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Abstract. Short-duration high-intensity rainfall constitutes a major hydro-meteorological hazard, with impacts
such as pluvial (urban) flooding and debris flow. There is a great demand in society for improved information
on small-scale rainfall extremes, both in real time (e.g. for early warning) and historically (e.g. for post-flood
analysis). Observing this type of events is notoriously difficult, because of their extreme small-scale space-time
variability. However, owing to recent advances in weather radar technology as well as integration with ground-
based sensors, observational products potentially applicable in this context are now available. In this paper we
present a visualization prototype tailored for hydrological risk assessment by using sub-basins as spatial units,
by allowing temporal aggregation over different durations (i.e. accumulation periods) and by expressing high
rainfall intensities in terms of return period exceedance. The radar-based data is evaluated by comparison with
gauge observations and the quality is deemed sufficient for the intended applications. Different stakeholders have
shown great interest in the prototype, which is openly accessible online.

1 Introduction

Cloudbursts, i.e. short-duration high-intensity rainfall events,
are already today a major hazard, not least because of the hy-
drological consequences, and they are expected to become
more severe in a future, warmer climate (e.g. Willems et al.,
2012). An important task in climate adaptation is therefore to
improve our observation systems as well as means of com-
municating high-resolution rainfall information. Cloudbursts
are notoriously difficult to observe: gauge networks are gen-
erally not dense enough to accurately capture the peak in-
tensities and the small-scale spatial variability; weather radar
observations are uncertain with respect to intensity as well
as exact space-time location (e.g. Bringi and Chandrasekar,
2001; Delrieu et al., 2009; van de Beek et al., 2016; Thorn-
dahl et al., 2017). Much effort has been put into devel-
oping integrated products, where gauge and radar data are
merged by different approaches and algorithms (e.g. Berg
et al., 2016; Ochoa-Rodriguez et al., 2019). Still uncertain-
ties remain particularly in the reproduction of high-intensity
events, as shown e.g. by Schleiss et al. (2020) who found a
substantial underestimation of peak intensities in radar-based
estimates when compared to gauge observations.

Despite the uncertainties, we believe today’s radar-based
observational products can have a value for hydrological risk
assessment, if presented in a suitable way. Generally, radar
rainfall is presented as animations, which makes it virtually
impossible to estimate temporal accumulations that are key
for assessing the hydrological response. Further, even if ac-
cumulations may be obtained, their values (i.e. the rainfall
depth) are difficult to relate to hydrological risk. Parzybok
et al. (2011) suggested to express temporal accumulations
in terms of their return period (or, equivalently, average re-
currence interval, ARI) and provided examples of maps for
different durations (i.e. accumulation periods) and historical
events in the USA. The concept is further used in real-time in
the flood forecasting system in Iowa (Krajewski et al., 2017).
Lincoln and Thomason (2018) investigated the relationship
between ARI values and flash floods in the eastern USA, and
suggested the 2-year 3 h rainfall as a flash flood indicator.

In this paper we present a new near real-time spatio-
temporal rainfall visualization tool for Sweden, which is in-
spired by the work cited in the previous paragraph. The tool
is based on the radar-based gauge-adjusted HIPRAD product
(Berg et al., 2016; van de Beek et al., 2021). The tool fo-
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cuses on sub-daily durations – the user can select between 1,
3, 6 or 12 h – and it represents large accumulations in terms
of their return period. A novelty as compared with existing
tools, at least to our knowledge, is that spatially the rainfall is
provided on hydrological sub-basin level. The tool has been
co-designed together with stakeholders as well as colleagues
through discussions at workshops and project meetings over
the last few years. In this paper, the precision in the visualiza-
tion tool is evaluated by comparison with observations from
automatic stations in the Swedish meteorological network.

2 Study region and data

The study focuses on Sweden for which Olsson et al. (2019)
performed a regional analysis of short-duration rainfall ex-
tremes. Based on a data set of 22-year time series (1996–
2017) of 15 min rainfall from 128 automatic meteorological
stations, regional depth-duration-frequency (DDF) statistics
were calculated with Sweden being divided into four regions;
south-western, south-eastern, central and northern. Overall,
the DDF statistics are highest in south-western Sweden and
lowest in northern Sweden.

The visualization tool is based on the latest version (3)
of the HIPRAD product (HIgh-resolution Precipitation from
gauge-adjusted weather RADar; Berg et al., 2016), de-
scribed in detail and evaluated in van de Beek et al. (2021).
HIPRAD3 is based on 15-min radar scans from a network
of 12 C-band radars in Sweden as well as radars in neigh-
bouring countries, converted into a 2 × 2 km2 grid and avail-
able since 2000. The HIPRAD3 method adjusts the radar
scans by first filling potential gaps from missing scans or
parts of scans, advecting the instantaneous scans to 15 min
accumulations using the pySTEPS algorithm (Pulkkinen et
al., 2019), and applying a clutter removal filter. Finally, a
gauge-adjustment algorithm is applied to reduce bias in long-
term accumulations by re-scaling the radar accumulations to
a reference data set (PTHBV; Johansson and Chen, 2003)
within a centered 31 d moving time window. PTHBV, which
includes an undercatch correction for wind losses, is de-
fined over land and thus also the final HIPRAD3 product. In
the visualization tool, HIPRAD3 is re-mapped from its grid
onto the hydrological sub-basins in the national hydrologi-
cal model S-HYPE (Strömqvist et al., 2012). The mapping
is performed by geometric weighting of the grid cells falling
within the boundaries of each sub-basin. The median sub-
basin size is ∼ 7 km2 with most sub-basins between 1 and
20 km2. HIPRAD3 is produced both as a real-time product,
with a latency of ∼ 1 h, and as a historical product. In the lat-
ter, full gauge-adjustment is performed, using the 31 d mov-
ing window described above, whereas in the former the most
recent adjustment is assumed. The evaluation in this study is
performed for the historical product.

In van de Beek et al. (2021), the above regional analysis
by Olsson et al. (2019) was repeated, but with the time se-

ries from automatic stations replaced by the corresponding
HIPRAD3 time series (period 2000–2019), taken from the
grid cells covering each of the 128 stations. On the national
level, for sub-hourly durations (15, 30 and 45 min; based
on a moving window approach with 15 min steps) the DDF
statistics based on automatic stations are underestimated by
∼ 10 %–30 % in the HIPRAD3 DDF statistics. For the longer
durations (1, 3, 6 and 12 h), which is the focus of this study,
regional differences exist but the average underestimation is
3.6 %, i.e. a distinctly better agreement than for the shorter
durations. The underestimation may be partially attributed
to differences in scale between stations (point value) and
HIPRAD3 grid cells (4 km2).

3 Methods

3.1 Visualization tool

The visualization tool is shown in Fig. 1, using an exam-
ple from 29 August 2020 when a cloudburst hit the Gotland
island, located east of the southern mainland, causing flash
flooding. The map of central Gotland (Fig. 1b) illustrates the
sub-basin level used in the visualization. The “control panel”
allows the user to select date and time as well as a dura-
tion of interest. For rainfall depths up to a return period of
2 years, the depth is represented by different green nuances,
while yellow, orange and red are used to represent depths
above return periods 2, 10 and 50 years, respectively (D2,
D10 and D50). The depth limits associated with the differ-
ent return periods can be downloaded from the tool (“Down-
load RP Limits”; Fig. 1a). Sections “Sources” and “Over-
lay” are under development. When selecting a sub-basin, a
diagram with hourly observations is shown with the selected
period highlighted and the total depth written in the header
(Fig. 1b). The observations are updated in near real-time ev-
ery hour and the complete record of historical observations
are available.

3.2 Evaluation

We evaluate the performance of the HIPRAD3 visual-
ization by comparing with the automatic stations in a
multi-category contingency table approach (e.g. Wilks,
1995). The rainfall depth (D) categories are the inter-
vals used in the visualization (Fig. 1), i.e. D < 1 mm,
1 mm ≤ D < 3 mm, 3 mm ≤ D < 5 mm, 5 mm ≤ D <D2,
D2 ≤ D <D10, D10 ≤ D <D50 and D ≥ D50 (hereafter
termed D-categories). The comparison is performed for
every pair of time series from station and corresponding
HIPRAD3 grid cell. For each time step we identify the
accompanying combination of D-categories, which becomes
an entry in the contingency table; a hit requires that the D-
category is the same in the automatic station and HIPRAD3,
respectively. The procedure was repeated for time steps 1,
3, 6 and 12 h. Note that the regional values of D2, D10 and
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Figure 1. Rainfall over Sweden (a) and central Gotland (b) between 10:00 and 13:00 CET on 29 August 2020 as seen in the visualization
tool.

D50 are different for the two sources (Sect. 2); for the
automatic stations the values were obtained from Olsson
et al. (2019) and for HIPRAD3 the values were obtained
from van de Beek et al. (2021). In the evaluation we use
data from the whole available period (2000–2019) but only
for the summer half year (May–October), to minimize any
occurrence of solid precipitation.

A known limitation of radar-observed rainfall is that the
timing may be shifted as compared with ground observa-
tions, i.e. high intensities may be recorded some time before
or after it was registered on the ground. To investigate this
effect, we repeated the above multi-category contingency ta-
ble analysis, but this time allowing a temporal error margin
of 1–3 h in HIPRAD3. Thus, if the D-category in the auto-
matic station agrees with the HIPRAD3 D-category within
the temporal error margin, it is registered as a hit in the con-
tingency table.

4 Results and discussion

The results of the evaluation are summarized in Tables 1
and 2. As the results do not show any clear regional de-

pendence the tabulated values are averages over all four re-
gions from Olsson et al. (2019), i.e. entire Sweden. Looking
first at Table 1, the values in columns “same cat.” represent
the hit rate, i.e. the fraction of all “HIPRAD3 D-category
time steps” (i.e. time steps when the HIPRAD3 depth be-
longs to the category in the left column) that agrees with
the D-category in the corresponding automatic station. For
example, out of all the 1 h time steps when the HIPRAD3
depth was in category “5 mm ≤ D <D2”, in 32.5 % of these
time steps also the depth in the automatic station was in
category “5 mm ≤ D <D2”, i.e. hits. For the different du-
rations, the hit rate generally ranges from 40 %–50 % for
category “1 mm ≤ D < 3 mm” to 10 %–20 % in category
“D10 ≤ D <D50”. For category “5 mm ≤ D <D2”, the hit
rate increases with duration, which reflects that the interval
of this category increases as D2 becomes gradually larger for
longer durations.

For the lower D-categories, in ∼ 50 % of the time steps
the station observation is below the HIPRAD3 interval and
in ∼ 15 % it is above. For the higher D-categories, the corre-
sponding numbers are ∼ 80 % and ∼ 5 %. HIPRAD3 thus
generally overestimates the depth, compared with the sta-
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Table 1. Fraction (%) of time steps where the D-category of the automatic station either agrees with the one of HIPRAD3 (column “same
cat.”, equivalent to hit rate) or is within ± one D-category (column “± one cat.”), for durations 1, 3, 6 and 12 h.

Duration 1 h 3 h 6 h 12 h

Same ± one Same ± one Same ± one Same ± one
cat. cat. cat. cat. cat. cat. cat. cat.

1 mm ≤ < 3 mm 47.8 98.1 43.5 96.7 40.4 95.9 38.3 95.4
3 mm ≤ D < 5 mm 25.3 86.9 29.2 88.1 28.0 87.1 27.1 86.2
5 mm ≤ D <D2 32.5 63.9 52.9 79.4 61.1 83.0 66.5 85.2
D2 ≤ D <D10 10.4 55.5 11.9 84.4 15.3 91.9 16.8 95.3
D10 ≤ D <D50 12.6 25.3 12.0 37.6 19.1 39.1 16.7 43.7

Table 2. Fraction (%) of time steps where the D-category of the automatic station agrees with the one of HIPRAD3 when allowing an error
margin of 1, 2 and 3 h, for durations 1, 3, 6 and 12 h.

Duration 1 h 3 h 6 h 12 h

Error margin: 1 h 2 h 3 h 1 h 2 h 3 h 1 h 2 h 3 h 1 h 2 h 3 h

1 mm ≤ D < 3 mm 73.5 78.2 80.6 64.4 71.7 75.0 55.5 63.3 68.1 48.3 54.3 58.7
3 mm ≤ D < 5 mm 52.8 57.6 59.9 54.5 62.7 66.1 46.4 56.0 61.6 39.0 46.4 51.9
5 mm ≤ D <D2 48.1 50.6 52.0 65.5 68.7 69.9 69.2 72.6 74.4 71.1 73.5 75.1
D2 ≤ D <D10 19.4 20.0 20.1 21.5 23.7 24.2 23.0 27.0 28.7 22.7 26.7 29.4
D10 ≤ D <D50 18.2 18.2 18.2 20.4 22.2 22.7 23.5 25.0 25.6 21.3 24.4 26.0

tions, and this result may seem to be in conflict with other
studies concluding that radar-based observations generally
underestimate rainfall depths, especially high or extreme
depths (e.g. Schleiss et al., 2020). When evaluating radar-
based observations, normally station observations are taken
as the reference and compared with what the radar observes
at the same time and place. In this perspective the radar-based
observations will generally underestimate the station obser-
vations, e.g. because of space-time uncertainty/errors. Here
we do the analysis in the opposite way; we use HIPRAD3
as the reference and compare with what the station observes
at the same time and place. Because of space-time uncer-
tainty, in this perspective the radar-based observations will
instead generally overestimate the station observations, as
(high) rainfall is displaced (in time and/or space) and the cor-
responding station observation will generally be lower.

The values in column “± one cat.” in Table 1 repre-
sent the fraction of time steps when the D-category in
the automatic station is within ± one category, as com-
pared with the D-category in HIPRAD3. For example, out
of all the 1 h time steps when the HIPRAD3 depth was
in category “5 mm ≤ D <D2”, in 63.9 % of these time
steps the depth in the automatic station was in either cat-
egory “3 mm ≤ D < 5 mm”, category “5 mm ≤ D <D2” or
category “D2 ≤ D <D10”. The values in column “± one
cat.” generally increase with increasing duration, and fur-
ther the rate increases with increasing D-category. For du-
rations 6 and 12 h, the D-category in the automatic station

is very often within ± one category of HIPRAD3, except for
“D10 ≤ D <D50” where the percentage is ∼ 40 %.

The impact of allowing a temporal error margin is shown
in Table 2, where the fractions correspond to the ones in
columns “same cat.” in Table 1, but calculated using er-
ror margins 1, 2 and 3 h. For example, out of all the
1 h time steps when the HIPRAD3 depth was in cate-
gory “5 mm ≤ D <D2”, in 48.1 % of these time steps also
the 1 h depth in the automatic station was in category
“5 mm ≤ D <D2” if allowing a 1 h error margin (i.e. if look-
ing at a 3 h time window centred on the time step under in-
vestigation). As expected, the fractions increase with increas-
ing error margin. For single combinations of D-category, du-
ration and error margin, the relative increase ranges widely
from 7 % (D-category “5 mm ≤ D <D2”, duration 12 h, er-
ror margin 1 h) up to 137 % (“3 mm ≤ D < 5 mm”, 1, 3 h). As
the relative increase has no clear dependence on D-category,
in Table 3 the increase is averaged over all D-categories to
more clearly show the overall impact of the error margin. The
relative increase is similar for durations 1 and 3 h, and then
gradually decreases for 6 and 12 h. This reflects the fact that
the impact on the accumulated depth of shifting a time win-
dow a few steps back or forth in time is higher the shorter the
time window.

The results in Tables 1–3 indicate the precision with which
HIPRAD3 is able to describe local rainfall, as represented by
the automatic stations. The ability of HIPRAD3 to identify
the correct category at a given time step is limited, as shown
in Table 1, but if allowing an error margin in terms of depth
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Table 3. Relative increase (%) of the hit rate (values in columns
“same cat.” in Table 1) when allowing a temporal error margin be-
tween 1 and 3 h.

Duration 1 h 3 h 6 h 12 h

Error 1 h 69.0 64.8 40.6 28.5
margin: 2 h 77.6 82.4 60.3 46.8

3 h 81.6 88.8 70.5 59.4

and/or time the performance increases substantially. This
suggests that a more qualitative presentation may be more
sensible, where depths are grouped into fewer categories and
time intervals are given rather than exact time steps. On the
other hand, in many situations it can be expected that users
can “validate” the HIPRAD3 estimates, e.g. by using munic-
ipal or private observations, and that way assess the accuracy
for a specific event. For this reason, it may be unfortunate to
“degrade” the information content provided in the visualiza-
tion tool.

There are some aspects that most likely have had some
impact on the evaluation. One is that HIPRAD3 includes an
undercatch correction that is not applied to the automatic
stations. For this reason, HIPRAD3 should show systemat-
ically somewhat higher values particularly at small depths
(i.e. low D-categories) and long durations, where the ef-
fect of undercatch is most prominent, especially in the north
where precipitation falls as snow also in parts of the summer
half year considered here. Another aspect is differences in
spatial scale. Firstly, we compare 2 × 2 km2 gridded obser-
vations (HIPRAD3) with point observations (stations). This
mismatch adds uncertainty especially at large depths and
short durations, associated with small-scale events where the
areal reduction effect may be notable (e.g. Svensson and
Jones, 2010; Eggert et al., 2015; Thorndahl et al., 2019).
Secondly, the evaluation is performed on HIPRAD3 grid
scale (4 km2) whereas the visualization is performed on S-
HYPE sub-basin scale (median size ∼ 7 km2; Sect. 2). For
sub-basins substantially larger than the median value the re-
sults from this evaluation may not be fully representative. We
neglect these aspects in this study, but we intend to perform
more detailed evaluation in the future.

5 Concluding remarks

We present a rainfall visualization tool focused on providing
support for hydrological risk assessment, particularly associ-
ated with sub-daily high-intensity rainfall events. The tool
uses a sub-basin spatial resolution, allows for analysis of
different temporal accumulations and presents large rainfall
depths in terms of return periods. The uncertainties involved
as well as the effects of allowing error margins in terms of
depth and time were quantified in an evaluation.

Despite the uncertainties involved, we believe the tool has
an obvious value for hydrological risk assessment, depending
on the purpose and conditions. This has been confirmed in
communication with various stakeholders, e.g. in joint eval-
uations of well-known extreme events with societal conse-
quences (e.g. in Jönköping 2013, Malmö 2014 and Halls-
berg 2015). If observed rainfall events can be “validated”
against independent ground observations (or impacts), the vi-
sualization is conceivably useful for post-analyzing e.g. flood
events. If no independent observations are available, the vi-
sualization of an event should be considered a “best guess”
where the exact depths as well as the space-time evolution
must be viewed with caution, especially for high-intensity
events. Furthermore, current testing indicates that HIPRAD3
can be successfully used to force 1 h simulations with the
national hydrological S-HYPE model, which supports its ap-
plicability for hydrological assessment. However, HIPRAD
is under constant development and will gradually improve
by e.g. better conversion from reflectivity to intensity, more
effective estimation of missing data and incorporation of ob-
servations from additional sensors (van de Beek et al., 2021).

Finally, we intend to develop the tool in different ways.
One is to include visualization of other sensors, such as
gauges, X-band radar and microwave links, as well as
blended products, potentially at higher space-time resolu-
tions. Another is to combine the observations with high-
resolution rainfall forecasts into a seamless stream. Conceiv-
ably a nowcasting approach is preferable, to allow a smooth
transition from the observations, and different options are
currently being developed and evaluated. A third way is to
include relevant GIS layers in the tool, e.g. maps representing
risk of landslide or other hazards related to intense rainfall.

Code availability. The prototype of the visualization tool is
openly available at: http://hypewebapp.smhi.se/skyfall/ (last access:
6 May 2021) (SMHI, 2021).
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