linear elevation dependence of
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138 H. Schellander et al.: Towards a reproducible snow load map

Figure 3. Values of 50-year snow load return from 1SNOW-modeled yearly maxima locally fitted to a GEV distribution for all 897 stations.
Elevation is given in grayscale from 100 m (dark) to 3800 m (light).

the location and scale parameters leads to too large return
levels in the mountains (Schellander and Hell, 2018; Winkler
et al., 2021a). To that end we propose to model the three GEV
parameters by fitting a generalized additive model (GAM;
Hastie and Tibshirani, 1990) spatially to 1SNOW-derived
snow load maxima. GAMs are an extension of generalized
linear models but use smooth functions rather than paramet-
ric terms for response estimation. They have already widely
been used, e.g., for extreme wind speeds (Etienne et al.,
2010) or daily rainfall (Sezer et al., 2016). We make three as-
sumptions: (i) like in many applications (e.g., Blanchet and
Lehning, 2010; Gaume et al., 2013; Schellander and Hell,
2018) the GEV parameters are modeled assuming a spatial
non-stationarity in this study as well. For an easily repro-
ducible snow load map, very deliberately, only topographi-
cal parameters (longitude, latitude and altitude) are used to
explain the spatial variability in µ, σ and ξ . Adding more
covariates (e.g., mean snow depth) might explain more spa-
tial effects, leading to a better fit. However, it also results in a
higher complexity of the model and the approach itself since
all covariates have to be available on the possibly very fine
grid on which the final map is to be computed. (ii) We also
assume spatially independent snow load extremes. While this
might not be the case in reality, Schellander and Hell (2018)
showed that for the pure purpose of mapping marginals it
does not have to be accounted for. (iii) It has been shown that
50-year snow load return levels in the northwestern French
Alps have significantly decreased between 1960 and 2010
(Le Roux et al., 2020). However, in this methodological pro-
posal we do not consider temporal non-stationarity of snow

load extremes. As proposed by the forthcoming Eurocode
(CEN, 2020, Annex A.5), we first adapt the current snow
load map to current climatic conditions and shift consider-
ation of temporal trends to subsequent studies.

A simple methodology was used to find the best suitable
GAM for the purpose of mapping snow load return values.
The key idea was to incrementally add complexity to a null
model and find the point where additional complexity turns
into overfitting, which was checked by RMSE and the Akaike
information criterion (AIC; Akaike, 1974; see Appendix for
details). For comparison a smooth spatial model was also fit-
ted to 1SNOW-derived snow load maxima; 50-year return
levels of the generalized additive and smooth models were
then compared with each other and with the current Austrian
standard’s map (ASI, 2018). As references, 50-year snow
load return values, i.e., 1SNOW-modeled yearly maxima lo-
cally fitted to a GEV distribution using maximum likelihood,
were used (see Appendix for details).

3 Results

Figure 3 shows 50-year return levels of 1SNOW-modeled
yearly maxima locally fitted to a GEV distribution for all
897 stations as described in Sect. 2. More than 75 % of the
values are below 4 kN m−2, with 50 % being smaller than
2.2 kN m−2, especially in the lower elevations in the north,
east and southeast. As expected, the highest values occur in
the snowy northern and southern Alps, where topography en-
hances precipitation. Only eight stations between 1740 and
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Figure 4. RMSE (a) and bias (b) of 50-year snow loads for the different models and the Austrian standard (AS) classified by elevation.
GAM stands for the generalized additive model, SSM for the smooth spatial model. The corresponding number of values within the elevation
classes can be found in Fig. 2. Note that the current Austrian standard is not valid for elevations above 1500 m.

3109 m exhibit a 50-year snow load return level larger than
15 kN m−2.

As outlined in Sect. 2.2 and explained in more detail in
the Appendix, the best-suited GAM was found via a 10-fold
cross-validation by fitting a GEV distribution to 1SNOW-
modeled maxima at the available 897 stations. In the notation
of the R package mgcv (Wood, 2017) it is

µ : maxima∼ s(long, lat,k = 120)+ s(alt,k = 9)

σ : maxima∼ s(long, lat,k = 120)+ s(alt,k = 9)
ξ : maxima∼ s(long, lat,k = 120)+ s(alt,k = 9). (1)

Thereby∼ signals a formula; “maxima”, “long”, “lat” and
“alt” refer to yearly snow load maxima, longitude, latitude
and altitude at a station; “s” marks an isotropic smoother
with a thin plate regression spline as a basis function; and
“k” defines the dimension of the basis function, i.e., the de-
grees of freedom available for this term. Note that a possible
improvement of the suggested model would mean a signifi-
cant effort, which is associated with increased hardware re-
sources. To test the goodness of fit of the best GAM (Eq. 1)
the Anderson–Darling test statistics were used as suggested
by Le Roux et al. (2020). Using the R package gnFit Saeb
(2018), the test was applied to quantiles retrieved from the
distribution modeled with Eq. (1) to assess whether they are
likely to follow a GEV distribution at the 5 % significance
level. This is true for 88 % of all used stations.

The best SSM for comparison was found via an AIC-based
model selection procedure, which led to the following model
for the three GEV parameters (see Appendix for details):

µ∼ long+ lat+ alt

σ ∼ long+ lat+ alt+µ
ξ ∼ long+ alt+µ+ σ. (2)

Table 1 shows RMSE and bias of the GAM, SSM and the
current Austrian snow load map (ASI, 2018) with respect to
50-year return values of1SNOW-modeled yearly maxima lo-
cally fitted to a GEV distribution. The scores for the GAM

Table 1. Error measures for 50-year return levels of snow
load for the generalized additive model (GAM), smooth spa-
tial model (SSM) and Austrian standard (AS), calculated using
all 897 stations. (687 stations within Austria and below 1500 m
for AS.) The scores are shifted in favor of the GAM if only sta-
tions within the Austrian border and below 1500 m are used. The
RMSE value of the GAM is only 0.85 kN m−2 then (not shown).

Model RMSE Bias
kN m−2 kN m−2

GAM 1.31 0.18
SSM 2.74 1.52
AS 1.61 1.16

and SSM were obtained by a leave-one-out cross-validation
with the models (Eqs. 1 and 2).

While both models and also the Austrian standard mostly
overestimate reference snow loads, the GAM has the small-
est RMSE and a very small, slightly positive bias. This is
also confirmed in Fig. 4. Although the SSM uses more co-
variates, it is not able to model larger snow loads well. The
GAM stays below an RMSE of 2.2 kN m−2 up to 2000 m and
rises to 6.9 kN m−2 for elevations beyond 3000 m. This is ac-
companied by an increasing bias, which could at least partly
be traced back to the small sample of only 14 stations in
the highest elevation class (see Fig. 2). The newly proposed
GAM approach shows smaller errors throughout all eleva-
tions when compared to the Austrian standard, even above
1500 m, but this must be considered with caution as the num-
ber of stations with elevations above 1500 m is only 57 (see
Fig. 4).

The elevation class 1500 to 2000 m exhibits two severe
negative outliers in the right panel of Fig. 4. Their locally
estimated 50-year snow load return values are 14.1 and
15.2 kN m−2. Both stations are situated in very snowy re-
gions at elevations of 1905 and 1740 m, respectively. Mod-
eling snow loads smoothly in space eliminates another short-
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Figure 5. Values of 50-year snow load return for a region around Windischgarsten in the center of Austria, taken from the map of the current
Austrian snow load standard (a, AS; valid up to 1500 m) and the newly proposed GAM approach (b, plotted up to 2000 m). Pixel size is 50 m
by 50 m. Main roads are depicted in the background for easier orientation.

coming of current standards. As outlined in the introduction,
European snow load standards rely on zonings. This draw-
back is outlined in the left panel of Fig. 5, which shows a
region in the center of Austria around the village of Windis-
chgarsten. Several strangely curved features can be noticed,
resulting from sudden transitions between zones. This leads
to jumps of snow load values. Furthermore, the current Aus-
trian standards only allow for calculating sk up to 1500 m el-
evation (white regions in the left panel of Fig. 5). The GAM
approach (right panel in Fig. 5) is able to model smooth tran-
sitions while showing acceptable accuracy also at higher el-
evations (up to 2000 m in Fig. 5).

4 Conclusions and outlook

A transparent way towards a reproducible snow load map,
conformable to CEN standards (CEN, 2015), is proposed:
(i) simulating snow loads with the 1SNOW model at inten-
sively quality-checked, long-term snow depth records and
(ii) using a generalized additive model (GAM) with penal-
ized regression splines to spatially interpolate the generalized
extreme value (GEV) distribution of the simulated snow load
records. This procedure results in a map with smooth values
of characteristic snow loads (sk).

The presented methodology is proposed for the successor
of the current Austrian snow load standard (ASI, 2018). The
potential of the two-stage 1SNOW – GAM approach could
be shown. The RMSE and bias with respect to 50-year snow
load references at 897 stations are much smaller than for
smooth modeling or the current standard. However, for very
high elevations above 2000 m the error measures reach un-
acceptably large values. Only longitude, latitude and altitude
were used as explaining covariates. This not only ensures rel-
atively low model complexity but also keeps the application
of the method easy.

A similar approach, combining the methods of snow load
simulation and appropriate spatial extreme value modeling,
could be applied in other countries as well since long-term
snow records are the only prerequisite. This would minimize
inconsistencies of snow load standards at national borders, a
target expressed by the European Committee for Standard-
ization (CEN, 2015). The proposed approach avoids zoning
and mitigates altitudinal restrictions. It provides a base to up-
date snow load maps to current climatic conditions as sug-
gested by the coming Eurocode (CEN, 2020, Annex A.5).
On this fundament, finally, efforts of implementing possible
climate-change-related trends of snow load extremes (like
Croce et al., 2018; Le Roux et al., 2020) could be built on
for a future generation of snow load standards.
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Appendix A: Model selection for the generalized
additive model

The R package mgcv (Wood, 2017) is used to fit a GEV spa-
tially to snow load maxima. Smooth terms are represented
by penalized regression splines, and the smoothing parame-
ters are estimated during the fitting process. To find a suitable
GAM for the spatial representation of snow load maxima, the
following steps were performed: firstly a null model was de-
fined in the notation of the R package mgcv, using the covari-
ates longitude (long), latitude (lat) and altitude (alt):

µ : maxima∼ s(long, lat,k = 29)+ s(alt,k = 9)

σ : maxima∼ s(long, lat,k = 29)+ s(alt,k = 9)
ξ : maxima∼ s(long, lat,k = 29)+ s(alt,k = 9). (A1)

Thereby “maxima” refers to yearly snow load maxima at a
station, and the term “s” stands for a smooth term with a
thin plate regression spline (Wood, 2003) as a basis function.
Note that the intuitive standard, namely using one smooth
term for each of the three covariates, leads to worse AIC and
RMSE values. For the null model (Eq. A1), the dimension
of the basis “k” is estimated during the fitting process. For
the available 897 stations, the values were estimated to k =
29 for the first term, s(long, lat), and k = 9 for the second
term, s(alt).

Secondly, the complexity of the GAM was incrementally
increased for both terms by allowing more degrees of free-
dom, i.e., increasing k. Therefore the dimension k for the
first term, s(long, lat), was set to 60, 120, 200 and 400 and
in only one step to 20 for the second term, s(alt). The most
complex model was then

µ : maxima∼ s(long, lat,k = 400)+ s(alt,k = 20)

σ : maxima∼ s(long, lat,k = 400)+ s(alt,k = 20)
ξ : maxima∼ s(long, lat,k = 400)+ s(alt,k = 20). (A2)

To find the best suitable GAM and to avoid overfitting, a
10-fold cross-validation for each model was performed. The
dataset of 897 stations was randomly split into 10 subsets
(Fig. A1). In 10 passes, 9 subsets were always used as a train-
ing dataset and the remaining one as testing dataset.

Figure A2 shows the evolution of the RMSE and AIC for
training and testing datasets calculated from the first five
models and the locally estimated 50-year return levels of
1SNOW-derived snow loads using maximum likelihood for
parameter estimation. The more complex models with k = 20
for the s(alt) term led to larger RMSE values for both the
training and testing datasets and are not shown.

With increasing k, i.e., degrees of freedom, the RMSE of
both the training and testing datasets always decreases. But
for k > 120 the testing dataset no longer benefits from in-
creasing complexity, which is the point where overfitting sets
in. As expected, the AIC also decreases (numbers in Fig. A2).
Therefore a model (Eq. A1) with k = 120 for the first term
and k = 9 for the second term was selected as the best GAM.
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Figure A1. Elevation histograms of the 10 randomly found subsets of all 897 stations. Respective number of members is given in brackets.

Figure A2. Lines show the RMSE based on a 10-fold cross-validation of all 897 stations for testing and training datasets for models with
increasing degrees of freedom. The numbers refer to the largest AIC of the training datasets out of 10 passes for each degree of freedom.

Appendix B: Model selection for the smooth spatial
model

To fit a smooth spatial model (SSM) to the snow load maxima
we followed the approach of Gstöhl (2017) as a blueprint.
As covariates for the SSM, longitude, latitude and altitude
are used, but the location and scale parameter are also al-
lowed as explaining covariates. To select the best regression
formula for each of the three GEV parameters, a generalized
linear regression between the GEV parameter (e.g., µ) and
covariates added stepwise was performed. The formula be-
tween a null model (e.g., µ∼ 1) and a given full model (e.g.,
location parameter µ∼ all covariates) leading to the smallest
AIC was selected.
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