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Abstract. Convection-permitting weather forecasting models allow for prediction of rainfall events with in-
creasing levels of detail. However, the high resolutions used can create problems and introduce the so-called
“double penalty” problem when attempting to verify the forecast accuracy. Post-processing within an ensemble
prediction system can help to overcome these issues. In this paper, two new up-scaling algorithms based on Ma-
chine Learning and Statistical approaches are proposed and tested. The aim of these tools is to enhance the skill
and value of the forecasts and to provide a better tool for forecasters to predict severe weather.

1 Introduction

Since the dawn of Numerical Weather Prediction (NWP),
the increasing need for accurate prediction has grown as
fast as advances in technology and modern high-performance
computing (Bauer et al., 2015). Increasingly accurate fore-
casting of rainfall is required, particularly in the case of
high-impact events where damages can run into the hun-
dreds of millions of euro (Llasat et al., 2010). Operational
convection-permitting models are now capable of forecasting
such events at kilometre-scale resolutions; for a review, see
Clark et al. (2016). However, the benefits of increased reso-
lution are not always clear (Mass et al., 2002). The use and
verification of high-resolution point forecasts of rainfall suf-
fers from the so-called “double penalty” issue (Mittermaier,
2014). Convection-permitting models create a better spatial
definition of precipitation structures compared to coarser res-
olution models and thus a shift in the precipitation pattern
can occur when comparing model output with observations:
when computing verification scores the model is punished
twice as rain is predicted at an incorrect location and not pre-
dicted at the correct location.

As outlined in Palmer (2019) when forecasting on short
temporal scales a probabilistic approach using an Ensemble
Prediction System (EPS) is essential in order to deal with the

inherently chaotic nature of the Earth’s atmosphere. An EPS
can also help overcome some of the deficiencies of a single
deterministic forecast, including the double penalty problem
for rainfall forecasts (Mittermaier, 2014).

One common post-processing approach for EPS forecasts
is to use a neighbourhood processing technique called up-
scaling (Clark et al., 2016; Ben Bouallègue and Theis, 2014;
Marsigli et al., 2008). These works among others, e.g. (Duc
et al., 2013), have demonstrated that using neighbourhood
post-processing techniques give more skilful EPS forecasts.
In the following, some simple neighbourhood up-scaling
methods are investigated, as well as more complex machine
learning algorithms. The goal is improved probabilistic fore-
casts, both in terms of addressing the double penalty of ver-
ification and, most importantly, in providing accurate prod-
ucts to operational forecasters. However, this paper focuses
more on the details of the machine learning algorithms and
the steps needed to implement each one rather than opera-
tional products.

Machine learning, as well as deep learning algorithms
and neural networks are becoming increasingly popular and
widespread throughout the scientific world for their natu-
ral quality of self-adjustment and self-learning (Bremnes,
2019; Grönquist et al., 2021). It is likely that such algorithms
will find more and more applications in NWP (Dueben and
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Bauer, 2018). Tree-based ensemble methods have recently
been successfully applied to improve the skill of low visibil-
ity conditions in an operational meso-scale model (Bari and
Ouagabi, 2020), while Krasnopolsky and Lin (2012) demon-
strated how machine learning algorithms can decrease the
bias for low and high rainfall.

In this paper, up-scaling methods will be applied to a num-
ber of rainfall cases, using forecasts from the operational en-
semble system in use at Met Éireann, the Irish national me-
teorological service. This system, along with the cases and
observational data, will be introduced in Sect. 2, with the up-
scaling techniques described in Sect. 3. Results from the test
cases are presented in Sect. 4, followed by conclusions in
Sect. 5.

2 Data and Test Cases

2.1 IREPS

The Irish Regional Ensemble Prediction System (IREPS)
used for daily operations at Met Éireann is based on the
system described in Frogner et al. (2019). IREPS uses the
nonhydrostatic mesoscale HARMONIE-AROME canonical
model configuration of the shared ALADIN-HIRLAM sys-
tem (Bengtsson et al., 2017). IREPS currently consists of
1 control plus 10 perturbed members. The horizontal res-
olution used is 2.5 km, with a regional domain consisting
of 1000× 900 gridpoints in the horizontal, and 65 vertical
levels; this domain is shown in Fig. 1. The operational cy-
cling consists of 54 h forecasts four times daily (at 00:00,
06:00, 12:00 and 18:00 Z). Details of the various pertur-
bations, physics and dynamics options used in IREPS and
HARMONIE-AROME can be found in Frogner et al. (2019)
and Bengtsson et al. (2017) respectively.

The test cases introduced below and reported on later in
the paper’s results focus on the rainfall forecast by IREPS
in the 24 h from the 00:00 Z cycle. In order to reduce data
sizes a domain cut-out over the island of Ireland was used
(see Fig. 1).

2.1.1 9 of May 2020

This case study was exploited during the initial testing of the
statistical and machine learning tools. It concerns an episode
of strong convective activity over south-west Ireland on the
9 May 2020. The IREPS forecast reveals a rapid develop-
ment of convective phenomena over the south-west of Ire-
land starting from hour 13:00 Z. Shown in Fig. 2 is a sample
of the 00:00 Z forecast from the 9 May, along with radar ob-
servations. It can be seen that IREPS succeeded in capturing
the main areas of rainfall but that some discrepancies existed
in terms of the location of individual convective cells. There-
fore, this case was deemed an appropriate event upon which
to perform initial testing of the proposed algorithms.

Figure 1. The operational IREPS domain (green) with the “Island
of Ireland” sub-domain used in this study (blue).

2.1.2 June 2020

June 2020 presented a rich variety of meteorological scenar-
ios in terms of rainfall. Eight 24 h periods from June 2020
were investigated. A short description of the rainfall charac-
teristics of the period is given in Table 1. The aim here is not
to fully describe the meteorological details of each case but
to give an idea of the rainfall field in the 00:00 Z cycle from
IREPS for a given period. This June 2020 IREPS data serves
as the dataset for the various algorithms in the discussion and
results (Sect. 4).

2.2 Observations and verification metrics

The verification metrics in Sect. 4 make use of observa-
tions of 24 h accumulated rainfall recorded by synoptic and
climate stations from Met Éireann’s operational network
(shown in Fig. 3). When matching forecasts to observations,
the nearest IREPS grid-point to the observation station lo-
cation was used. The Brier Score (BS), Relative Operating
Characteristic (ROC) curve and Area Under the ROC (AUC)
curve were the verification metrics of choice. A description
of these scores can be found in Wilks (2011).

3 Methodologies

In this section, different up-scaling methodologies are pre-
sented. The idea behind neighbourhood up-scaling is to re-
duce the double-penalty error by substituting each grid point
with a reweighting that takes into account the forecasts at a
number of neighbouring points (Ebert, 2008). The number of
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Figure 2. Three-hour rainfall accumulations from 15:00–18:00 Z on the 9 May 2020, when convective rainfall was triggered particularly in
the south-west and south-east of the country. The top left panel shows observed accumulations from Met Éireann’s operational radar. The
remaining panels show the predicted amounts from the 11 members of the 00:00 Z IREPS cyle on the 9 May.

Table 1. Concise description of the 24 h rainfall forecasts from the 00:00 Z cycles of IREPS on the selected days in June 2020.

Day Description

9–10 Widespread convective activities throughout the 9 June, a fast
thunderstorm entered the domain from around 15:00 Z on the
10 June.

12 Some showers in the north; starting from hour 15 up to hour 21
an intense squall line appeared in the south-east of the country.

18–19 A cold front crossed the country in the morning of the 18 June
(around 06:00 Z).
Organised bands of rain on the 19 June.

26 Thunderstorms from the early morning, followed by scattered
showers.

27 The north of the country experienced severe rainfall.

28 Similar to the 27 June.

points used as a radius to define this neighbourhood may be
fixed, in the simplest approach, or vary with meteorological
conditions.

The up-scaling procedure may be neatly described by a
matrix convolution as follows. Let M be a matrix associ-
ated with a two-dimensional rainfall field: either threshold
exceedances or the ensemble probability of exceedance (fur-
ther explanations are given in Sect. 3.1). Then the up-scaled

field is given by

(
M ∗K

)
[i,j ] =

L∑
n=1

L∑
l=1

M[i− n,j − l] K[n, l] (1)

Here K is a square kernel matrix of dimension L= (2R+1),
where R is the radius for the neighbourhood in the up-
scaling, and indices in square brackets represent matrix en-
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Figure 3. Met Éireann synoptic and automatic climate stations
used.

tries. In the following subsections, three different methodolo-
gies are addressed: in Sect. 3.1 radius is kept constant over
the entire domain, in Sect. 3.2 the kernel involved in the con-
volution changes based on the ensemble spread in the fore-
cast, while in Sect. 3.3 the field is divided into groups and a
specific R is assigned to up-scale each of them.

It should be noted that each algorithm returns a two di-
mensional array smaller than the input one because it takes
into account enough distance from the borders to perform
the convolution. The matrix covers a sub-section of the en-
tire IREPS domain thus, points at the edge are treated alike
without need of further manipulation.

3.1 Fixed Up-scaling

This subsection describes the basic up-scaling post-
processing currently used by Met Éireann, which aims to bet-
ter classify the occurrence of rain in a region rather than by
expecting a perfectly precise geographic match. A fraction-
like matrix is defined, here called the Fraction Probability
Matrix (FPM). It is obtained as follows. First, the original
precipitation field is mapped onto a Boolean form, allocating
a logical value of 1 if the precipitation prij is above a given
threshold (e.g. th= 5 mm) and 0 otherwise.

M[i,j ] =
{

1, prij ≥ th
0, prij < th (2)

There are two main way to proceed at this stage. The con-
volution could be applied on each binary matrix followed by
a summation. This approach requires some further manipu-
lation, whereby a clipping function has to be applied to re-
strain values above the probabilistic range. However, there
are a few disadvantages that must be taken into account.
If working with an EPS with higher number of members
(greater then N = 11) this entire procedure becomes time-
consuming. Additionally, the Boolean values retrieved after
clipping assume a rain event even if only one member pre-
dicted it, which could cause over-counting.

Hence, a second approach is more convenient, in which a
simple averaging is first applied before the up-scaling proce-
dure is performed. This average defines the FPM as

FPM=
1
N

N∑
d=1

Md (3)

where d is the index of the summation and N the number
of available members. FPM has a probabilistic meaning. In-
deed, the more members agree on rainfall occurrence, the
likelier it is that the event will take place. The convolution
from Eq. (1) is then applied to this matrix, using a square,
uniform kernel made of ones, which span the entire domain.
The value of the radius is typically R = 2 (fixed). It is not
feasible to expect to find a unique shape or dimension for K
that will always return the best result for any meteorological
scenario. Nevertheless, it is possible building up on this ba-
sic approach to increase performances of the post-process. In
this spirit two alternatives are proposed.

3.2 Dynamical approach

Any up-scaling technique should ideally have a dynamical
configuration in order to effectively adapt itself to extreme
highly variable situations. The following approach endeav-
ours to model the in-homogeneity of the rainfall distribution
and seeks to recognise those regions where changes takes
place. Areas at equal values of fraction probability are up-
scaled by the same kernel, while a gradient highlights an
edge between zones at different level of agreement within
members which makes the radius settings more delicate.
Thus, it is reasonable to assume that the value of R should
change with respect to the value of spread around a point.

Variability is evaluated by an indicator. Among several
metrics available, standard deviation is chosen as it is widely
used to return the dispersion from the mean within a group
of numbers (Wilks, 2011). In this sense, the algorithm aims
to keep track of point-wise mutability. The algorithm can be
summarised in the following steps, and these are illustrated
in the flowchart in Fig. 9:

1. A window of odd size dimension is defined, within
which the spread metric is going to be calculated (lets
call it B). B has to be fixed and satisfy a few condi-
tions: it should be much smaller than the actual size
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of the domain and greater than or equal to the biggest
kernel accessible. For example, a square of 11 × 11
fits our request for the 216 × 152 matrix being stud-
ied (corresponding to the island of Ireland domain) with
max(R)= 5.

2. A double nested loop running over rows and column al-
lows to select each point of the FPM, which becomes
the center of the pre-set B. The spread associated is cal-
culated, taking into consideration every element within
the square B. Note that the spread highlights the area of
change and those points are the ones where the double
penalty is usually worst.

3. Up-scaling is performed, using a Gaussian kernel (fur-
ther details can be found in Appendix A) whose radius
R will strictly depend on the spread value.

Implementation requires setting appropriate ranges of
standard deviation and related radii. The list of radii is given
as an input argument, while the standard deviation ranges are
fixed. In such a way all possible configurations can be anal-
ysed, a total of nk for n possible radii and k ranges. Undoubt-
edly, the number of parameters to be set is greatly increased
compared to the fixed method, but the algorithm does offer
flexibility. Tests with specific conditions were carried out to
determine the most appropriate settings: in a situation when
the EPS members are in agreement and the spread is low,
the atmosphere is in a predictable state and a large radius
would most likely not add great value to the forecast. On the
other-hand, if spread is high then a medium or large radius
should guarantee that an appropriate up-scaling is applied.
The spread matrix in Fig. 4 gives an indication of the agree-
ment between members for the 9 May test case. Note that it
does not indicate if IREPS members concur in rainfall occur-
rence, but whether there is a change in the level of consis-
tency.

Figure 5 displays how the performance differs between
fixed and dynamical up-scaling. It is noteworthy that the
greater differences are localised in regions of high spread,
meaning that up-scaling performances are more relevant in
those areas. Looking carefully at the picture on the left panel
in Fig. 5 it is possible to observe that the up-scaling proce-
dure has a sort of blurring and smoothing effect. The high-
resolution properties are in fact scaled-up to a coarser level,
which is translated into an attempt to not miss any convec-
tion.

3.3 Hierarchical clustering based technique

A second up-scaling approach is now proposed based on a
machine learning tool in which a pattern recognition ability is
employed, i.e. the capability of arranging data or information
in regular and well defined structures. Further information on
the underlying strategy can be found in Bonaccorso (2019).

Figure 4. Spread matrix for the 9 May test case, constructed by re-
placing each point of the domain with the respective value of stan-
dard deviation.

The major assumption for the current technique is that the ra-
dius choice can be based on clustering, discriminating kernel
dimensions with respect to the level of cluster aggregation.
Hence, elements aggregated within the same group should
be up-scaled in the same way using a common radius. Most
unsupervised (as well as supervised) machine learning tech-
niques have the major disadvantage of requiring the number
of clusters to be defined a priori. This is an arbitrary hyperpa-
rameter, whose choice is usually made by data diagnostics or
feature graphical analysis. However, such an approach is im-
practical in NWP as it would mean going through every daily
forecast product manually. Thus, it must be provided by the
code itself and so the core scheme employed here is the Hi-
erarchical clustering algorithm, with which it is possible to
automate the number of clusters.

A Hierarchical aggregation framework treats all objects
in a given initial set as an individual group and by step-
wise comparison it progressively discovers the best way to
group them together based on similarity level. All elements
are jointly exhaustive (each point must be in one subset) and
mutually exclusive (the same point can not be found in more
than one subset). Data are stored into column arrays with
which the algorithm is fed. Then, the Hierarchical clustering
starts analysing every observation as a cluster and after each
iteration two groups (containing one or more observations)
are gathered. When all remaining elements are aggregated
in one single cluster the algorithm stops. Specifications re-

https://doi.org/10.5194/asr-18-145-2021 Adv. Sci. Res., 18, 145–156, 2021



150 T. Comito et al.: Addressing up-scaling methodologies for convection-permitting EPSs

Figure 5. These three images allow for a qualitative comparison between the unupscaled FPM (a), the neighbourhood approach with fixed
radius R = 2 (b), and the spread based algorithm (c). The precipitation threshold is set to th= 2mm.

garding the step-wise aggregation are chosen as follow: sim-
ilarity between grid values (inner-elements distance) is esti-
mated using a standard L2 norm, while a single linkage cri-
terion establishes inner-group proximity; see, again, Bonac-
corso (2019) for details.

A first testing phase was conducted on the case-study de-
scribed in Sect. 2.1.1 in order to determine whether or not
hierarchical aggregation is able to correctly capture pattern
structure in our datasets. Three main features were consid-
ered: latitude, longitude and rainfall (note that the up-scaling
algorithm here described makes use of the FPM as input, but
a first check was made on the precipitation field).

From a meteorological perspective, latitude and longitude
are less relevant, given the small scale of Ireland, although
topography is certainly relevant to a convective rainfall field
at the boundary and could be interesting to explore. It can be
seen in the right panel of Fig. 6, latitude and longitude co-
ordinates seem to mislead the algorithm, taking over as the
most important properties. In general, features could be re-
scaled with some normalisation. However, it is here possible
to achieve a good clustering by neglecting latitude and lon-
gitude, forcing the algorithm to work with the accumulated
precipitation data only. Qualitative plots verifying the desired
ability of aggregation recognition can be found in Fig. 6.

In a similar manner to the dynamical approach in Sect. 3.2,
a flowchart for the algorithm is presented in Fig. 9, with the
main steps explained in more details as follows:

1. As previously mentioned, Hierarchical clustering re-
quires one-dimensional arrays. Therefore, the FPM is
reshaped from 2D matrix to a column value arrange-
ment. In such a way it can be treated as a feature by the
linkage operation.

2. The number of clusters is obtained via a dendrogram, a
graphical representation of the cumulative hierarchical
progression to display relationships of data. A dendro-
gram is a tree-like plot, where data are listed along the
x-axis by an index label and values of similarity derived
from the linkage on the y-axis. Chen et al. (2009) inves-
tigate further usage of this tool for large dataset. A limit
line is traced between two steps, where there is the high-
est rise in similarity (implying the greater dissimilarity
from the previous aggregation and the next one). The
dendrogram’s branches are crossed a number of times
by the horizontal bar. This is the adequate hyperparam-
eter to be used.

3. Once the number of cluster is established, each grid-
point has to be associated to a group. Therefore, the ag-
glomerative clustering is performed to get aggregation
prediction. When dealing with the FPM, points having
similar fraction probability are grouped together as is
shown in Fig. 7.

4. Each point within a cluster is up-scaled using the usual
convolution operation and the assigned radius. A further
scaling is required to maintain values in the range [0,1].

An example of the up-scaled output from this algorithm is
shown in Fig. 8.

4 Discussion and Results

Table 2 details the BS and AUC scores for 24 h rainfall fore-
casts for the IREPS 9 May and June 2020 datasets. The skill
score values represent the mean values for all methodologies
described in Sect. 3; “Original FPM” refers to the method de-
scribed to map the source data of rainfall onto the FPM using
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Figure 6. On the left side of the panel, a snapshot of the total rainfall field forecast at+24h for the 9 May 2020 is displayed. The right image
shows the hierarchical aggregation’s attempt to use all the features (latitude, longitude and rainfall). The central plot displays the cluster
pattern achieved using accumulated rainfall as the unique attribute.

Figure 7. Result from step 3 of the hierarchical clustering algo-
rithm. The aggregation prediction associates each point of the do-
main with one cluster. Each color represents a cluster.

Eqs. (2) and (3), “Fixed” in Sect. 3.1, “Spread” in Sect. 3.2
and “Clustering” in Sect. 3.3.

The precipitation thresholds [0.2, 0.5 and 1.0–5.0 mm in
0.5 mm increments] were chosen so as to ensure usable statis-
tics from each of the days in the dataset. This gives in total
a sample size of 11 thresholds over the nine 24 h periods.

Figure 8. Clustering based up-scaling, with a combination of R =
{2,3,4,5,6.} and th= 2mm.

Statistics are calculated over the island of Ireland domain il-
lustarted in blue in Fig. 1.

As illustrated by both the BS and AUC scores, the ma-
chine learning based clustering approach gives the most sat-
isfactory results, with a mean BS of 0.111 and an AUC of
0.845. The improvement in AUC score in particular between
the “Original FPM” method and the “Clustering” method is
noteworthy. This suggests that IREPS rainfall forecasts could
benefit from a post-processing technique based on a clus-
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Figure 9. Flowchart representation of the schemes of action for the spread-base up-scaling (a) and the clustering-based one (b). Further
description and details of the terminology may be found in the text.

tering technique. The “Fixed”, “Spread” and “Clustering”
methodologies all illustrate improvements over the “Original
FPM”.

Figures 10 display a series of skill score values for the
24 h rainfall thresholds detailed above. Both the BS and
AUC scores in Fig. 10 demonstrate the superiority of the
“Clustering” based approach for all thresholds (except for
the BS 0.1 mm threshold where the “Original FPM” per-
forms slightly better). Both time series indicate a hierarchy
of performance; the “Spread” and “Fixed” approaches be-
ing slightly less skilful than the “Clustering” but clearly out-
performing the “Original FPM”. From the BS time series,
the increase in skill is most evident for the thresholds above
1.5 mm.

The improvement in both BS and AUC scores for each of
the up-scaling techniques is encouraging. The results clearly
demonstrate the need for the up-scaling of EPS convective
rainfall forecasts, as has been reported by many others (Mit-
termaier, 2014; Osinski and Bouttier, 2018).

It is important to note that these results aim to show a gen-
eral improvement in the post-processed skill scores by the
various statistical and machine learning algorithms, not to
prove their supremacy in all scenarios. Indeed there are some
scenarios where the basic fixed up-scaling performs better
(not shown). The BS and AUC scores presented here were
calculated using synoptic and climate stations. A more thor-
ough and robust verification of the various algorithms could
be performed by calculating skill scores using radar data to
ensure better spatial coverage and a greater sample size. It
must also be noted that the advantage of the “Spread” and

Table 2. Mean value of BS and AUC calculated for 9 May and case
studies in Table 1 at +24hour, and for the following set of thresh-
olds: {0.2,0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0}mm. The as-
sociated error is calculated as Standard Error of the Mean (SEM).

Up-Scaling Method BS AUC

Original FPM 0.122± 0.008 0.794± 0.016
Fixed 0.115± 0.008 0.820± 0.017
Spread 0.114± 0.008 0.839± 0.015
Clustering 0.111± 0.008 0.845± 0.015

“Clustering” methodologies is that the control parameters of
each method can be modified in order to reach a better veri-
fication score.

5 Conclusions

The role of post-processing is undoubtedly fundamental to
issues affecting NWP products, which still use approximated
theories or parametrizations to reproduce behaviours at small
spatial scales that NWP model resolutions cannot handle.

In this paper, two neighbourhood approaches for
convective-permitting models based on a statistical post-
processing and a machine learning technique were proposed.
Objective verification results demonstrated that the machine
learning approach gave an improvement over more tradi-
tional up-scaling approaches.

A number of aspects were not explored in this work how-
ever. A more robust dataset with a more diverse set of me-
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Figure 10. Brier Score (a) and Area Under the ROC Curve (AUC) skill scores (b) with respect to rainfall threshold for 24 h IREPS forecasts
for 9 May and June days presented in Table 1. The lines represent the methodologies outlined in Sect. 3.

teorological scenarios would need to be investigated in order
to make concrete statements about the supremacy of the ma-
chine learning technique.

Furthermore, the dependency on the weather scenario
should be taken into account and so a deeper exploratory
analysis is required in order to set all arbitrary hyper-
parameters in the chosen algorithms to adapt along with an
evolution in weather patterns. Other machine learning tech-
niques, e.g. convolutional neural networks (Bremnes, 2019)
could also be explored. Early work on the implementation of
a methodology based on a combination of both the clustering
and spread up-scaling has begun. This approach aims to take
advantage of the strengths of both methods.

The results described here have focused solely on convec-
tive rainfall in the summer period. Testing the methodologies
on rainfall episodes during Ireland’s winter may uncover a
preference for other methodologies, as could an investigation
into the up-scaling of other meteorological variables (e.g.
10 m wind speed, 2 m temperature). Finally, a more global
solution could be to base the choice of up-scaling algorithm
on the atmosphere’s large-scale dynamics (Allen and Ferro,
2019).
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Appendix A: Gaussian Kernel

Widely used in imaging filtering processes to blur images
(Gedraite and Hadad, 2011), the Gaussian Kernel is a matrix
whose elements follow the shape of a Gaussian (i.e. a Nor-
mal distribution). It is a valid alternative to the previously
mentioned uniform matrix and relatively straightforward to
implement using its two dimensional form:

G(x,y)=
1

2πσ 2 e
−
x2
+y2

2σ2 (A1)

here σ is the standard deviation. Let’s remark that the con-
volution operation works on the fraction probability ma-
trix, therefore this arbitrary parameter, which characterise the
slope of the distribution must be secure to σ = 1/2π in order
to get a maximum value in the center of 1. Changing bound-
ary and spacing allow for manipulation of kernel’s elements
weight as it is shown in Fig. A1. The greater the boundaries
the rapidly values around the center converge to zero, while
spacing depends on how many proximate points are taken
into consideration. The major advantage to using a Gaussian
type of kernel is that allows control over contributions com-
ing from distant neighbours.

Figure A1. 3D plots showing three different configurations of the Gaussian kernel with respect to the change of boundary (b) and spacing
(nx ). Starting from the left: (a) (b1,nx1)= (±1,100), (b) (b2,nx2)= (±5,100), (c) (b3,nx3)= (±1,10).
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