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Abstract. The climate of Bangladesh is very likely to be influenced by global climate change. To quantify the
influence on the climate of Bangladesh, Global Climate Models were downscaled statistically to produce future
climate projections of maximum temperature during the pre-monsoon season (March–May) for the 21st cen-
tury for Bangladesh. The future climate projections are generated based on three emission scenarios (RCP2.6,
RCP4.5 and RCP8.5) provided by the fifth Coupled Model Intercomparison Project. The downscaling process is
undertaken by relating the large-scale seasonal mean temperature, taken from the ERA5 reanalysis data set, to
the leading principal components of the observed maximum temperature at stations under Bangladesh Meteoro-
logical Department in Bangladesh, and applying the relationship to the GCM ensemble. The in-situ temperature
data has only recently been digitised, and this is the first time they have been used in statistical downscaling
of local climate projections for Bangladesh. This analysis also provides an evaluation of the local data, and the
local temperatures in Bangladesh show a close match with the ERA5 reanalysis. Compared to the reference
period of 1981–2010, the projected maximum pre-monsoon temperature in Bangladesh indicate an increase by
0.7/0.7/0.7 ◦C in the near future (2021–2050) and 2.2/1.2/0.8 ◦C in the far future (2071–2100) assuming the
RCP8.5/RCP4.5/RCP2.6 scenario, respectively.

1 Introduction

1.1 Background

Bangladesh is highly vulnerable to climate change due to its
flat and low-lying delta landscape, dependence upon agricul-
ture, high population density and poverty. Natural disasters
and extreme weather events, such as floods and heat waves,
occur frequently and are often detrimental to lives and liveli-
hoods. Reliable information about how regional and local cli-
mates have changed in the past and may change in the future
is important for managing climate change risks.

Global climate models (GCMs) can provide future projec-
tions of climate variables (Stocker et al., 2013) but typically
at a coarse resolution that is of limited use in impact studies

assessing the local response to global climate change. These
projections can nevertheless provide some important infor-
mation about large-scale climate change. A common way of
approaching the question of local climate change is through
so-called downscaling where information about large-scale
climate change is combined with information about how the
local climate depends on the large-scale situation and local
geographical factors (Benestad, 2016). One implicit assump-
tion of downscaling is that the climate models have a min-
imum skillful scale that is different from the spatial reso-
lution (Takayabu and Hibino, 2016), and that the local de-
tails have a predictable dependency on the large-scale fea-
tures that the model is able to reproduce. Some explana-
tions for the models’ minimum skillful scales include their
simplicity and idealistic representation of the world, their
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use of discrete numbers and imperfect numerical algorithms
for solving mathematical operations, a lack of small-scale
surface details, the presence of unresolved small-scale pro-
cesses, and an imperfect model design due to our limited un-
derstanding of the climate system. There are two main ap-
proaches to downscaling GCM results to higher spatial reso-
lutions: dynamical downscaling using regional climate mod-
els (RCM) (Rummukainen, 2010) and empirical-statistical
downscaling (ESD) in which a statistical connection is es-
tablished between the large-scale climate and local response
(Hewitson et al., 2014). Dynamical downscaling is based on
physical-dynamical relationships and provides a comprehen-
sive picture of the climate, which makes it well suited for
climate process studies (Giorgi and Gutowski, 2015; Kjell-
ström et al., 2007). One main disadvantage with RCMs is the
high computational demand which tends to limit the down-
scaling to one or a small set of GCM simulations (Gutman
et al., 2012), but there are also other caveats such as mis-
match between the driving GCM and the RCM (von Storch
et al., 2000) and the need for bias-adjustment (Gudmunds-
son et al., 2012; Maraun, 2013). ESD on the other hand is
computationally cheap and can easily be applied to a large
GCM ensemble, but requires long observational time series
and typically downscales each climate variable separately
(Maraun and Widmann, 2018; Benestad et al., 2009). The
assumption of a stationary statistical relationship is essential
to obtain trustworthy projections for future periods in ESD,
but this assumption is also implicitly made for GCMs and
RCMs which rely on statistical parameterization schemes to
represent some of the many complex physical processes that
govern the climate.

Various methods can be used in ESD, such as analogue
methods and circulation typing, regression analysis, or neural
network methods (Wilby et al., 2002; Maraun et al., 2015).
The statistical model is typically calibrated on historical ob-
servations and then applied to GCM results to generate out-
put for future climate scenarios to study the impact of cli-
mate change on a regional scale (Wilby et al., 2004). There
are two different approaches in ESD: (1) training the statis-
tical model on each time step (e.g., daily weather charts and
daily temperature) to downscale the local “weather”; (2) ag-
gregating statistical aspects such as the mean µ and standard
deviation σ over a season to downscale the parameters of
probability density functions describing the local “climate”
(Benestad, 2016). Bias adjustments such as quantile map-
ping are often used to correct for systematic biases in global
or regional climate model simulations, and can be seen as
a simple and non-parametric statistical downscaling method
(Gudmundsson et al., 2012; Gutjahr and Heinemann, 2013)
which attempts to adjust the distribution of historical model
data such that it matches the distribution of the observations,
hence, it does not require a prior knowledge of the theoretical
distribution of the weather variables. Large-scale features can
be represented in different ways in ESD, either based on the
nearest grid-box values from reanalyses and GCMs (e.g., Liu

et al., 2016), or by an index that represents some spatially ag-
gregated quantity or a statistic describing the spatio-temporal
patterns in a larger region (e.g., Benestad, 2011). Common
Empirical Orthogonal Function (common EOF) analysis ap-
plied to GCM and reanalysis data can be used to represent
the large-scale predictors (Flury, 1988; Barnett, 1999; Ben-
estad, 2001, 2011). This means that EOF analysis is applied
to an object combining the GCM and reanalysis data, which
decomposes the combined data into a common set of spatial
patterns, eigenvalues representing the relative importance of
each pattern, and principal components (PCs) describing the
temporal variations associated with the spatial patterns for
the GCM and reanalysis data separately (see schematic in
Fig. 1). In ESD, the part of the PCs that represents the reanal-
ysis is used to tune the statistical downscaling model which
is subsequently applied to the part of the PCs that represents
the GCM data to obtain future projections. The method en-
sures that the exact same large-scale spatial structures are
identified in both data sets. The common EOFs can also fa-
cilitate an evaluation of the GCMs’ ability to reproduce the
spatio-temporal covariance structure found in the reanalysis
through a comparison between the part of the PCs that repre-
sents the reanalysis and GCM, respectively (Benestad et al.,
2016). Usually, one set of common EOFs is estimated for
each combination of reanalysis and GCM simulation.

Bangladesh has been the subject of some statistical down-
scaling studies. Rahaman et al. (2015) found that a statis-
tical downscaling model (SDSM) showed good agreement
between observed and simulated maximum and minimum
temperatures, indicating that the method can be used to pre-
dict future scenarios with some confidence. For precipita-
tion, on the other hand, their results were not in such a
good agreement. Nury and Alam (2013) downscaled tem-
perature and precipitation for Northeastern Bangladesh from
the HADCM3 model, using a similar method and found rea-
sonable agreement between observed and downscaled data.
Shourav et al. (2016) used SDSM to downscale future cli-
mate projections over the city of Dhaka, Bangladesh. Their
study indicated that climate change will cause continuous in-
creases in rainfall, temperature, and related extreme events.
Pour et al. (2018), using a Support Vector Machine (SVM)
based Model Output Statistics (MOS) approach (i.e., relat-
ing GCM model outputs to observational data, see Glahn
and Lowry, 1972 or Maraun and Widmann, 2018), down-
scaled 4-GCM simulations that were selected to cover the
whole range of projections. Considering four different emis-
sion scenarios, they reported an increase in annual mean pre-
cipitation in almost all parts of Bangladesh for all scenarios,
but a stronger increase in the western part of Bangladesh.
Alamgir et al. (2019) also used an SVM method to establish
downscaling models of minimum and maximum tempera-
ture in Bangladesh which were based on 8 GCM simulations.
The downscaled projections showed a significant increase in
temperature during the 21st century, with the minimum tem-
perature increasing in winter (December–February) and the
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Figure 1. Schematic representation of the common Empirical Orthogonal Function (common EOF) analysis. The figure shows how EOF
analysis is applied to a mixed object containing GCM and reanalysis data joined along the time axis, deconstructing the data into a set of n
spatial patterns, eigenvalues representing the relative strength of the patterns, and principal components representing the temporal variations
associated with the patterns.

maximum temperature increasing in the pre-monsoon sum-
mer season (March–May). Khan et al. (2020) studying an en-
semble of 11 RCM simulations projected a shift in the spatial
patterns of drought in the pre-monsoon period in the coming
century. All these past studies have involved a small num-
ber of GCM simulations, which can be problematic because
small ensembles do not give a representative picture due to
the presence of random noise (Mezghani et al., 2019).

There are examples of studies using GCMs or RCMs
to evaluate the local response to global climate change
in Bangladesh, but in general the spatial resolution has
been too coarse for many impact studies. Using 11 GCMs,
OECD (2003) estimated that by 2100, the average tempera-
ture in Bangladesh would increase by 2.4 ◦C following the
SRES B1 scenario (Nakicenovic et al., 2000). Rahman et
al. (2012) applied the RegCM3 to a single GCM simula-
tion and also detected an overall rise in temperature while
changes in precipitation were dependent upon season and re-
gion. Mishra (2015) found that RCMs show a larger uncer-
tainty of increasing (1–3.6 ◦C) temperature in the CORDEX
South Asia historical experiments than that of the observa-
tions in the Himalayan water towers like Indus, Ganges and
Brahmaputra river basins. This evaluation also shows that the
RCMs demonstrate large cold bias (6–8) ◦C and are not able
to repeat the observed warming in the Himalayan water tow-
ers. The downscaled seasonal mean temperature in this multi-
RCM ensemble was found to have relatively larger cold bias
than their driving CMIP5 over the hilly sub-regions within
the Hindu Kush Himalayan region (Sanjay et al., 2017).

It is essential to evaluate the downscaled results in order
to have confidence in the downscaling methods. The Euro-
pean project VALUE established a framework for validating
ESD-based downscaling and provided recommendations for
techniques such as cross-validation (Maraun et al., 2015), but
it did not consider a more comprehensive approach to vali-

dating the results of the ESD results when applied to either a
GCM (Benestad, 2001) or an ensemble of GCMs. The tradi-
tional approach to validate has been to apply the downscaling
methods to some reanalysis to test the ability to reproduce
the local temperature or precipitation when given a “perfect”
large-scale predictor. However, when using downscaling to
provide local climate projections, it is also important to test
the downscaling when used with GCMs that also have biases.
One advantage of ESD is that it is computationally cheap
which makes it possible to downscale large ensembles of
GCMs for extensive time intervals. It is then possible to vali-
date the downscaling of the GCMs for the past based on how
well it reproduces the past trends and interannual variability
through various statistical tests (Benestad et al., 2016).

The main purpose of this study is to reassess changes
in the maximum temperatures in the pre-monsoon season
(March-May) over Bangladesh through statistical downscal-
ing of GCMs assuming three representative concentration
pathways (RCP) which describe future greenhouse gas emis-
sions – RCP2.6, RCP4.5 and RCP8.5. The statistical down-
scaling was applied to all GCM simulations of maximum
temperature from the fifth phase of the Coupled Model In-
tercomparison Project (CMIP5) that were available from the
KNMI Climate Explorer (64, 105 and 77 simulations for
RCP2.6, RCP4.5 and RCP8.5, respectively). The ESD model
was developed using a method developed by Benestad et
al. (2016), in which stepwise multiple linear regression was
used to establish a statistical relationship between the prin-
ciple components of the maximum temperature observations
at stations in Bangladesh and the large-scale temperature as
represented by reanalyses and GCM data. One advantage of
this method is that it requires only seasonal mean data, needs
less computational resources than dynamic downscaling, and
thus can be applied to many scenarios, GCM simulations and
long time intervals rather than the brief time slices. The prin-
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Figure 2. The mean seasonal cycle of the daily maximum temper-
ature in Bangladesh, based on observations from 1981–2019. The
colors represent the geographical location of the stations as shown
in the map in the upper right corner.

ciple component analysis (PCA) of the station data also em-
phasises the large-scale temperature variability and reduces
local noise, which is beneficial for statistical downscaling
purposes (Benestad et al., 2015a). The outcomes of the study
will assist in climate change impact evaluation and adapta-
tion studies in Bangladesh.

1.2 Study region

In this study, we focus on the daily maximum temperature
of the pre-monsoon season (March–May) which corresponds
to the hottest season in Bangladesh exhibiting frequent heat
waves with temperatures above 36 ◦C (36–38 ◦C are mild,
38–40 ◦C moderate, and above 40 ◦C are severe heat waves).
Station based observations have shown that the average daily
maximum temperature for Bangladesh in the pre-monsoon
season varies between 23–30 ◦C with April and May being
the hottest months (Khatun et al., 2016; see also our Figs. 2
and 3). The highest maximum temperature ranging from 36–
40 ◦C has been attained in the northwestern and southwest-
ern districts. Figure 2 displays the mean seasonal cycle of the
maximum temperature at stations in Bangladesh. The west-
ern interior part of the country displays a strong seasonal
variability and the highest maximum temperature in the pre-
monsoon season.

Due to the daily intense heating of the land surface over
northwestern Bangladesh, low pressure systems tend to de-
velop over Bihar, West Bengal of India and the adjoining
northwestern part of Bangladesh. In the afternoons, mois-
ture from the Bay of Bengal occasionally incurs to the low
pressure system resulting in the formation of thunder clouds

Figure 3. (a) Pre-monsoon (March–May) seasonal mean of the
daily maximum temperature at different stations in Bangladesh, and
(b) the trend in daily maximum temperature, based on observations
from 1981–2019. The black circles around the markers in (b) indi-
cate that the trend is statistically significant at the 99 % level (p val-
ues< 0.01).

and severe thunderstorms. These severe thunderstorms are
known as Nor’westers (“Kalbaishakhi” in Bengali) and they
occur frequently at many places across Bangladesh in the
pre-monsoon season. The Nor’westers are often accompa-
nied by destructive squalls, thunder and heavy rainfall with
hail. Flash floods typically occur in the northeastern part of
Bangladesh due to heavy rainfall associated with severe thun-
derstorms, especially over northeastern parts of Bangladesh
and adjoining northeastern states of India. Nevertheless, only
19 % of the total annual rainfall occurs in the pre-monsoon
season.

The pre-monsoon season is also characterized by cycloge-
nesis in the Bay of Bengal. Some of the low pressure systems
formed over the Bay of Bengal intensify into depressions
which sometimes turn into storms and move initially north-
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westwards and subsequently recurve to the northeast towards
the coast of Bangladesh and Myanmar (Khatun et al., 2016).
Some of these storms become very severe at landfall along
the Bangladeshi coast. They are occasionally associated with
storm surges and may cause high casualties and damages.

2 Data and methodology

2.1 Data description

Local observations of the daily maximum temperature from
stations in Bangladesh were collected from the Bangladesh
Meteorological Department (BMD). Only stations with at
least 30 years of valid data in the calibration period 1981–
2019 were retained. Further information about the observa-
tional stations are found in Table S1 of the Supplement.

The ERA5 data set (Hersbach et al., 2020; C3S, 2017),
a global atmospheric reanalysis produced by the European
Centre for Medium-Range Weather Forecasts (ECMWF),
was used as predictor data to describe the pre-monsoon
seasonal mean temperature over the domain 80–100◦ E/15–
45◦ N.

Mean temperature GCM data from the CMIP5 ensemble
were downloaded from the KNMI Climate Explorer (https:
//climexp.knmi.nl/start.cgi, last access: 21 January 2021)
which provides monthly data regridded to a 2.5◦ resolution
for the time period of 1900–2100. Three future pathways
were considered: the high emission scenario RCP8.5 (Riahi
et al., 2007), the medium emission scenario RCP4.5 in which
the radiative forcing stabilizes shortly after 2100 (Clarke et
al., 2007), and the more optimistic peak-and-decline scenario
RCP2.6 (Van Vuuren et al., 2007). It should be noted that the
ensemble size and climate models included differ between
RCPs, as shown in Table S2.

2.2 Empirical-statistical downscaling method

The empirical-statistical downscaling approach used in this
study involved deriving statistical relationships between the
mean daily maximum temperature over the pre-monsoon sea-
son from station based observations in the period 1981–2019
and the large-scale mean temperature patterns as represented
by the common EOFs of the ERA5 reanalysis and GCM sim-
ulations. In other words, we chose the downscaling “climate”
approach here, focusing on the statistical characteristics of
the daily maximum temperature.

A principal component analysis (PCA) was applied to
the seasonally averaged observational data which decom-
posed the data into a set of spatial patterns, associated princi-
ple components (PC) describing their variation in time, and
eigenvalues describing the relative weight of the various pat-
terns. The first two leading PCs, which accounted for approx-
imately 94 % (80 % for PC1 and 14 % for PC2) of the vari-
ability of the observed maximum temperature, were used as
predictands.

A common EOF analysis, as proposed by Benestad (2001),
was applied to the reanalysis and GCM maximum temper-
ature data extracted for the domain 80–100◦ E/15–45◦ N to
represent the large-scale predictors (Benestad et al., 2016).
The GCM data (one simulation at a time, using the full pe-
riod of available data 1850–2100) was combined with ERA5
reanalysis data for the period 1979–2019 along the time axis.
EOF analysis was subsequently applied to the combined data
set. This procedure decomposed the data into a set of spatial
patterns and eigenvalues that were common to the reanaly-
sis and GCM data, and principal components (PCs) for each
pattern representing temporal variations where one part was
associated with the reanalysis data and another part associ-
ated with the GCM data (Fig. 1). The part of the PCs asso-
ciated with the reanalysis data were then used to calibrate a
statistical model as follows:

Y1 = c0+ c1X1+ c2X2+ . . . + c10X10, (1)

where Y1 is the first leading PC of the predictand, X1,
X2, . . . ,X10 are the ten leading PCs of the predictor, and c0,
c1, . . . , c10 are model coefficients obtained through multiple
regression. Similar models were fitted for the second PC of
the predictand. The number of predictor patterns was chosen
because for all ensemble members, the ten leading common
EOF patterns explain almost all (99 %–100 %) of the vari-
ance of the GCM simulation and reanalysis data.

A stepwise multiple regression was used to estimate model
parameters, using predictand and predictor data from the cal-
ibration period 1981–2019. Only the part of the predictor PCs
that represent the reanalysis were included in the regression.
The number of predictors was reduced using the Akaike In-
formation Criterion (AIC), a measure of model quality which
takes both model performance and complexity into consider-
ation in order to avoid overfitting (Akaike, 1974). In prac-
tise, this means that one or several of the coefficients c0,
c1, . . . , c10 can be set to zero during model calibration. The
statistical model was then applied to the predictor PCs asso-
ciated with the GCM data to obtain future projections of the
predictand PCs. Future estimates of the local maximum tem-
perature could then be constructed from the projections of
the predictand PCs combined with the corresponding spatial
patterns and eigenvalues.

The procedure of common EOF analysis and stepwise
multiple regression was repeated for each GCM simulation,
but because the calculations were rather efficient they could
nevertheless be applied to a large number of simulations (see
Table S2 for a complete list of the included GCM simula-
tions).

2.3 Validation

To evaluate the skill of the empirical-statistical models, a
five-fold cross validation was applied in which the fitting
process was repeated five times (Maraun et al., 2015), each
time leaving one fifth of the predictor and predictand data out
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of the multiple regression (Wilks, 2011). Predictions were
then made for the left out period and a cross validation score
was calculated as the correlation (Pearson’s r) between these
independent predictions and the original principal compo-
nents. The cross validation was performed for every regres-
sion model, i.e., for each PC and GCM simulation.

To assess how well the downscaled multi-model ensem-
bles represent the past trends and interannual variability for
each station, the observed seasonal mean maximum temper-
ature in the period 1981–2019 was compared with statistical
characteristics of the downscaled ensembles. The trend in the
period 1981–2019 was calculated for the observed maximum
temperature and for each downscaled ensemble member at
all stations. To estimate the probability (ptrend) of seeing a
maximum temperature trend of the observed strength given
that the downscaled multi-model ensemble was a true rep-
resentation of the distribution, the observed trend in the cal-
ibration period was compared with the probability density
function (pdf) of a normal distribution (the “pnorm” function
in R) with statistical characteristics (mean and standard de-
viation) given by maximum temperature trends of the down-
scaled ensemble members in the same period. To assess the
representation of the interannual variability, the number of
observed values outside of the 90 % confidence interval (CI)
of the downscaled ensemble was counted and the probabil-
ity of the outcome (pCI) was calculated using a binomial pdf
(the “pbinom” function in R). On average, 10 % of values are
expected to fall outside of the 90 % CI, and a much higher
(lower) number of values outside of this range suggests that
the downscaled ensemble may be underestimating (overesti-
mating) the interannual variability. The results of the ensem-
ble validation are summarised in a target plot with ptrend on
the x axis and pCI on the y axis (see Fig. 6).

2.4 Analysis software

The analysis was carried out within the R-environment using
the “esd” package (Benestad et al., 2015b) to analyze and vi-
sualize the data and perform the statistical downscaling. The
“esd” package has a wide range of functionalities, including
methods for reading and processing data, generating various
infographics, and performing statistical analysis (e.g., calcu-
lating empirical orthogonal functions, principal component
analysis, and empirical-statistical downscaling) and is suit-
able for processing results from global climate models.

3 Results

3.1 Past climate change in Bangladesh

Based on the observations, the average daily maximum
temperature in Bangladesh in the pre-monsoon season has
changed by between −0.04 and +0.67 ◦C per decade over
the period 1981–2019, depending on the station (Fig. 3; Ta-
ble S1). The average temperature increase over all stations

Figure 4. Evaluation of the statistical downscaling of the maximum
temperature in the pre-monsoon season (March–May) for the lead-
ing principal component of the predictand (PC1). The four panels
show (a) the spatial pattern associated with PC1, (b) the predictor
pattern associated with PC1, i.e., the spatial co-variance structure of
the ERA5 reanalysis data used as predictor (the pre-monsoon sea-
sonal mean temperature in the domain 80–100◦ E/15–45◦ N) and
the leading principal component of the local temperature obser-
vations in the calibration period 1981–2019, (c) a cross-validation
comparing the original PC1 of the predictand and the corresponding
estimated values obtained by empirical-statistical downscaling, and
(d) time series of the estimated and original PC1 of the predictand.

is +0.30 ◦C per decade. While the average observed maxi-
mum temperature during the period was highest in the west
(Fig. 3a), the strongest change occurred in the east (Fig. 3b),
which means that there has been a decrease in the east–west
temperature gradient over the last decades. The warming ob-
served in the central and eastern stations was statistically
significant (p < 0.01 based on a student’s t-test) while the
trends in the west were not (Fig. 3b).

3.2 Validation of the statistical downscaling

An evaluation of the statistical downscaling models is shown
in Figs. 4 and 5. The cross-validated correlation between
the first (PC1) and second (PC2) principal components of
the maximum temperature and the corresponding PCs esti-
mated based on empirical-statistical downscaling were 0.90
and 0.61, respectively, when using only the reanalysis as
predictor data (both statistically significant with p values
lower than 0.01). A separate regression model was fitted
for each reanalysis-GCM simulation combination and the
cross validation was also repeated for all ensemble mem-
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Figure 5. Evaluation of the statistical downscaling of the maximum
temperature in the pre-monsoon season (March–May) for the sec-
ond leading principal component of the predictand (PC2). Details
like in Fig. 4.

bers. For PC1, the cross validation correlation score was be-
tween 0.82 and 0.92, in all cases statistically significant with
p values< 10−9. For PC2, the cross validation ranged be-
tween 0.11 and 0.69, and only in 63 % of the ensemble mem-
bers statistically significant at the 99 % level (i.e., p < 0.01).
An attempt was made to downscale PC3 and PC4 too, but
the cross-validation indicated that the esd models had lit-
tle predictive power for these PCs, with lower correlation
scores (0.36 and 0.13, respectively when using only the re-
analysis as predictor) that were not statistically significant
(the 95 percent confidence intervals of the correlation scores
spanned negative and positive values). PC3 and PC4 are thus
excluded from the future projections of maximum tempera-
ture.

As further validation, the statistical characteristics of the
downscaled ensembles were compared to the observed max-
imum temperature as described in Sect. 2.3. The results pre-
sented in Fig. 6 suggest a spatial pattern where the down-
scaled ensemble tends to underestimate both the trend and
interannual variability in the south-east, but gives a better
representation of the observed statistical characteristics in the
central and western part of Bangladesh. Figure 6 displays re-
sults only for RCP4.5, but the other emission scenarios (not
included here) showed qualitatively similar results.

3.3 Future projections of pre-monsoon maximum
temperature

Figure 6 shows an example of downscaled ensembles of cli-
mate projections for the station Dhaka for the different emis-
sion scenarios (RCP2.6, RCP4.5 and RCP8.5). The results
for all stations are summarized in Table 1, which includes
the ensemble mean of the change in the maximum temper-
ature of the pre-monsoon season for two periods: the near
future (2021–2050) and the far future (2071–2100) relative
to the base period 1981–2010. Figure 8 additionally displays
the ensemble mean of the projected temperature change at
the various stations on a map. The ensemble mean of the
downscaled projections indicated an increase in the max-
imum temperature in Dhaka by +0.8 ◦C for the near fu-
ture and +1.0 ◦C for the far future assuming RCP2.6. For
RCP4.5, the estimated temperature rise in Dhaka is+0.9 and
+1.6 ◦C for the near and far future, respectively. The most se-
vere scenario, RCP8.5, suggested an increase of +1.0 ◦C for
the near future which is intensified for the far future reaching
up to +3.0 ◦C. The projected change for Dhaka is slightly
higher than the average increase in maximum temperature
over all stations in Bangladesh.

The estimated ensemble mean warming in the near future
is independent of the chosen scenario (+0.7 ◦C for RCP2.6,
RCP4.5, and RCP8.5), but for the far future the different
scenarios have a larger impact on the results, which show
an ensemble mean warming of +0.8, +1.2 and +2.2 ◦C
for RCP2.6, RCP4.5, and RCP8.5, respectively. The highest
projected ensemble mean warming at individual stations for
RCP4.5 was +1.0 ◦C for the near future and +1.4 ◦C for the
far future (both at the station Ishurdi). For the most severe
emission scenario, RCP8.5, the strongest projected warming
was +1.2 and +3.2 ◦C for the near and far future, respec-
tively (also at Ishurdi).

Tables 2–4 display ensemble statistics (5th, 50th and
95th percentiles) of the projected change in maximum tem-
perature relative to the base period 1981–2010 for the emis-
sion scenarios RCP2.6, RCP4.5, and RCP8.5, respectively.
The ensemble spread can be interpreted as representative of
the internal climate variability as well as model differences.
The average 5th percentile of projected temperature change
over all stations in Bangladesh for the far future (2071–
2100) assuming RCP2.6 (Table 2) is+0.1 ◦C, indicating that
5 % of the included projections show little change or even
a temperature decrease compared to the base period (1981–
2010). The corresponding 50th and 95th percentiles of tem-
perature change is +0.8 and +1.6 ◦C, respectively, indicat-
ing that 50 % observations are showing changes of tempera-
ture of +0.8 ◦C or more but only 5 % showed a warming of
+1.6 ◦C or higher. For RCP4.5 (Table 3), the 5th, 50th and
95th percentiles of the projected temperature changes aver-
aged over all stations are +0.4, +1.2 and +2.3 ◦C from the
base period to the far future. The corresponding ensemble
statistics of maximum temperature change for RCP8.5 de-
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Figure 6. Evaluation of the ensemble of statistically downscaled maximum temperature in the pre-monsoon season (March–May) based on
emission scenario RCP4.5 and observations in the period 1981–2019. Each point represents a station and the colors show the geographical
location as seen in the map in the upper right corner. The x axis shows the probability of the observed trend given a distribution with the
statistical characteristics (mean and standard deviation) of the trends of the downscaled ensemble. Values far to the right (left) indicate that
the downscaled ensemble is underestimating (overestimating) the trend. The y axis shows the probability of finding the observed number of
values outside of the downscaled ensemble 90 % confidence interval, which is taken as a measure of how well the ensemble represents the
interannual variability. Values towards the top (bottom) suggest that the downscaled ensemble underestimates (overestimates) the interannual
variability.

scribe an even stronger warming, with station average 5th,
50th and 95th percentiles of +0.9, +2.2 and +3.8 ◦C, re-
spectively (Table 4).

4 Discussion

The three emission scenarios considered in this study lead to
an increase in the expected seasonal mean maximum temper-
ature in the future in Bangladesh. The low-emission scenario
RCP2.6 describes a future in which CO2 emissions remain
constant until the early 21st century and become negative
by the end of the century. As a result, the radiative forcing
reaches a value of around 3.1 W m−2 by mid-century but re-
turns to 2.6 W m−2 by 2100. Based on this scenario, our re-
sults suggest that the average pre-monsoon maximum tem-
perature over meteorological sites in Bangladesh is likely to
increase in the near future and then increase only slightly till
the end of the 21st century. Following the low-to-moderate
emission scenario RCP4.5 or the high-emission scenario
RCP8.5, the average projected warming in Bangladesh in the
near-future is similar to the warming under RCP2.6, but con-

tinuing into the far future the warming is considerably higher,
reaching around +1.2 and +2.2 ◦C for RCP4.5 and RCP8.5,
respectively. Similarly to the RCP2.6, the intermediate path
RCP4.5, is characterised by a peak-and-decline scenario in
which emissions are considerably reduced after 2050 lead-
ing to a stabilization of radiative forcing toward the end of
the 21st century. The continued increase of the projected
maximum temperature following both RCP2.6 and RCP4.5
demonstrates the inertia of the climate system and the lag in
the response of temperature to greenhouse gas emissions and
radiative forcing.

The projected increase in maximum temperature in the al-
ready hot pre-monsoon season indicates that there will likely
be an increase in the frequency and intensity of heat waves
in Bangladesh. In the southwest and northwest regions, the
maximum pre-monsoon temperature is already very high
(Figs. 2 and 3, Table S1) and severe heat waves are already
a common occurrence, and an increase of several degrees as
our estimates suggest (see the regions Khulna, Rajshahi and
Rangpur in Tables 1–4), could be detrimental to the life and
health of people living in these areas.
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Table 1. Ensemble mean change in maximum temperature (unit: ◦C) for the pre-monsoon season (March-May) in Bangladesh for the near
future (2021–2050) and the far future (2071–2100) compared to the base period 1981–2010. Projected changes are shown for three emission
scenarios: RCP2.6, RCP4.5, and RCP8.5.

RCP2.6 RCP4.5 RCP8.5

Region Station name WMO ID Near Far Near Far Near Far

Dhaka Dhaka 41923 0.8 1 0.9 1.6 1 2.9
Tangail 41909 0.9 1 0.9 1.6 1 3

Mymensingh Mymensingh 41886 0.6 0.7 0.6 1.1 0.7 2.1
Faridpur 41929 0.8 1 0.8 1.6 1 2.9
Madaripur 41939 0.6 0.7 0.6 1.2 0.7 2.2

Chattogram Chattogram 41978 0.3 0.4 0.3 0.6 0.3 1
Cox’s Bazar 41992 0.4 0.6 0.4 0.8 0.4 1.3
Chandpur 41941 0.7 0.8 0.7 1.3 0.7 2.2
Comilla 41933 0.7 0.8 0.7 1.2 0.7 2.2
Feni 41943 0.5 0.6 0.5 1 0.5 1.7
Hatiya 41963 0.6 0.7 0.6 1.1 0.7 2
Kutubdia 41989 0.5 0.6 0.5 0.9 0.5 1.6
Maijdi Court 41953 0.7 0.9 0.7 1.4 0.8 2.4
Rangamati 41966 0.8 1 0.8 1.5 0.8 2.6
Sandwip 41964 0.5 0.7 0.5 1 0.5 1.6
Sitakunda 41965 0.6 0.7 0.5 1.1 0.6 1.8
Teknaf 41998 0.3 0.4 0.3 0.6 0.3 1

Khulna Khulna 41947 0.7 0.9 0.7 1.4 0.8 2.5
Jessore 41936 0.8 1 0.9 1.6 1 2.9
Satkhira 41946 0.7 0.8 0.7 1.2 0.8 2.3

Barishal Barishal 41950 0.6 0.7 0.6 1.2 0.7 2.1
Patuakhali 41960 0.7 0.9 0.7 1.3 0.7 2.3
Bhola 41951 0.6 0.7 0.6 1.1 0.7 2
Khepupara 41984 0.7 0.8 0.6 1.2 0.7 2.2

Rajshahi Rajshahi 41895 0.9 1 0.9 1.7 1.1 3.2
Bogra 41883 0.7 0.8 0.7 1.3 0.8 2.3
Ishurdi 41907 1 1.2 1 1.9 1.2 3.5

Rangpur Rangpur 41859 0.5 0.6 0.6 1 0.7 1.9
Dinajpur 41863 0.8 1 0.8 1.6 1 2.9

Sylhet Sylhet 41891 0.7 0.8 0.7 1.3 0.7 2.2
Srimangal 41915 0.7 0.8 0.7 1.3 0.8 2.3

Average 0.7 0.8 0.7 1.2 0.7 2.2

One important motivation behind the ESD method applied
in this paper was to make use of the large scales that the
models are able to reproduce realistically to say something
about local changes. All GCMs have a minimum skillful
scale which means that their individual grid-box values are
not a good representation of the area they represent in the
real world (through design and because computers work with
discrete numbers). The use of common EOF analysis makes
it possible to identify common spatial patterns in reanalysis
and GCM data on a scale that is well represented by climate
models.

A potential limitation of the statistical downscaling
method presented here is that the predictor-predictand rela-
tionship may not be stationary, i.e., the statistical model may
not be applicable to future periods. The stationarity assump-
tion is central to empirical-statistical downscaling but diffi-
cult to validate, especially without access to long observa-
tional records. Here, the local pre-monsoon maximum tem-
perature was downscaled from the mean temperature over the
domain 80–100◦ E/15–45◦ N. There are circumstances that
could change the predictor–predictand relationship in a pe-
riod of climate change. For example, the local temperature
response to large-scale temperature patterns could be influ-
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Table 2. The 5th, 50th and 95th percentile values of projected changes in maximum temperature (unit: ◦C) in Bangladesh for the near
future (2021–2050) and far future (2071–2100) relative to the 1981–2010 period for RCP2.6.

Near future Far future

Region Station name WMO ID 5th 50th 95th 5th 50th 95th

Dhaka Dhaka 41923 0.1 0.8 1.4 0.1 1 1.9
Tangail 41909 0.1 0.9 1.4 0.1 1 1.9

Mymensingh Mymensingh 41886 0.1 0.6 1 0 0.7 1.3
Faridpur 41929 0.1 0.8 1.4 0.1 1 1.9
Madaripur 41939 0.1 0.6 1 0 0.7 1.4

Chattogram Chattogram 41978 0.1 0.3 0.6 0.1 0.4 0.8
Cox’s Bazar 41992 0 0.4 0.9 0.1 0.6 1.4
Chandpur 41941 0.1 0.7 1.2 0.2 0.8 1.7
Comilla 41933 0.1 0.7 1.1 0.1 0.8 1.6
Feni 41943 0.1 0.5 0.9 0.1 0.6 1.3
Hatiya 41963 0.1 0.6 1.1 0.2 0.7 1.5
Kutubdia 41989 0.1 0.5 0.9 0.1 0.6 1.2
Maijdi Court 41953 0.1 0.7 1.4 0.3 0.9 2
Rangamati 41966 0.2 0.8 1.4 0.3 1 2.1
Sandwip 41964 0.1 0.5 1.1 0.2 0.7 1.6
Sitakunda 41965 0.1 0.6 1.2 0.2 0.7 1.7
Teknaf 41998 0.1 0.3 0.6 0.1 0.4 0.9

Khulna Khulna 41947 0.1 0.7 1.2 0.1 0.9 1.7
Jessore 41936 0.1 0.8 1.4 0.1 1 1.9
Satkhira 41946 0.1 0.7 1.2 0 0.8 1.5

Barishal Barishal 41950 0.1 0.6 1.1 0.1 0.7 1.5
Patuakhali 41960 0.1 0.7 1.3 0.3 0.9 1.9
Bhola 41951 0.1 0.6 1 0.1 0.7 1.4
Khepupara 41984 0.1 0.7 1.2 0.2 0.8 1.7

Rajshahi Rajshahi 41895 0.1 0.9 1.6 0 1 2
Bogra 41883 0.1 0.7 1.2 0 0.8 1.5
Ishurdi 41907 0.1 1 1.7 0 1.2 2.2

Rangpur Rangpur 41859 0 0.5 1 0 0.6 1.2
Dinajpur 41863 0.1 0.8 1.5 0 1 1.8

Sylhet Sylhet 41891 0.1 0.7 1.2 0.2 0.8 1.8
Srimangal 41915 0.1 0.7 1.1 0.1 0.8 1.5

Average 0.1 0.7 1.2 0.1 0.8 1.6

enced by changes in precipitation patterns, cyclonic activity
and the timing of the monsoon. One way to address this could
be to incorporate additional predictor variables that describe
other aspects of the climate.

While observations showed a stronger pre-monsoon
warming in the east compared to the west in the past (1981–
2019), which reduced the east–west temperature gradient in
this period (Fig. 2), there was less of an obvious spatial pat-
tern in the projected maximum temperature (Fig. 7). A sim-
ple correlation analysis indicates that there was no statisti-
cally significant correlation between the longitude/latitude
and the rate of projected warming.

In the current analysis, only the two leading predic-
tand PCs were downscaled. This was done because higher
order PCs contained little information about the large-scale
climate structure and thus could not be robustly down-
scaled. An attempt was made to downscale the third and
fourth PCs but cross-validation indicated that the statistical
models had little to no predictive power. This makes sense as
the leading PCs represented coherent temperature anomalies
on larger scales which are more likely connected to large-
scale forcing. Since the first two PCs stand for a majority of
the observed maximum temperature variability and the ob-
served trends, this should be enough to represent the relevant
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Table 3. The 5th, 50th and 95th percentile values of projected changes in maximum temperature (unit: ◦C) in Bangladesh for the near
future (2021–2050) and far future (2071–2100) relative to the 1981–2010 period for RCP4.5.

Near future Far future

Region Station name WMO ID 5th 50th 95th 5th 50th 95th

Dhaka Dhaka 41923 0.2 0.9 1.5 0.6 1.6 2.8
Tangail 41909 0.2 0.9 1.5 0.6 1.6 2.9

Mymensingh Mymensingh 41886 0 0.6 1.1 0.3 1.1 2.1
Faridpur 41929 0.2 0.8 1.4 0.6 1.6 2.8
Madaripur 41939 0.1 0.6 1.1 0.4 1.2 2.2

Chattogram Chattogram 41978 0.1 0.3 0.6 0.2 0.6 1.2
Cox’s Bazar 41992 0 0.4 0.9 0.2 0.8 1.9
Chandpur 41941 0.2 0.7 1.2 0.6 1.3 2.4
Comilla 41933 0.2 0.7 1.2 0.5 1.2 2.3
Feni 41943 0.2 0.5 0.9 0.4 1 1.8
Hatiya 41963 0.2 0.6 1.1 0.5 1.1 2.2
Kutubdia 41989 0.2 0.5 0.9 0.4 0.9 1.8
Maijdi Court 41953 0.2 0.7 1.4 0.6 1.4 2.8
Rangamati 41966 0.3 0.8 1.5 0.6 1.5 2.9
Sandwip 41964 0.1 0.5 1.1 0.3 1 2.2
Sitakunda 41965 0.1 0.5 1.1 0.3 1.1 2.3
Teknaf 41998 0.1 0.3 0.6 0.3 0.6 1.2

Khulna Khulna 41947 0.2 0.7 1.2 0.6 1.4 2.4
Jessore 41936 0.2 0.9 1.5 0.7 1.6 2.8
Satkhira 41946 0 0.7 1.3 0.3 1.2 2.3

Barishal Barishal 41950 0.1 0.6 1.1 0.5 1.2 2.1
Patuakhali 41960 0.2 0.7 1.3 0.6 1.3 2.6
Bhola 41951 0.1 0.6 1 0.5 1.1 2
Khepupara 41984 0.2 0.6 1.2 0.5 1.2 2.4

Rajshahi Rajshahi 41895 0 0.9 1.8 0.4 1.7 3.2
Bogra 41883 0 0.7 1.3 0.3 1.3 2.3
Ishurdi 41907 0.1 1 1.8 0.5 1.9 3.4

Rangpur Rangpur 41859 0 0.6 1.1 0.2 1 1.9
Dinajpur 41863 0 0.8 1.6 0.3 1.6 2.9

Sylhet Sylhet 41891 0.2 0.7 1.2 0.5 1.3 2.5
Srimangal 41915 0.1 0.7 1.2 0.5 1.3 2.2

Average 0.1 0.7 1.2 0.4 1.2 2.3

variations and trends, assuming sufficiently skillful regres-
sion models for PC1 and PC2.

PC1 represents 80 % of the variability of the observed pre-
monsoon maximum temperature in Bangladesh and partly
contains the trend in the reference period 1981–2019 (Fig. 4).
However, the spatial pattern in the observed temperature
trend, which shows a stronger warming in eastern and south-
eastern Bangladesh compared to the western part of the coun-
try (Fig. 3), is contained within PC2 (Fig. 5). At the sta-
tions with strongest trends, 30 %–60 % of the trend is repre-
sented by predictand PC2. The regression model, which was
trained on detrended data, slightly underestimated the long
term trend in PC1 indicating that there is only a slight non-

stationarity problem. This is more pronounced in PC2, which
also has a poorer performance and represents a smaller frac-
tion of the covariance. Since the downscaling models of PC2
are not as skillful as the models for PC1 (see cross-validation
scores in Sect. 3.2 and Figs. 4c and 5c), the downscaling
models fail to reproduce the observed gradient in the max-
imum temperature trend in the calibration period (Fig. 8).
Further validation by inspection of the downscaled ensemble
(Fig. 6) suggested that the downscaling reproduced the sta-
tistical characteristics of the observed climate well in central
and western Bangladesh but in the east and south-east, which
is the region with the strongest warming in the past (Fig. 3b),
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Table 4. The 5th, 50th and 95th percentile values of projected changes in maximum temperature (unit: ◦C) in Bangladesh for the near
future (2021–2050) and far future (2071–2100) relative to the 1981–2010 period for RCP8.5.

Near future Far future

Region Station name WMO ID 5th 50th 95th 5th 50th 95th

Dhaka Dhaka 41923 0.3 1 1.5 1.2 2.9 4.8
Tangail 41909 0.3 1 1.6 1.3 3 4.9

Mymensingh Mymensingh 41886 0.2 0.7 1.2 0.9 2.1 3.5
Faridpur 41929 0.3 1 1.5 1.2 2.9 4.8
Madaripur 41939 0.2 0.7 1.2 0.9 2.2 3.7

Chattogram Chattogram 41978 0 0.3 0.6 0.4 1 1.8
Cox’s Bazar 41992 −0.1 0.4 0.9 0.4 1.3 2.9
Chandpur 41941 0.2 0.7 1.2 1 2.2 3.7
Comilla 41933 0.2 0.7 1.2 1 2.2 3.5
Feni 41943 0.1 0.5 0.9 0.7 1.7 2.9
Hatiya 41963 0.1 0.7 1.1 0.9 2 3.4
Kutubdia 41989 0.1 0.5 0.9 0.7 1.6 2.8
Maijdi Court 41953 0.1 0.8 1.4 1.1 2.4 4.2
Rangamati 41966 0.1 0.8 1.5 1.1 2.6 4.5
Sandwip 41964 −0.1 0.5 1 0.5 1.6 3.5
Sitakunda 41965 0 0.6 1.1 0.6 1.8 3.6
Teknaf 41998 0 0.3 0.6 0.5 1 1.9

Khulna Khulna 41947 0.2 0.8 1.3 1 2.5 4
Jessore 41936 0.3 1 1.5 1.2 2.9 4.7
Satkhira 41946 0.2 0.8 1.3 0.9 2.3 3.9

Barishal Barishal 41950 0.2 0.7 1.1 0.9 2.1 3.3
Patuakhali 41960 0.1 0.7 1.3 1 2.3 4
Bhola 41951 0.2 0.7 1.1 0.8 2 3.2
Khepupara 41984 0.1 0.7 1.2 0.9 2.2 3.8

Rajshahi Rajshahi 41895 0.3 1.1 1.8 1.3 3.2 5.3
Bogra 41883 0.2 0.8 1.3 0.9 2.3 3.9
Ishurdi 41907 0.3 1.2 1.9 1.4 3.5 5.8

Rangpur Rangpur 41859 0.2 0.7 1.1 0.7 1.9 3.3
Dinajpur 41863 0.3 1 1.7 1.1 2.9 4.9

Sylhet Sylhet 41891 0.1 0.7 1.2 1 2.2 3.9
Srimangal 41915 0.2 0.8 1.2 1 2.3 3.7

Average 0.2 0.7 1.2 0.9 2.2 3.8

the downscaling tends to underestimate the trend and inter-
annual variability at some stations.

A possible explanation why the large-scale temperature is
not a perfect predictor of PC2 could be that the observed
spatial differences in warming are related to changes in pre-
cipitation patterns or other environmental circumstances that
are not captured by the chosen predictor (the mean tempera-
ture). A preliminary analysis where the pre-monsoon maxi-
mum temperature was downscaled with alternative predictor
variables from the ERA5 and CMIP5 data sets indicated that
the mean Sea Level Pressure (SLP) or precipitation are bet-
ter predictors than the mean temperature for PC2, but not
as good for PC1 (not shown here). The downscaling method

could be improved by the inclusion of multiple predictors,
using multivariate EOFs and/or allowing different predictor
variables for different predictor PCs. If the spatial patterns of
pre-monsoon precipitation and drought change in the coming
decade, as projected by Khan et al. (2020), a downscaling
strategy allowing multiple climate drivers may have a bet-
ter chance of representing the effect of these changes on the
temperature.

To evaluate the influence of the predictor, the downscal-
ing was performed with a variable number of predictor pat-
terns. The cross validation scores indicated that the leading
8-10 predictor patterns should be included to achieve the best
downscaling models, but including higher order patterns had
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Figure 7. Downscaled projections of the maximum temperature in the pre-monsoon season (March–May) in Dhaka for emission scenarios
RCP2.6, RCP4.5, and RCP8.5. The figures show the change relative to the period 1981–2010. The shaded area indicates one standard
deviation from the mean based on the included GCM simulations for each experiment.

Figure 8. Ensemble mean of the downscaled projections of the maximum temperature in the pre-monsoon season (March–May) for sta-
tions in Bangladesh. The panels show the projected change in maximum temperature from the reference period (1981–2010) to the near
future (2021–2050, shown in a–c) and far future (2071–2100, shown in d–f) assuming emission scenarios RCP2.6 (a, e), RCP4.5 (b, f),
and RCP8.5 (c, g). The range of the color scale (0–+2 ◦C) does not span the full range of projected temperature changes for the far future
assuming RCP8.5 (see Tables 1 and 4).

little effect on the outcome, both in terms of cross validation,
reproducing the present climate, and for the projected tem-
perature change. A closer look at the common EOFs showed
that 99 %–100 % of the variability was contained within the
leading 8–10 predictor patterns for all GCM-reanalysis com-
binations, which explains why higher order modes of vari-
ability added no skill. These results suggest that the stepwise
model selection should be applied to all predictor patterns
that hold relevant information (e.g., considering all modes
with an explained variance of 1 % or higher).

There is a subtle difference between the way that the prin-
cipal component analysis of the predictand and the EOF anal-
ysis of the predictor is used in the downscaling method. For
the predictor, only the eigenvectors representing the temporal
variations of the predictor patterns are used in the regression
models. This means that the predictor patterns are not ex-

plicitly weighted by their relative importance. The stepwise
model selection will instead determine which patterns are im-
portant, and since including additional parameters in the lin-
ear regression costs little time and computational resources,
we can include all potentially relevant predictor patterns. For
the predictand on the other hand, the downscaled predictand
PCs are combined with the corresponding eigenvalues and
spatial eigenvectors to obtain temperature projections. The
leading PCs are thus given larger weight by its eigenvalue
than higher order PCs. Every additional predictand PC in-
cluded requires another regression for every GCM simula-
tion, which can add significant computation time. Downscal-
ing higher order predictand PCs can therefore be a waste of
time and computational resources if they have low eigenval-
ues and their regression models have little predictive power.
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We conclude that future CO2 emissions are expected
to have severe consequences for the hottest season in
Bangladesh in terms of significant warming in the whole
country. All emission scenarios indicate an increasing pre-
monsoon maximum temperature in Bangladesh, but while
RCP2.6 shows the temperature plateauing mid-century, the
average increase is 2 times higher in the far future compared
to the near future assuming RCP4.5, and 3 times higher as-
suming RCP8.5. This illustrates that while warming may be
unavoidable, there are still opportunities to limit the severity
of climate change in the future.
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