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Abstract. The Urban Heat Island (UHI) describes the increase of near surface temperatures within an urban
area compared to its rural surrounding. While the concept of the UHI is in itself quite simple, it is more complex
to apply it to gridded datasets. The main complication lies in the rural baseline definition. Therefore, we propose
three approaches to calculate the spatial UHI representation for gridded datasets from (i) a single point baseline,
(ii) an area averaged baseline, and (iii) a nearest neighbor-based baseline field. Based on these approaches, seven
methods are tested as an example for a case study utilizing model simulations for three metropolitan areas in
Central and Western Europe (Berlin, Paris and Rhine-Ruhr Metropolitan Area). The results show that all methods
perform reasonable in absence of complex terrain, biases and large scale temperature gradients. However, with at
least one of these features present, the UHI visualization is less prominent or nonexistent, except for the nearest-
neighbor approach which consistently shows reasonable spatial characteristics of the UHI across all scenarios.

1 Introduction

The Urban Heat Island (UHI) is a well-known phenomenon,
which has first been described by Howard (1833) and has
later been conceptualized (e.g., Oke, 1969). It represents the
near-surface characteristic of generally higher temperatures
in urban areas compared to cooler temperatures over the sur-
rounding rural areas. This effect originates from the differ-
ences in surface types between urban and rural areas which
directly affect the energy balance.

The proposed concept was later formalized by Oke (1982)
into a theoretical framework for the UHI. Over the last
decades multiple studies have confirmed it and found evi-
dence for UHIs in numerous cities around the world (e.g.,
Yue et al., 2019; Schwarz et al., 2011; Santamouris, 2015)
despite the distinct characteristics such as shape or size
which vary from city to city. A main effect of the UHI is
the increased heat stress and discomfort for humans living
or working in urban environments. These characteristics are
becoming more and more important with the progressing ur-
banization and the effect of climate change on the UHI (e.g.,
Scott et al., 2018; Oleson, 2012).

While the UHI has an impact on various parameters in the
boundary layer, most studies focus on near-surface (e.g., 2 m)
temperature anomalies following Oke (1982). While the ap-
proach is straight forward for station data, it becomes more
complex to find a suitable method to calculate and visualize
the UHI for gridded data, e.g., satellite observations, model
data. Here, we show that the key is to choose an appropriate
rural baseline corresponding to the urban area in considera-
tion.

In this paper, we present seven methods to derive the base-
line temperatures to determine the spatial UHI structure. We
apply the methods to case study simulations of the June 2019
heat wave in Central Europe. Results will be shown and dis-
cussed for he metropolitan regions of Berlin, Rhine-Ruhr
(both Germany) and Paris (France).

2 Case study data

As previously introduced, the methods for visualizing UHI
presented in this paper are applied to model data from the
June 2019 heat wave over Central Europe (Vautard et al.,
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2020). During this period, clear sky and stable conditions,
which allow for the formation and detection of the UHI (e.g.,
Arnfield, 2003; Koomen and Diogo, 2017; Li et al., 2020),
lasted for over a week.

The corresponding model data comes from simulations
with the ICOsahedral Nonhydrostatic Model (ICON) of the
German Meteorological Service (Deutscher Wetterdienst,
DWD). ICON is the current operational model at DWD for
various scales, e.g., global at 13 km or European continent at
6.5 km (ICON-EU). Here, we employ the model in the Lim-
ited Area Mode (ICON-LAM) at the operational 2.1 km res-
olution (D2.1 hereafter) for a Central European domain. For
more information about the model structure and schemes, re-
fer to Zängl et al. (2015).

The data visualized here are from a free downscaling sim-
ulations of D2.1 forced at the lateral boundary by analyses
of the European ICON-EU nest. We take three metropoli-
tan areas as examples, namely Berlin, Paris and the Rhine-
Ruhr Metropolitan Area (RRMA) which is the largest Ger-
man metropolitan area with approximately 11 million inhab-
itants.

Berlin and Paris have well-defined boundaries of the urban
core and more or less circular shapes. The Paris metropolitan
area includes several cities and is about 40 to 60 km in diam-
eter, the Berlin metropolitan area incorporates just one other
city (Potsdam) and is smaller at a diameter of 25 to 45 km.
RRMA includes 13 interconnected cities including Cologne,
Essen, Düsseldorf and Bonn and has an irregular shape with
a 100 km North-South axis along the river Rhine and an East-
West axis in the northern part of about 75 km length.

3 UHI calculation

The UHI is generally defined as the (near surface) temper-
ature difference between an urban area and a neighboring
rural area. For point-based observations, the UHI is calcu-
lated as the difference between a station in the urban core
and a station in the surrounding rural environment. This ap-
proach, i.e., the difference between two points, can also be
transferred to grid-based data sets such as NWP model out-
put. However, it neglects the added spatial information in-
cluded in the gridded data and therefore the spatial structure
of the UHI itself.

Here, we propose three approaches based on the classic
definition of the UHI as described above, but tailored for
gridded data sets, e.g., satellite-based observations or model
output. These approaches allow for different levels of com-
plexity especially in defining the rural baseline temperature,
since for model output the choice of rural and urban points is
not limited to the availability of weather stations.

In this case, we define urban and rural gird points by em-
ploying a threshold of percentage of the respective land use
as provided by a fractional land use data set (e.g., model
tiling). For our analysis, we define the threshold for a rural

grid point to have an urban land use fraction below 0.2 and
an urban grid point with an urban land use fraction above 0.5.
In our approaches, the rural baseline is defined by (1) using
a single point, (2) a spatial averaged value and (3) a separate
nearest neighbor estimate for each grid point.

3.1 Approach 1: Single point

In this approach, the baseline for the UHI calculation is given
by a single point value, similar to what is done for station-
based UHIs. We identified two possible baselines:

– M1. The baseline taken from an observation of a rural
station.

– M2. The baseline taken from an arbitrary rural grid
point.

It should be noted that method M1 might cause issues with
consistency in case of (model) biases or representativity er-
rors. The latter problem can also occur in M2, as the choice of
the sample point is arbitrary. Therefore, we choose the value
of the grid point with the highest rural land use fraction and
a similar elevation (±20 %) to the urban area on average.

3.2 Approach 2: Spatial average

To overcome the limitation of choosing only a single point
as reference, the rural baseline can also be obtained as a spa-
tial average over rural grid points. The main step is to define
the rural area extension for the averaging process. In gen-
eral, the included grid points should not be too far away from
the urban core to ensure that they are subject to the same at-
mospheric regime. We define the following four methods for
choosing the rural grid point extent:

– M3. This is the most straight-forward approach and it
consists in averaging all rural points in the (arbitrarily
chosen) region. The rural grid points should have a low
percentage of urban land use, which we set to 0.2 here.
However, rural points close to the urban area can still be
affected by the UHI therefore polluting the UHI signal.

– M4. In order to obtain a “clean” rural UHI baseline, we
define an subregion (here, using a rectangle) around the
urban core and exclude rural points from this area in the
averaging.

– M5. Should the urban area be embedded in complex to-
pography, grid point height has to be taken into con-
sideration to ensures a comparison between similar 2 m
temperatures. One way to address this issue is to ex-
clude grid points that have an elevation different from
that of the urban core. Here, we exclude those grid
points from the M4 subset of rural grid points with an
altitude difference of ±20 % from the average elevation
of the urban core.
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– M6. Another possibility to address the issue of complex
topography is to perform a height-based correction on
the temperature field (similar to Sheridan et al., 2010).
The reference value used for the correction is the aver-
age height of the urban core. We can than calculate the
baseline from the same rural grid points as chosen in
M4.

A limitation of M6 is related to the height-based correction
choice, which is strongly affected by boundary layer stabil-
ity. Depending on the availability of gridded data to the user,
a derived lapse-rate from the full field could be employed.
However, this approach requires more input data than sur-
face temperature, elevation and maps of land use. In order
to provide a simple straight-forward technique, we therefore
choose a standard atmosphere temperature gradient to per-
form the correction. However, we are aware that this might
be inaccurate especially for UHI nighttime conditions.

Although providing a more generalized approach to deter-
mine the UHI baseline, spatial averaging still exhibits limi-
tations. The most important are the shape and extent of the
rural and urban areas, which can have significant impacts on
the results. Here, we choose a rectangular shape for simplic-
ity. However, most cities have complex spatial structures that
are difficult to encompass with a simple polygon.

Furthermore, the spatial baseline approach still uses a sin-
gle value for the whole region which might not be appropri-
ate for points being far apart albeit residing within the urban
agglomeration, or in cases of strong horizontal temperature
gradients (as later observed in our example for Paris).

3.3 Approach 3: Nearest neighbor

In order to address the limitations of the previous methods,
we employ a nearest neighbor approach to define the urban
core and to calculate a separate baseline value for each grid
point, i.e., to estimate a two-dimensional baseline field.

First, we use an iterative approach to more realistically es-
timate the spatial structure of the urban core. Therefore, we
define a small number of cells inside the urban core as ini-
tial seeds. From these, we iteratively determine the respec-
tive grid points within a maximum distance of 10 km (i.e.,
urban interconnection distance) with an urban land use frac-
tion above 0.8. This procedure is then repeated until no new
points are added. With the obtained urban core structure, we
apply an approach to define a spatially varying rural baseline
temperature:

– M7. This nearest neighbor approach estimates a separate
(rural) baseline temperature for each grid point. Specif-
ically, for each grid point we calculate the average tem-
perature of the nearest five rural grid points with an ur-
ban land use fraction below 0.2 and a minimal distance
of 8 km to the determined main urban core. The UHI
field is then obtained by subtracting the 2 m temperature
field from the baseline field. In our implementation, the

ball tree method (e.g., Friedman et al., 1977) allows for
finding the nearest neighbors for each grid point at low
computational cost.

The resulting representations of the UHI are compared in
the following section.

4 Results

The previously presented methods are now applied to the
2 m temperature field of the aforementioned metropolitan ag-
glomerations Berlin, Paris and Rhine-Ruhr metropolitan area
at 22:00 UTC on 25 June 2019 as provided by the ICON
model output (see Sect. 2). The chosen date corresponds to
the peak of the June 2019 heatwave over Central Europe.

4.1 Baseline

Figure 1 illustrates the grid points chosen for the calculation
of the rural baseline temperature for the three regions.

The station location used in M1 is shown as a red dot in
each area, the grid cell used as reference in M2 as a blue tri-
angle. Most of the other methods at least in part rely on the
same subset of grid points. M3 includes all the purple, orange
and green grid points, the latter being the ones exclusive to
this method. M4 and M6 are based on the same selection
which includes the orange- and purple-colored cells while
M5 only uses the orange triangles. The nearest neighbor ap-
proach M7 uses for each grid point the nearest five cells from
all yellow, purple, orange and blue triangles as well as most
of the green ones.

4.2 Urban Heat Island representation

This section presents and discusses the UHI representations
with respect to the baselines as derived from the methods
M1 to M7 for the case study. The case study is only intended
as an example and we will not go into detail about physical
processes involved in the phenomenon.

As expected, the various methods lead to (in part signif-
icant) differences in the baseline temperature. The obtained
values (expressed in Celsius) are summarized in Table 1.

Since M7 has not a constant baseline value, we take the
average of the M7 baseline field over all grid points used in
M4 for comparison.

In general, there are distinct temperature differences be-
tween the regions as the heat wave on 25 June was stronger
over the western part of Germany compared to eastern Ger-
many and northern France. This can basically be seen in
the M1 baseline temperatures which originate from the re-
spective station measurements. Berlin shows a low variabil-
ity (< 1 ◦C) among the various baseline values for the seven
methods, with the largest difference between the two single
point selections M1 and M2. A similar behavior is observed
for the Paris baseline values. RRMA shows a higher variabil-
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Figure 1. Color-coded grid point selection for all 7 methods for Berlin, Paris and the Rhine-Ruhr Metropolitan Area (a–c). Triangles
represent the model grid-point, while the red circle is the station used. The GlobCover original 1 km resolution urban land use data is shown
in light-grey shading as reference.

Table 1. Case study baseline values (in Celsius) for UHI calculation. Values for M7 have been averaged on the M4 area as comparison.

Region M1 M2 M3 M4 M5 M6 M7

Berlin 23.0 22.3 22.7 22.7 22.7 22.7 22.6
Paris 23.0 19.9 22.0 22.0 22.1 22.4 22.0
RRMA 28.1 25.8 25.1 25.0 26.1 25.7 25.3

ity with differences of more than 2 ◦C between some of the
methods.

The impact of the different baseline methods on the hori-
zontal UHI representation in the model data is discussed in
the following. The M1-derived UHI is shown for the three
regions in Fig. 2. As the method is based on observational
data, it is clear that the model exhibits a strong cold bias
for RRMA of about −2 ◦C and to a lesser extent over Paris
(−1 ◦C).

For Berlin, the model does not exhibit a strong bias and
a reasonable UHI representation with a magnitude of 1 to
1.75 ◦C. The Paris region exhibits a strong North to South
temperature gradient thus masking a potential UHI. Due to
the model bias, the RRMA has no positive UHI for M1 albeit
the urban core being much warmer than the surrounding rural
area.

When using a single-point rural reference from model data
(method M2), the biases disappear and the magnitude of the
UHI becomes more realistic. As expected, the UHI value for
the reference point outside the urban core is zero, i.e., white
shading in Fig. 3. For all three regions, the UHI values are
higher compared to M1. However, for Berlin the UHI extent
is much too large and the gradient is not very sharp whereas
the overall temperature gradient in the Paris region makes a
potential UHI invisible. For RRMA, method M2 produces
a reasonable looking UHI, however, its spatial extent being
exaggerated in the northern part. M2 also highlights the com-
plex topography south of the urban core in RRMA.

With area-averaging, we try to address the issue of repre-
sentativity and bias occurring in the single-point approaches.
Averaging over all rural grid points in the region (M3) leads
to a more balanced baseline temperature around the urban
core. The corresponding UHI representations as shown in
Fig. 4 indicate that for Berlin and Paris, the spatial pattern be-
comes more realistic albeit for Paris, the gradient still masks
a possible UHI structure in the southern part of the city. For
RRMA, the extent of the UHI increases further beyond the
boundaries of the urban areas.

The results of the other spatial-averaging methods (c.f.
Fig. 4 to Figs. A1–A3 in the appendix) are qualitatively very
similar as they also only provide one baseline value for each
region. Differences for the methods M4 and M5 are mostly
only visible for RRMA. The spatial structure and amplitude
of M4 is similar to M3 and that of M5 to M2. For the method
M6, which employs a simple height-correction to the temper-
ature field, no significant changes can be found for Berlin and
Paris. For the latter region, a further exaggeration of UHI in
the southeastern part of domain. For RRMA, the results also
show some issues in the topographically complex terrain in
the southeast of the domain, but the basic structure of the
UHI over the metropolitan areas is similar to the other meth-
ods.

The basic shortcoming of the aforementioned methods
with respect to the spatial representation of the UHI is that
only a single value (or constant field) is used as a baseline.
Method M7 provides a separate baseline value for each grid
point and therefore allows for a more realistic calculation of
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Figure 2. UHI calculated with M1 on the original grid (no interpolation) for Berlin, Paris and the Rhine-Ruhr Metropolitan Area (a–c). The
location of the weather station used as baseline is shown as a red dot, only when it is in the vicinity of the urban area.

Figure 3. UHI calculated with M2 on the original grid (no interpolation) for Berlin, Paris and the Rhine-Ruhr Metropolitan Area (a–c). The
location of the grid-point used as baseline is shown here as a blue dot, or in Fig. 1 as a blue grid-point (triangle).

the UHI. The spatial representation of the baselines for the
case study can be found in Fig. B1 in the appendix.

Figure 5 shows the resulting UHI patterns for M7 in the
three regions. In general, the negative values mostly disap-
pear with the respective baseline values being close to the
actual temperature in non-urban areas. Further, the UHI is
mostly restricted to the urban core with its extent for Berlin
covering most urban grid points and its peak above 2.25 ◦C.
For Paris, the UHI covers the northern half of the metropoli-
tan area as its southern half is not significantly warmer than
the surrounding rural areas. Therefore, the UHI representa-
tion seems to be realistic for this case. For the RRMA, the
UHI is more scattered across all urban agglomerates and with
slightly lower peaks (2 ◦C) compared to the other methods.
As the employed nearest-neighbour approach uses several
grid points to calculate the baseline, spurious positive and
negative values might occur in complex topography as can
be found in the south-eastern part of the RRMA domain.

5 Conclusions

The originally proposed UHI calculation using observed ur-
ban and rural station temperature data is trivial. However, an
increasing number of studies are now employing numerical
weather prediction models or satellite-based gridded obser-
vations to investigate and analyze the UHI. While the theoret-
ical concept is clearly defined, it is much more complicated
to come up with a practical implementation for calculating
the for gridded measurements or model data to account for
the complex morphology of cities and their surroundings.

In this study, we tested various methods on model data
for three urban agglomerations. Straight forward approaches
using either a single point (methods M1, M2) or a spatial
average (M3 to M6) to determine the baseline can result in
reasonable approximations of the UHI (e.g. for the Berlin
case in our study) especially for its peak amplitude in the
urban core. However, these methods are also prone to biases
and under- or overestimation of the UHI extent. These issues
arise from how the baseline temperature is estimated as well
as the major shortcoming of representing the environment
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Figure 4. UHI calculated with M3 on the original grid (no interpolation) for Berlin, Paris and the Rhine-Ruhr Metropolitan Area (a–c), the
limit of the rural points used in the baseline is shown here in the green lines, or in Fig. 1 as the sum of green, purple and orange grid-points.

Figure 5. UHI as calculated with M7 on the original grid (no interpolation) for Berlin, Paris and the Rhine-Ruhr Metropolitan Area (a–c).

in which the respective urban agglomerate is embedded as a
single value.

The often dominating complexity of the interaction be-
tween land use, topography and atmospheric dynamics
makes a more sophisticated approach necessary. Therefore,
we determine a rural baseline temperature for each grid point
using a nearest neighbor approach (M7). This allows for the
consideration of heterogeneities in and surrounding the ur-
ban core such as complex topography or temperature gradi-
ents. We find, that the resulting spatial UHI representation
for the three case study regions seem realistic given the un-
derlying model resolution. The strengths of method M7 can
be seen in the Paris region where a strong meridional temper-
ature gradient makes it impossible to identify a clear UHI for
all other methods. Potential artefacts when using M7 which
may manifest as spurious UHI values in complex terrain (as
can be seen for RRMA) are, however, rather small and can be
neglected with respect to the overall benefits of the method.
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Appendix A: Visualization of the UHI for the other
presented methods

This appendix contains the figures referred to but not in-
cluded in Sect. 4. As explained, some UHI methods have
been moved to the appendix due to the fact that only minor
differences can be observed in the rural baseline values. For
completeness, the results are presented for the case studies
for methods M4 (Fig. A1), M5 (Fig. A2) and M6 (Fig. A3).

Figure A1. UHI calculated with M4 on the original grid (no interpolation) for Berlin, Paris and the Rhine-Ruhr Metropolitan Area (a–c), the
rural area used as baseline is encompassed by the two purple rectangles, or in Fig. 1 as the sum of purple and orange grid-points.

Figure A2. UHI calculated with M5 on the original grid (no interpolation) for Berlin, Paris and the Rhine-Ruhr Metropolitan Area (a–c), the
rural area used as baseline is encompassed by the two orange rectangles, or in Fig. 1 as the orange grid-points.
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Figure A3. UHI calculated with M6 on the original grid (no interpolation) for Berlin, Paris and the Rhine-Ruhr Metropolitan Area (a–c),
with the height gradient correction. The baseline used is the same as M4.

Appendix B: UHI baseline

This appendix contains Fig. B1 depicting the two-
dimensional baseline fields obtained for the case studies with
method M7.

Figure B1. Baseline fields as estimated with M7 on the original grid (no interpolation) for Berlin, Paris and the Rhine-Ruhr Metropolitan
Area (a–c).
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