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Abstract. ECOCLIMAP-Second Generation (ECO-SG) is the land-cover map used in the HARMONIE-
AROME configuration of the shared ALADIN-HIRLAM Numerical Weather Prediction system used for short-
range operational weather forecasting for Ireland. The ECO-SG urban classification implicitly includes building
heights. The work presented in this paper involved the production of the first open-access building height map
for the island of Ireland which complements the Ulmas-Walsh land cover map, a map which has improved the
horizontal extent of urban areas over Ireland. The resulting building height map will potentially enable upgrades
to ECO-SG urban information for future implementation in HARMONIE-AROME.

This study not only produced the first open-access building height map of Ireland at 10 m× 10 m resolution,
but assessed various types of regression models trained using pre-existing building height information for Dublin
City and selected 64 important spatio-temporal features, engineered from both the Sentinel-1A/B and Sentinel-
2A/B satellites. The performance metrics revealed that a Convolutional Neural Network is superior in all aspects
except the computational time required to create the map. Despite the superior accuracy of the Convolutional
Neural Network, the final building height map created results from the ridge regression model which provided
the best blend of realistic output and low computational complexity.

The method relies solely on freely available satellite imagery, is cost-effective, can be updated regularly, and
can be applied to other regions depending on the availability of representative regional building height sample
data.

1 Introduction

In numerical weather prediction (NWP) the estimation of the
different surface fluxes (radiative and non-radiative) requires
surface parameters calculated from land cover map informa-
tion. Estimating these fluxes is essential for weather predic-
tion as most of the atmospheric energy and water exchanges
happen at the surface. A land cover map represents identi-
fiable elements that the map producer wants to distinguish
and is created using a mixture of remotely-sensed and in-situ
observations. Land cover elements include, for example, the
types of forest, crops, urban density and so on. As the choice
of elements to be included is subjective, there are multiple
global land cover maps in existence (CNRM, 2018; Euro-

pean Environment Agency, 2017; European Space Agency,
2017; Demuzere et al., 2019). This has led different NWP
model developers to chose different land cover maps as in-
puts to calculate the surface parameters necessary for flux
estimates. Walsh et al. (2021) provides a short description of
the land-cover maps used by different NWP consortia across
Europe.

This work is a continuation of the effort made by Met
Éireann, the Irish Meteorological Service, to improve ECO-
CLIMAP (Masson et al., 2003; Faroux et al., 2013; CNRM,
2018), the default surface land-cover map used in cycle 43
of the HARMONIE-AROME canonical model configura-
tion (CMC) of the shared ALADIN-HIRLAM NWP sys-
tem for short-range operational weather forecasting (Bengts-
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14 E. Keany et al.: Machine learning – building height map for Ireland

Figure 1. Dublin area land cover map: (a) European Local Climate Zone (ELCZ2019) map (Demuzere et al., 2019), (b) ECOCLIMAP-
Second Generation (ECO-SG) (CNRM, 2018).

son et al., 2017) used operationally at Met Éireann. The
consortium for small scale modelling (COSMO) also has
plans to use ECOCLIMAP for urban modelling (COSMO,
2022). The work started with an assessment of the lat-
est version of ECOCLIMAP, ECOCLIMAP-Second Gen-
eration (ECO-SG hereafter) over Ireland. This assessment
suggested that ECO-SG underestimates sparse urban areas
which appear as vegetation – mostly grassland (Bessardon
and Gleeson, 2019; Walsh et al., 2021). To correct ECO-SG
issues, Sentinel-2 satellite images were segmented into var-
ious land-cover classes using a Convolutional Neural Net-
work (CNN) following the Ulmas and Liiv (2020) method
(Walsh et al., 2021). The resulting map, called the Ulmas–
Walsh (UW) map, outperformed ECO-SG in terms of accu-
racy and resolution (Walsh et al., 2021). These encouraging
results motivated efforts to implement the UW improvements
in HARMONIE-AROME. However, before the UW map can
be incorporated in HARMONIE-AROME, further work is
needed on urban and vegetation land cover classes, the for-
mer of which is the focus of this paper.

The UW map uses the Coordination of Information on the
Environment (CORINE) land cover database labels which
differ quite significantly from the ECO-SG labelling sys-
tem. There are 44 CORINE (tertiary) labels and 33 ECO-
SG labels. CORINE includes mixed vegetation classes
while ECO-SG uses pure vegetation types. Urban labels in
CORINE reflect the function of the urban area (e.g. port, air-
port, roads) and the density of the urban area (discontinuous
or continuous urban areas). In contrast, the ECO-SG urban
labels consist of local climate zones (LCZ) (Stewart and Oke,
2012; CNRM, 2018).

Stewart and Oke (2012) introduced LCZs with the aim
of standardising urban heat island studies. Urban climate-

relevant parameters, such as imperviousness, sky view fac-
tor (SVF), the height of roughness elements, building sur-
face fraction (BSF) or canyon aspect ratio (AR), define urban
LCZ labels. This classification is extensively used by the ur-
ban climate community (Alcoforado et al., 2014; Alexander
and Mills, 2014; Cai et al., 2018; Zheng et al., 2018) and led
to the World Urban Database and Access Portal Tools (WU-
DAPT) method. This method relies on a supervised classifi-
cation of urban areas using Landsat 8 imagery and Google
Earth, and resulted in the production of the European local
climate zone (called hereafter ELCZ2019) map (Demuzere
et al., 2019).

Figure 1 compares the ELCZ2019 map over the Dublin
area in Ireland against the same area using the ECO-SG clas-
sification. According to ECO-SG documentation (CNRM,
2018), the ECO-SG LCZ labels are defined using a combi-
nation of CORINE 2012 (Jaffrain, 2017) and the global hu-
man settlement layer maps (European Commission, 2022).
Figure 1 shows that the ECO-SG LCZ labels for Dublin tend
to be mostly LCZ9 (i.e. sparsely built areas – yellow) while
the ELCZ2019 map shows a majority of LCZ6 (open low-
rise – orange). ECO-SG also tends to represent vegetated ar-
eas, such as the Phoenix park (next to Dublin city centre),
and the Howth peninsula (in the eastern part of the area)
as LCZ9 (yellow) while in the ELCZ2019 map these areas
are dominated by vegetation (greens). As shown in Walsh
et al. (2021) CORINE classifies the Phoenix Park as an “Ur-
ban Green area”, which is translated as LCZ9 in ECO-SG
(CNRM, 2018). While the Phoenix Park is by definition an
“Urban Green area”, the translation to LCZ9 is questionable
and reveals a need to validate and/or correct the ECO-SG
LCZ classes.
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The WUDAPT method is a reference method in the ur-
ban climate community, and as such, using the ELCZ2019
map, resulting from the WUDAPT method, could be an
easy fix for ECO-SG urban deficiencies. However, Oliveira
et al. (2020) list several studies that show limitations in the
WUDAPT method and provide an alternative method for
5 Mediterranean cities using the CORINE dataset and Coper-
nicus databases. This method proved to be highly accurate
with an estimated 81 % overall accuracy and 90 % accuracy
over urban LCZ (1–10) labels at 50 m resolution compared
to 80 % overall accuracy at 100 m for ELCZ2019 (Demuzere
et al., 2019).

One of the datasets used in Oliveira et al. (2020) is
the Building Height 2012 dataset (European Environment
Agency, 2018) which, regarding Ireland, is only available
for Dublin (Sect. 2.3). There are no freely available building
height data covering the entire island of Ireland. Recently,
Frantz et al. (2021) combined Sentinel-1A/B and Sentinel-
2A/B time series to map building heights for Germany. The
training of this method used national building height infor-
mation. In the study presented here, we used the Building
Height 2012 dataset to apply the Frantz et al. (2021) method
and compare it against other machine learning methods to
obtain a building height map for the island of Ireland. The
resulting building height map will help to classify the urban
areas in the UW map as LCZ classes using Oliveira et al.
(2020)’s method. This is needed in order for the UW map to
become a direct replacement for ECO-SG over the island of
Ireland in HARMONIE-AROME.

The paper is arranged as follows. Section 2 gives de-
tails about the Sentinel-1, Sentinel-2, Urban Atlas Building
Heights, and the Settlement data used in this study. Section 3
provides details on the feature creation – the spectral indices
and spectral and temporal features. Section 4 presents details
of our approach to modelling while Sect. 5 presents the re-
sults of each model. Conclusions are provided in Sect. 6.

2 Data

This section includes descriptions of the Sentinel-1 and
Sentinel-2 satellite data used (Sect. 2.1 and 2.2), the build-
ing height information (Sect. 2.3) and the settlement data
(Sect. 2.4).

2.1 Sentinel-1

The Sentinel-1 synthetic aperture radar (SAR) backscatter
data for 2020 was retrieved from the Copernicus Open Ac-
cess Hub API (Torres et al., 2012). For this study only ground
range detected (GRD), high-resolution interferometric wide
swath (IW) scenes were downloaded. These scenes con-
tain backscatter intensities at 10 m pixel resolution for both
the vertical transmit and vertical receive (VV) and vertical
transmit and horizontal receive (VH) polarizations. In to-
tal ∼ 1057 ascending orbit scenes and ∼ 1325 descending

orbit scenes cover the entire study area. As suggested by
Koppel et al. (2017) Sentinel-1 data from both orbit direc-
tions were combined to enlarge the observation space. How-
ever, we found that this combination did not have a signif-
icant impact on model performance. In fact we found that
just using the ascending orbit scenes provided an approx-
imately equivalent performance with the added benefit of
halving the pre-processing and download times (not shown).
A workflow by Filipponi (2019) was applied to pre-process
the Sentinel-1 (GRD) images to level 2 analysis-ready data
using the SNAPPY module (more information can be found
in Appendix E). Finally, the pre-processed Sentinel-1 images
were re-projected onto the ”TM65/Irish Grid” projection and
split into 30× 30 km data cubes to match the sentinel-2 data
(Frantz, 2019; Lewis et al., 2016).

2.2 Sentinel-2

The Google cloud platform was used to download the
Sentinel-2 Level 1C scenes for the year 2020 which had a
cloud coverage of less than 70 % (Google et al., 2022). Our
entire study area is covered by 15 tiles (Military Grid Ref-
erence System see Fig. 2), which equates to 1310 (654 GB)
Sentinel-2 scenes (containing both the S2A and S2B constel-
lations). In order to produce Level 2 Analysis Ready Data
(ARD), these raw Sentinel-2 scenes were processed through
cloud and cloud shadow detection and radiometric calibra-
tion using the FORCE framework (Frantz, 2019) (more de-
tails can be found in Appendix F). All of the processed
scenes were then re-projected to the same coordinate system
as the Sentinel-1 scenes, and split into 30×30 km data cubes
(Frantz, 2019; Lewis et al., 2016).

2.3 Building heights

The training and validation of any machine learning model
requires ground truth labels. In our case accurate building
height information was needed. For this study the data was
gathered from the urban atlas dataset (European Environment
Agency, 2018). This dataset contains a 10 m resolution raster
layer that holds pixel-wise building height information for
each capital city in Europe. The building height informa-
tion is predicated on stereo images from the IRS-P5 Earth-
imaging satellite and derived datasets such as the digital sur-
face model (DSM), the digital terrain model (DTM) and the
normalized DSM.

One drawback of this dataset is that it only covers Dublin
city centre for the year 2012 and, unfortunately, does not have
the resolution or correct metadata to discriminate between
buildings and other man-made vertical structures. However,
despite these limitations we used this dataset for modelling
as it was the only freely available dataset at our disposal.
Also for our application any vertical structure, regardless of
its utility, will have an effect on LCZs. For modelling, this
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Figure 2. This figure shows the 15 Sentinel 2 tiles needed to cover
the entire Island of Ireland. The tile name is also included at the
centre of each tile.

dataset was re-projected to the “TM65/Irish Grid” and con-
verted to 30× 30 km data cubes (Frantz, 2019).

2.4 Settlement data

Just as in Frantz et al. (2021), we used the European Settle-
ment map (ESM) to mask the final predictions to areas cov-
ered by residential and non-residential buildings. The dataset
was created using SPOT5 and SPOT6 satellite imagery and
indicates the locations of human settlements throughout Eu-
rope (Copernicus, 2015). The settlement data was also re-
projected to the “TM65/Irish Grid” and converted to 30×
30 km data cubes using the FORCE software. The most re-
cent version of this dataset is the 2015 version. Therefore,
we updated the 2012 urban atlas building height dataset us-
ing the settlement map by masking out any buildings that
were present in the urban atlas building height dataset but
not in the more recent settlement map. Thus, the updated
version is still not ideal, as we make the assumption that
any buildings erected between 2012 and 2015 or even be-
tween 2012 and 2020 will not have significant impact on the
model performance. The map is therefore limited to contain-
ing buildings that were present in both 2015 and 2012. Thus,
the updated urban atlas building height dataset resembles the
2020 satellite images more closely, which in turn helps to
produce a more accurate training dataset for the 4 models.

3 Feature creation

This section describes the steps applied to the satellite data
to create features. A “Feature” refers to information gained
from the satellite imagery that can be spectral, temporal and
spatial in nature and feeds into the machine learning al-
gorithms to predict building heights. Following the method
of Frantz et al. (2021) we extracted a list of 1638 features
from both the Sentinel-1 and Sentinel-2 time series data. Fig-
ure 3 presents an overview of the steps from the preparation
of Sentinel-1 and Sentinel-2 data to the FORCE software,
the creation of spectral indices, temporal features and spa-
tial features. All of the feature engineering steps detailed in
the following subsections were applied to the data using the
FORCE framework (Frantz, 2020) on a t2.xlarge ubuntu in-
stance on the Amazon Web Services (AWS) cloud platform,
details of which can be found in the infrastructure subsection
of Appendix A.

3.1 Spectral indices

The combination of Sentinel-1 and -2 data sources consists
of 12 spectral bands, 2 of which are the VH and VV po-
larisations from the Sentinel-1 data with the rest coming
from Sentinel-2 data. Just as in Frantz et al. (2021), in or-
der to increase our model’s accuracy we added 6 spectral
indices derived from the optical Sentinel-2 bands. These
indices include the Normalized Difference Vegetation In-
dex (NDVI) (Tucker, 1979), Tasseled Cap Greenness (TCG)
(Crist, 1985), Tasseled Cap Brightness (TCB) (Crist, 1985),
Tasseled Cap Wetness (TCW) (Crist, 1985), Normalized Dif-
ference Water Index (NDWI) (Xu, 2006) and the Normalized
Difference Built-Up Index (NDBI) (Zha et al., 2003). Both
NDVI and TCG were chosen to improve the model’s accu-
racy in detecting urban vegetation which was a problem area
in the Li et al. (2020) Sentinel-1-only study. NDBI was also
included for its capability in detecting urban areas. TCW and
NDWI were chosen because they can potentially detect mois-
ture on the surfaces of urban areas, which can distort shadow
lengths. The final index included was TCB which captures
the difference in reflectance from different roofing materi-
als and shapes. All of these indices are provided as part of
the higher level processing functions supplied by the FORCE
framework (see FORCE in Appendix C). In total we there-
fore had 18 bands/indices to work with.

3.2 Temporal features

There are seasonal features in the Sentinel time series data
that are affected directly by building heights, such as re-
flectance and shadow lengths caused by changes in the Sun’s
path (Frantz et al., 2021). In order to capture these seasonal
effects we created pixel-wise statistical aggregations for all
of the quality pixel values for the entire time period (2020).
As we have the same scene over time (on average each scene
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Figure 3. A schematic of the data pre-processing workflow used for
both the dataset creation and for producing the final building height
map.

will be captured 40–60 times throughout the year), each pixel
or (X, Y ) point in the scene will have a distribution of val-
ues that span the entire time period. This distribution of pixel
values is used to calculate statistical metrics. Due to their ro-
bustness against missing data and spatial completeness these
metrics are incredibly useful for machine learning applica-
tions (Rufin et al., 2019; Schug et al., 2020).

Because the quality of the Sentinel-2 optical scenes is de-
pendant on weather conditions, only clear-sky, non-cloud,
non-cloud shadow and non-snow pixels were considered.
Whereas for the Sentinel-1 radar data all observations can

be used. We applied all of the 13 statistical metrics avail-
able in FORCE (Frantz, 2019) to each of the 18 bands/indices
(2 from Sentinel-1, 10 from Sentinel-2 and the 6 new spec-
tral indices). The metrics included: average, standard devi-
ation, 0 %/10 %/25 %/50 %/75 %/90 %/100 % quantiles, the
interquartile range, kurtosis and skewness. For example, if
you consider the top left pixel in a scene, this pixel will
have 40–60 different values as the scene has been captured
multiple times throughout the year. This means for every
(X, Y ) point in a scene we have a distribution of pixels over
time. This is the distribution that is used to create our statisti-
cal aggregations. For example, the maximum aggregation is
the maximum value in this distribution. This is done for each
(X, Y ) point in the scene and for each band which results in
234 spectral temporal features, as we applied all 13 statistical
metrics to each of the 18 bands/indices.

3.3 Spatial features

To capture the spatial context of the surrounding pixels
we applied 7 different morphological operators across the
234 spectral temporal features previously created. These op-
erators included Dilation, Erosion, Opening, Closing, Gradi-
ent, Tophat and Blackhat. Morphology is a standard image
processing technique where a structuring element is applied
across the entire scene to capture spatial context. The struc-
turing element works by turning on or off certain pixels de-
pending on their position in the structuring element which in
turn captures different spatial aspects of the surrounding pix-
els. Just as in Frantz et al. (2021), 7 morphological operations
were used, all of which utilised a circular structuring element
with a 50 m radius or 5 pixels at 10 m resolution. Again this
process was executed through the texture features supported
by the FORCE framework (Frantz, 2019). This step was ap-
plied to each of the 234 features. Thus, the final dataset for
modelling contained 1638 features.

4 Modelling

This section details our approach to modelling, including
sampling the reference building height data in order to train,
validate and select the most relevant features for our models;
the feature selection method; and a presentation of the mod-
els along with the metrics used to evaluate their performance.

4.1 Sampling for training and validation

As with any typical machine learning workflow, we created a
training dataset which comprised of 1 048 576 samples and
a hold-out dataset of 264 596 samples, both of which in-
cluded all of the 1638 features described in Sect. 3. The train-
ing dataset was used to train each of the models. Whereas,
the hold-out dataset was used to fairly measure their perfor-
mance, as the models have not been exposed to these sam-
ples beforehand. For fairness of evaluation both the training
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Figure 4. Building height distribution from the Urban Atlas 2012 for Dublin City (a), final building height predictions for the entire island
of Ireland (+20 million pixels) using the Ridge Regression model (b). Only Buildings in the [0; 29] m range were included for visualisation
purposes. (a) has a mean value of 7.28 m and a standard deviation of 3.61 m. Whereas (b) has a mean value of 6.53 m and a standard deviation
of 2.02 m

and hold-out datasets were created using a stratified sampling
approach. This approach maintains the same building height
distributions for both the training and hold-out datasets and
creates a more realistic indication of model performance.
The distribution of the known buildings heights of Ireland
in the urban atlas (see Fig. 4) was used to create these strati-
fied samples. Areas with no buildings were also added to the
dataset with a height value of zero. This was accomplished by
selecting a random point on the image and checking whether
any non-zero building heights are within a 100 m radius. If no
buildings exist then the sample was added to the dataset oth-
erwise it was skipped. This process was repeated until 4.9 %
of the total number of samples were filled. This value was
chosen as it is the average value when the building height
distribution is converted from counts to percentages.

4.2 Feature selection

With 1638 features in total the feature-space is too large and,
due to the “curse of dimensionality” this can lead to over-
fitting and unnecessary computational complexity when con-
structing the building height map. By using a feature selec-
tion tool we can reduce over-fitting by removing noisy fea-
tures. This increases the model’s ability to generalise to un-
seen data and increases accuracy. We performed the feature
selection step on our training dataset using the BorutaShap
algorithm (Keany, 2020). This algorithm selected 64 features
that performed better than random noise in predicting build-
ing heights, 37 of which were based on Sentinel-2 data with
the rest derived from Sentinel-1 data. From Fig. 5 we can see

that 13 of the 18 bands/indices were found to be important in
predicting building heights. The vertical and horizontal band-
s/indices from Sentinel-1 were found to be the most import
features for predicting building heights, closely followed by
the NIR, NDWI and TCG bands/indices. Similarly, 5 out of
7 morphological operations and 11 of the 13 statistical aggre-
gations were useful. The Dilation and Erosion morphological
operators and the 50 % quartile, minimum and 10 % quantile
were found to be the most important morphological opera-
tions and statistical aggregations respectively, see Sect. 3 for
the origin of these features.

4.3 Models presentation

In order to expand the work of Frantz et al. (2021), we com-
pared the performance of 4 models. In essence we have two
distinct categories of model, tabular and Convolutional Neu-
ral Network (CNN) architectures. Tabular models expect the
data in the form of a table (see Fig. 6) where each row is a
pixel and the columns are the 64 selected features, whereas
CNN architectures leverage the spatial context of the scenes
themselves.

The two tabular models used were a Ridge Regressor
(Van Wieringen, 2018) and a Poisson XGBoost Regressor
(Chen and Guestrin, 2016). The Ridge Regressor was the
only linear model used, and provided us with a baseline
performance. This model was chosen for its L2 regularisa-
tion which combats over-fitting by reducing the model’s bias
and variance, especially in our case where the independent
variables are highly correlated. To improve upon the base-
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Figure 5. The top left figure describes the 10 most important features when predicting building heights. The remaining three figures show
the importance of the different features from each of the previous feature engineering steps in Sect. 3. These three plots were created by
aggregating the importance (measured in shapely values; Lundberg and Lee, 2017) of all of the 64 features that included these feature steps,
either band, morphology or STM. The feature names in the top left chart are a combination of features from the other 3 graphs, example
“NDW Q50 DIL”→ the 50th quartile of the Normalized Difference Water Index.

Figure 6. A schematic illustrating how the satellite images were converted into a table format necessary for model consumption. The image
volume on the left contains the 1638 features created for a single scene or area of interest. Each pixel in the image stack is converted into a
row in the table. We store the X and Y location of the pixel in the image and the 1638 features are converted to columns.

line accuracy of this linear model we trained a state-of-the-
art XGBoost Regressor. This model uses gradient boosted
decision trees that allow it to capture non-linear trends in
the data which in theory will improve the model’s accuracy
scores. The Poisson objective function was heuristically cho-
sen, from a visual inspection of our building height distribu-
tion (which only contains integer values). During modelling,
this objective function provided the best performance for our
XGBoost Regressor (not shown).

Steering away from tabular models, two CNN architec-
tures were applied to our data as they have an inherent ca-
pacity to handle internal spatial context. A CNN is a sub-

class of neural networks containing multiple convolution lay-
ers. These layers are great for automatically capturing lo-
cal spatial information, as well as reducing the overall com-
plexity of the model. Unlike tabular models, CNNs do not
need the images to be transformed to a tabular data struc-
ture. They can simply ingest the entire image at once. While
most CNN architectures only use 3 features (RGB) we ad-
justed our CNN models to be able to use the top 5 features
selected in Sect. 4.2. Five input features were chosen as they
allow the CNN architecture to capture the spatial context on
its own while reducing the overall complexity of the model
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relative to choosing a larger number of input channels (not
shown).

The two CNN architectures used were a simple CNN in-
spired by LeCun et al. (1999) and an U-Net (Ronneberger
et al., 2015) style encoder decoder CNN architecture. The
architecture inspired by LeCun et al. (1999) has 7 layers in-
cluding 2 convolutional layers with 3455× 5 kernels, 2 av-
erage pooling layers, and an input, hidden and output layer.
Rectified Linear Units (ReLUs) were also used for activation
in all layers. The computational complexity required to make
predictions on a large scale can be an obstacle in using this
model.

In an attempt to reduce this computational complexity a
convolutional encoder decoder style network was fitted to the
training data, as we believed that this style of model should
have both the speed and accuracy needed. The model was
based on the U-Net (Ronneberger et al., 2015) architecture
with two adjustments: the typical RGB input was replaced
with our top 5 features and the loss metric was replaced with
the weighted root mean square error (wRMSE) as U-Net is
typically applied to image segmentation not pixel wise re-
gression.

4.4 Model training and evaluation metrics

Both tabular models (Ridge Regressor and a Poisson XG-
Boost Regressor) were trained using the 64 most important
features derived from the VV/VH Sentinel-1A/Band multi-
spectral Sentinel-2A/B time series data selected in (sec-
tion 4.2). The model hyper-parameters were tuned using a
random search combined with a 10-fold cross-validation, and
all pixels with a building height value of zero were removed.
For the Ridge Regressor, the target distribution was trans-
formed into a normal distribution using a Yeo–Johnson trans-
formation, while for the XGBoost model we kept the original
distribution and instead changed the model’s objective func-
tion to a Poisson count distribution.

To train both of our CNN architectures, the same dataset
was used but only the 5 most important spectral temporal
features were included as shown in Fig. 5:

– the 10th quantile of VV band;

– the minimum of the VH band;

– the 50th quartile of the NIR band;

– the average of the TCB band;

– the 50th quartile NDVI.

To evaluate each model’s performance we applied 4 met-
rics to the predictions and the ground truth building heights
provided by the Urban Atlas. The Root Mean Square Er-
ror (RMSE) was the base metric for assessing model perfor-
mance. However, the RMSE value is slightly skewed towards
taller buildings. These taller buildings (above 15 m) are a rare

occurrence within the building height distribution especially
outside of the major cities. Therefore, to create a more realis-
tic metric a wRMSE metric was used where the RMSE error
for each building was weighted by the frequency of height
occurrences. This provides a more realistic metric especially
as we extrapolated the model over the entire island of Ire-
land where tall buildings are practically non-existent outside
of major cities.

We further compared the predicted building height distri-
butions produced by each of the models. For each model we
compared the normalised histograms of their building height
predictions against the actual building heights (from the Ur-
ban Atlas) by computing the Earth Mover’s distance met-
ric (EOD) on the hold out dataset. The EOD represents the
distance between two probability distributions and thus gives
a numerical representation to accompany the visual inspec-
tion of the histograms. This approach was adopted to ensure
that the chosen model could produce a realistic and varied
building height distribution instead of producing an accurate
distribution centred around the mean. Finally, we also mea-
sured the time taken for each model to make its predictions
for one 100 km× 100 km tile from the Military Grid Refer-
ence System (see Fig. 2). This metric was important as we
needed to strike a balance between accuracy and computa-
tional complexity for our prospective model.

5 Results

The performance of each model with respect to our prede-
fined metrics is captured in Table 1. The CNN consistently
outperforms the other models achieving the best results for
RMSE, wRMSE, and Earth Mover’s distance. This superior
performance is expected, as CNN architectures have been
shown to consistently outperform classical computer vision
methods. Despite this success, the CNN model has 10× the
computational complexity of the tabular models, adding an
extra 13 d of processing time to our map construction (with
the same hardware). This excessive computational complex-
ity is not caused by the model, but instead by the data ex-
traction needed to make a prediction. In order to make a pre-
diction we need to loop through the entire image pixel by
pixel and then extract the surrounding 26× 26× 5 pixels for
each pixel of interest. For tabular models the image can first
be converted into a table (see Fig. 6) with each row repre-
senting a building height and the columns the 64 features
determined in the feature selection process. This table can
be easily masked by the settlement map and the predictions
transformed back into a raster image format.

The CNN encoder decoder based on the U-net architec-
ture was expected to have both speed and accuracy. How-
ever, when tested on the hold-out dataset this model per-
formed poorly with a RMSE of 7.39 m and a wRMSE of
6.11 m. After a visual inspection of the predicted height dis-
tribution, we noticed that the model was producing a trivial
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Figure 7. This Figure displays three 10 km× 10 km sample predictions from the Ridge Regression model. From left to right: the first image
is an RGB representation of the scene using data provided by the Sentinel-2 satellite (Drusch et al., 2012), next is the actual building heights
for the scene, then the model prediction and the last image is the residuals of the predictions.

Table 1. The Performance of each model with respect to the 4 met-
rics (RMSE, WRMSE, EOD and Time to create a single Military
Grid Tile) defined in Sect. 4.4.

Modelling results

Model name RMSE wRMSE Earth Time
(m) (m) mover’s (min)

distance

Ridge Regression 2.23 1.74 0.005 102
XGBoost Poisson 2.12 1.55 0.011 73
CNN 1.92 1.42 0.0036 1380
U-Net 7.39 6.11 0.03 0.2

solution where every prediction was closely centred around
the mean value (see Fig. 10). Despite this, we tried nu-
merous different approaches including reducing the train-
ing image sizes to 1.28 km× 1.28 km, 640 m× 640 m and
280 m× 280 m, creating a new loss function similar to Eigen

and Fergus (2015), adding image augmentations and using
only the RGB bands with a pre-trained ResNet model as
the Encoder block (He et al., 2016). Unfortunately, none
of these changes had a positive effect on the model’s accu-
racy in terms of wRmse, RMSE, EOD. The literature is quite
sparse for building height estimation with convolutional en-
coder decoder networks. The only work found used a pre-
trained ResNet model on RGB bands, without the temporal
aspect, and at 2 m resolution (Mou and Zhu, 2018). However,
during the feature selection process we learned that at 10 m
resolution, with a temporal aspect, the red and blue bands
performed worse than random at predicting building heights.
Thus, we speculate that the under-performance of the U-Net
model could be attributed to the lack of high resolution data
(10 m vs. 2 m) and the small number of training images, ap-
proximately 300 images excluding augmentations.

The XGBoost model achieved the second lowest time to
create a single tile, only second to the convolutional encoder
decoder network. This is not a surprise as this model was
designed for speed and performance (Chen and Guestrin,
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2016). During hyper-parameter tuning it was discovered
that using the Poisson objective out-performed the default
squared error objective function in all of our accuracy aspects
(not shown). This Poisson XGBoost model out-performed
our Ridge Regression model in both RMSE and wRMSE.
However, on visual inspection it produced a more unrealistic
height distribution as shown in Fig. 10. This fact is echoed by
the relatively large EOD (Table 1). The model clearly under-
predicts heights at the tails of the distribution while grossly
over-predicting the average building height (7 m).

In terms of accuracy, the Ridge Regressor model had the
highest RMSE and wRMSE scores of the 3 models (CNN,
XGBoost, Ridge Regressor) that produced a reasonably real-
istic output. This suggests that there must be some non-linear
interactions that cannot be captured relative to the other two
non-linear models. We can see from Fig. 10 that the Ridge
Regressor model under-predicts the tails of the distribution
but overall it produces a much more realistic height distribu-
tion compared to the XGBoost model. This realistic distri-
bution and the model’s computational complexity relative to
the CNN made the Ridge Regressor the optimal choice for
producing the national scale map. Despite having the largest
RMSE and wRMSE values of the 3 models that produced
a realistic output, the discrepancy between the RMSEs and
wRMSEs is less than 30 cm. This accuracy discrepancy will
not have a serious impact on creating maps in future stud-
ies such as for the LCZs, as we only need to categorize the
heights into high-rise, mid-rise and low-rise areas. With our
chosen model we recreated three 10× 10 km areas from our
hold-out dataset (which can be seen in Fig. 7). Despite train-
ing our models using a pixel-wise representation of building
heights, this method is clearly capable of producing a real-
istic output. The maximum residual error of any pixel in the
3 segments is ±5 m. However, in certain areas the residuals
can be seen to fluctuate from pixel to pixel. In the future this
problem could be solved using a post processing technique
to smooth out the sudden changes to create a more locally
consistent map.

Our final ridge Ridge Regressor was trained on 100 % of
the available data. The resultant building height map can be
seen in Fig. 8 and a more granular view of the 4 major cities
in Ireland can be seen in Fig. 9. The distribution of the build-
ing height predictions in the final map can be seen in Fig. 4.
The graph on the left represents the total distribution of build-
ing heights for Dublin City in 2012 (these were the heights
used to train the models). This distribution has a mean of
7.28 m and a standard deviation of 3.61 m. The graph on the
right shows the distribution of predicted building heights for
the island of Ireland by our final Ridge Regression Model.
This distribution has a mean of 6.53 m and a standard de-
viation of 2.02 m. The predicted building height distribution
is normally distributed and is limited to the range 0–21 m.
In reality, we expect the building height distribution for the
entire country to be right skewed as smaller buildings are
much more prevalent then taller buildings. If a more varied

Figure 8. The final building height map created from our models
predictions. The colour scale has been limited to 0–15 m for visual-
isation purposes.

training dataset, that represented Ireland as a whole rather
than just Dublin city, was available then the resultant build-
ing height distribution may align more with our expectations.
Despite this, it is evident from Fig. 7 that our final Ridge Re-
gression Model clearly produces a realistic output; the first
image has an RMSE of 1.32 m, wRMSE of 1.77 m and an
Earth Mover’s Distance (EOD) of 0.0022. The second has an
RMSE of 2.29 m, wRMSE of 1.56 m and an EOD of 0.0036.
The final image has an RMSE of 2.0 m, wRMSE of 1.62 m
and an EOD of 0.0029.

6 Conclusion

In summary, this paper demonstrates a workflow to produce
a cost-effective building height map at a national scale. The
proposed methodology relies completely on freely available
data, open source software and the AWS cloud platform. This
accessibility allows any country within the European Union
to produce their own map either using the AWS platform or
their own computer resources. A thorough feature selection
process was carried out, that deemed 64 spectral-temporal-
spatial features to be important when predicting building
heights at a 10 m resolution. Using these features the pre-
diction quality, accuracy and computational complexity of
several models was explored. Despite having relatively large
RMSE (2.23 m) and wRMSE (1.74 m) values, the Ridge Re-
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Figure 9. The final model predictions for the 4 main cities of Ireland Dublin, Belfast, Cork and Galway. From left to right the images are the
RGB satellite view of the given city using data provided by the Sentinel-2 satellite (Drusch et al., 2012). The building heights predicted by
our final model and the right hand graph shows the distribution of the predicted building heights. The colour scale in the middle graphs has
been limited to 0–15 m for visualisation purposes.

gression model provided the optimal blend of a low compu-
tational overhead paired with a realistic output. Depending
on the application and access to computational resources, the
more accurate, but computationally expensive, CNN could
be used.

This approach is not perfect, and is limited to producing a
10 m resolution map. Therefore, the actual heights of specific
buildings are not attainable which may not suit certain appli-
cations. The resultant map is also constrained by the Coper-
nicus open source datasets. This caused a discrepancy be-
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Figure 10. Orange bars represent building heights and the blue bars represent the predicted building heights for each model. From left to
right the four graphs represent the Ridge Regressor, XGBoost Regressor, CNN and U-Net models.

tween the training dataset for the 4 models because the satel-
lite imagery was from 2020 but our building heights were
from 2012. The resultant map was also constrained to the
year the settlement map was produced (2015). However, as
all of the data needed to create the building height map are
open source, the described workflow can be re-implemented
once new updated versions of these data sources become
available. This has the added benefit of not only updating
our map but producing a more accurate map, once all of the
data sources become available for the same year.

In the future, the resulting complete building height map
will be combined with urban density data to correctly clas-
sify urban LCZs. These urban LCZs will be used to update
the existing land cover map in HARMONIE-AROME over
Ireland. In conclusion, this methodology produces a cost ef-
fective building height map that could have numerous dif-
ferent applications outside of numerical weather prediction.
This could benefit any EU Member State, covered by the
Copernicus datasets, which have no access to open access
countrywide building height data.

Appendix A: Infrastructure

We used the AWS cloud platform to provide the necessary
computing power for this project. If you have access to ap-
propriate computer and storage resources then this section
can be skipped. In order to process a single tile we need
two ec2 cloud instances/servers – the first to process the
Sentinel-1 data and the other the Sentinel-2 data. Both were
t2.xlarge instances which have the following specifications:
4 virtual CPUs and 16 GB of RAM. The size of the instance

was chosen as this is the minimum specification needed to
successfully run the FORCE software. Both instances ran
UBUNTU 18.04 and the FORCE software. The Sentinel-1
instance also required ESA SNAP software and the SNAPPY
python package to run the Sentinel-1 processing pipeline.
Both of these instances were attached to a shared 600 GB
EBS volume to store the associated data. This setup allowed
us to comfortably process a single tile. In order to process
multiple tiles in parallel we recreated this infrastructure setup
5 times with the help of the AWS console. This allowed us to
create 5 tiles in parallel decreasing the overall time to create
the map. This cloud infrastructure setup allowed us to create
a 10 000 km2 section for only EUR 6.

Appendix B: Map creation

As mentioned in the main part of the paper Ireland is cov-
ered by 15 tiles (Military Grid Reference System, see Fig. 2).
For ease of construction we processed each tile separately.
This had the added benefit of horizontal scaling, as multi-
ple smaller machines can process tiles in parallel. Each tile
took approximately 24 h to process. The deviation in pro-
cessing time was caused by the content of each tile. Tiles
that were located on the coast took less time on average as
the ocean values are not processed by the FORCE software.
Also the size of the area covered by built-up infrastructure
affects the time taken to process a tile. On average each tile
cost EUR∼ 6 to produce. In total we were able to produce
our entire map in 3 d at a total cost of EUR∼ 80.
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Appendix C: Framework for Operational Radiometric
Correction for Environmental monitoring (FORCE)

The FORCE framework is an all-in-one processing engine
for medium-resolution Earth Observation image archives.
FORCE allows the user to perform all of the essential tasks
in a typical Earth Observation Analysis workflow, i.e. go-
ing from data to information. FORCE supports the integrated
processing and analysis of:

– Landsat 4/5 TM;

– Landsat 7 ETM+;

– Landsat 8 OLI;

– Sentinel-2 A/B MSI.

Non-native data sources can also be processed by FORCE,
such as Sentinel-1 SAR data. In order to use the FORCE
framework the Sentinel-1 data needs to be prepared in
a FORCE-compatible format. The images need to be in
the correct tiling scheme with signed 16 bit integers and
scaled backscatter in the order of −1000 s. No data values
need to be assigned as −9999. The data need to have two
bands: VV and VH, and the image name should follow the
standard FORCE naming structure: date, sensor and orbit
e.g. 20180108_LEVEL2_S1AIA_SIG.tif (Frantz, 2019).

Appendix D: SNAPPY

Developed by the European Space Agency (ESA), the Sen-
tinel Application Platform (SNAP) is a common software
platform that supports the Sentinel missions. The toolbox
consists of several modules that can be used for image pro-
cessing, modelling and visualisation. SNAP is not only a
research support tool for the Sentinel missions (Sentinel-1,
Sentinel-2 and Sentinel-3) but a functional tool that can be
leveraged to process large amounts of satellite data (Euro-
pean Space Agency, 2021). In order, to use the SNAP tool-
box through python, SNAPPY is required. SNAPPY is essen-
tially a Python module that allows the user to interface with
the SNAP API, through the Python programming language
(Culler et al., 2021).

Appendix E: Sentinel-1 pre-processing workflow

A workflow by Filipponi (2019) was applied to pre-process
the Sentinel-1 (GRD) images to level 2 analysis-ready data.
Level 2 analysis ready refers to the quality of the satellite
scenes (European Space Agency, 2015). To accomplish this
a pre-processing pipeline was created using a python in-
terface (SNAPPY) for the SNAP sentinel-1 toolbox (Culler
et al., 2021) and the freely available 3 arcsecond Shut-
tle Radar Topography Mission (SRTM) terrain model (Farr

et al., 2007). The first processing step was to apply the pre-
cise orbit files available from SNAP to the Sentinel-1 prod-
ucts, in order to provide accurate satellite position and ve-
locity information. Border noise effects, which affect a per-
centage of the original Sentinel-1 scenes, were also elimi-
nated along with thermal noise. The SRTM terrain model
was then used to apply Range Doppler terrain Correction
to correct for distortions in the scene caused by the varying
viewing angle greater than 0◦ of our sensor. This varying an-
gle causes some distortion related to side-looking geometry.
Range Doppler terrain corrections are intended to compen-
sate for these distortions so that the geometric representation
of the image will be as close as possible to the real world
(Filipponi, 2019). The final step in the workflow was to con-
vert the processed backscatter images to the decibel scale. In
order to use the higher level processes from the Framework
for Operational Radiometric Correction for Environmental
monitoring (FORCE) (Frantz, 2019) all of these processed
Sentinel-1 scenes had to be converted to a compatible for-
mat.

Appendix F: Sentinel-2 pre-processing workflow

The raw Sentinel-2 scenes were processed to Level 2 Anal-
ysis Ready Data (ARD) through the FORCE framework by
Frantz (2019) available at Frantz (2020). This open source
framework conducts all of the necessary steps involved to
produce level 2 (ARD) products. These processes include
cloud and cloud shadow detection using a modified version
of the Fmask algorithm (Frantz et al., 2016) and radiomet-
ric calibration which also uses the freely available 3 arcsec
SRTM terrain model (Farr et al., 2007). A more in-depth de-
scription of all of the processes applied during the level 2
ARD workflow can be found in Frantz (2019).

Code and data availability. The code used for this project can
be found at https://doi.org/10.5281/zenodo.6501910 (Keany, 2022).
The data used to obtain the results are open-source and available
at the following web addresses: Urban atlas 2012 dataset: https:
//land.copernicus.eu/local/urban-atlas/building-height-2012 (Euro-
pean Environment Agency, 2018) and https://ghsl.jrc.ec.europa.eu/
(European Commission, 2022), Sentinel-1 and Sentinel-2 Satel-
lite Data: https://scihub.copernicus.eu/ (European Space Agency,
2022).
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