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Abstract. During the last decade, the constant improvement in computational capacity led to the development of
the first limited-area, kilometer-scale ensemble prediction systems (L-EPS). The COSMO-D2 EPS (now ICON-
D2) was the operational L-EPS at the German weather service (DWD) and has a spatial resolution of around
2.2 km. This grid resolution allows large scale, deep convective processes such as thunderstorms or heavy show-
ers to be handled explicitly, without any physical parametrization. Special parameters involving both clouds
microphysics and large scale lifting – such as the Lightning Potential Index, or LPI – have also been developed
in order to try to bring the forecasting of deep convection and therefore also of lightning activity to a new level
of spatial accuracy. With such high resolution forecasts comes however also a higher error potential, at least for
gridpoint-verification. The use of this high resolution setup in an ensemble prediction system might however
bring huge benefits in terms of skill and predictability. This work is a preliminary attempt to apply innovative
verification approaches such as the dispersion Fractions Skill Score (dFSS) and the ensemble-SAL (eSAL) to
the LPI in the COSMO-D2 EPS. Aim of this work is to assess the relationship between the ensemble error and
the ensemble dispersion at different spatial scales. For the summer months 2019, the COSMO-D2 EPS shows a
general tendency to overestimate the predictability (underestimate the ensemble spread) of the lightning events,
though the spread-error relationship varies greatly for different forecast lead times. With the help of the dFSS,
one can also express this relationship in terms of skillful scales. On average, the system produces a useful fore-
cast during the afternoon hours for horizontal scales of around 200 km. However, the ensemble members show
an average horizontal dispersion that amounts to around half of that value, at more or less 100 km.

1 Introduction

The forecast of convective activity is one of the most chal-
lenging topics in weather modeling, as convective cells are
typically localized in time and space and can be significantly
driven by small scale processes, which includes turbulence
and cloud microphysics. At the same time, convection can
cause very high human and economic losses as it is often ac-
companied by hail, flash floods or severe wind gusts. Due
to the electrical charge separation that takes place in the con-
vective cloud (Saunders, 2008), lightning strikes are the most
typical phenomena that accompany convection and are them-
selves sources of significant injuries to people and damages

to properties. An accurate forecast of deep convection brings
therefore huge benefits in terms of assessing the likelihood
of potentially severe weather. For many years however, con-
vection has been a sub-grid phenomenon in weather models
that needed to be parametrized because of their poor spatial
resolution. It was not until recently that the most advanced
local area models reached a grid spacing on the lower end
of the mesoscale, close to the kilometer-scale, allowing deep
convection to be handled explicitly.

Following such improvements, in the last decade the first
parameters aiming at forecasting the lightning activity came
along (McCaul et al., 2009), with the Lightning Potential In-
dex (LPI) (Lynn and Yair, 2010; Lynn et al. , 2012) being
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one of the first to be developed and tested in the framework
of the Weather Research and Forecasting model (WRF). Par-
allel to this evolution and thanks to the constantly improving
computational capacity, also the first convection-permitting
ensemble prediction systems (EPS) have emerged. In Eu-
rope, the COSMO-Consortium (https://www.cosmo-model.
org/, last access: 28 May 2022) started developing its ver-
sion of high resolution EPS already in the early 2000s with
the COSMO-LEPS system (Montani et al., 2003). In the last
decade, convection-permitting ensembles have been devel-
oped in several countries, the first being COSMO-DE-EPS
(Gebhardt et al., 2011). The system, now ICON-D2-EPS,
has 20 members with 2.2 km horizontal resolution and is
maintained by the German Weather Service (DWD). Starting
from 2015, the LPI has also been adapted for the COSMO-
D2 EPS (Blahak, 2015) and has been routinely included in
its output fields. The COSMO-LPI approach is particularly
interesting, as the parameter mixes the microphysical prop-
erties of the cloud – such as the liquid water to ice water ratio
– with some large scale lifting parameters in order to provide
an ultra-fine forecast of lightning activity.

After half a decade though, only little research has been
conducted on how this innovative way of forecasting con-
vection is performing in the framework of a very high res-
olution probabilistic model. This work aims at raising at-
tention to this field and is a preliminary attempt at assess-
ing the skill and the predictability of lightning activity in an
high resolution EPS. In order to achieve this, it makes use
of some well established, neighbourhood and object-based
verification methods such as the Fractions Skill Score, or
FSS (Roberts and Lean, 2008) and the Structure-Amplitude-
Location, or SAL (Wernli et al., 2008). Their probabilistic
form, the dispersion FSS, here referenced to as dFSS (Dey
et al., 2014) and the ensemble SAL, or eSAL (Radanovics et
al., 2018) are being proposed for a spread-skill evaluation of
the ensemble forecast of convection in terms of LPI. Is the
high resolution, probabilistic approach of a L-EPS leading to
some benefits in forecasting convection in general and light-
ning activity in particular? Furthermore, do the proposed ver-
ification metrics give detailed insights and information about
the quality of the forecast?

2 Datasets

In this work, the COSMO-D2 EPS model forecasts for
the summer months (JJA) 2019 have been verified against
observational data coming from the LIghtning detection
NETwork (LINET) provided by the German Weather Ser-
vice (DWD).

2.1 Observations – LINET lightning detection network

The LINET network (Betz et al., 2004, 2009) is one of
the best performing lightning detection networks covering
Central Europe. Around 100 Very Low Frequency/Low Fre-

Figure 1. COSMO-D2 EPS domain (blue area) and LINET data
coverage (red rectangle).

quency (VLF/LF) sensors detect the variations in the elec-
tromagnetic spectrum caused by lightning strikes and are
able to localize them using an optimized Time Of Arrival
algorithm (TOA). This setup ensures an average accuracy of
around 150 m (Karagiannidis et al., 2019), which is one order
of magnitude higher than the COSMO-D2 horizontal resolu-
tion (see next section) and therefore more than acceptable for
this study. The network is also able to determine the height of
the intracloud discharges, but this feature has not been used
in this work. A list of detected lightning strokes with very
precise values for latitude, longitude and time of occurrence
over Central Europe has been compiled for the summer 2019
and then transferred onto the model grid. A simple nearest
neighbor method has been used to sum up all the lightning
strokes occurring inside a COSMO-D2 model grid box dur-
ing a 1 h time window. Data falling outside of the model do-
main has been rejected. The resulting datasets are gridded
observed number of lightning strokes on a hourly basis, cov-
ering the summer months of 2019 and corresponding to the
COSMO-D2 grid (Fig. 1). The available raw data are quality
controlled and therefore no further filtering or quality check
has been applied.

2.2 Forecasts – COSMO-D2 EPS lightning potential
index

The COSMO-D2 EPS fields used in this work are based on
the DWD’s model chain setup of 2019. A global model pro-
vides both deterministic (ICON) and probabilistic (ICON-
EPS) forecasts with respectively 13 and 40 km – 6.5 and
20 km for the European domain refinement (ICON-EU and
ICON-EU-EPS) – horizontal grid spacing. The probabilistic
model, ICON-EPS, calculates 40 different perturbed mem-
bers. These fields provide the boundary conditions for a
2.2 km nested model for central Europe named COSMO-D2
(more on the COSMO model at: https://www.cosmo-model.
org/, last access: 28 May 2022). The high resolution model,
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COSMO-D2, has 65 vertical levels and can handle deep con-
vective processes explicitly. Shallow convection as well as
cloud microphysics are still sub-grid processes that need a
specific parametrization scheme and closure. For the cloud
microphysics, a 6-classes parametrization scheme that in-
cludes the category “graupel” is applied. A detailed descrip-
tion of both the global and the local model can be found
on the DWD’s website (Baldauf et al., 2018; Reinert et al.,
2021). The probabilistic, high resolution twin model is called
COSMO-D2 EPS and is physically identical to the determin-
istic version. The initial conditions of the 20 different ensem-
ble members are provided by the Kilometre-scale ENsemble
Data Assimilation (KENDA) scheme, based on an ensemble-
Kalman-filter, developed specifically for the COSMO Con-
sortium (Schraff et al., 2016). Furthermore, randomized ba-
sic perturbations are applied to the physics of the model, in-
cluding convective processes. Finally, the boundary condi-
tions for the 20 members are obtained from the ICON-EU-
EPS model.

The Lightning Potential Index or LPI (Lynn and Yair,
2010; Lynn et al. , 2012) assesses the energy available for
charge separation inside the convective cloud and is therefore
measured in J kg−1. The formula that defines the LPI takes
into account the strength of the updraftw and the liquid water
to ice water ratio in the relevant portion of the cloud where
electrification typically occurs (between the heights H(0 ◦C)
andH(−20 ◦C)). Starting from 2015, an adapted version of the
LPI with some additional boolean functions (Blahak, 2015)
has been included in the COSMO-D2 EPS model as defined
in Eq. (1).

LPI= f1 ·f2 ·
1

H(−20 ◦C)−H(0 ◦C)
·

H(−20 ◦C)∫
H(0 ◦C)

ε ·w2
·g(w) ·dz (1)

In particular, f1 is a boolean function that investigates the av-
erage strength of the updrafts in a square of 10 km around the
grid point. If the maximum updraft is weaker than 1.1 m s−1

over more than half of the square, then f1 takes the value 0,
otherwise it switches to 1. In the same way, f2 is 0 when
the average convective buoyancy available over a square of
20 km around the grid point does not reach a specific thresh-
old. Both functions are introduced in order to filter out false
alarms when convection is expected to be relatively shallow
or mostly single-celled, which lowers the potential for light-
ning strikes. Furthermore, g(w) filters out (i.e. is equal to 0)
all the vertical levels where the updraft velocity is weaker
than 0.5 m s−1 and is 1 in all other cases. Finally, ε is a di-
mensionless function that can take values between 0 and 1
and is defined as:

ε =
2 · (Ql ·Qs)0.5

Ql+Qs
(2)

where Ql and Qs are the total liquid water mass mixing ra-
tio and the ice fractional mixing ratio that includes graupel,

snow and hail (both kg kg−1) respectively. Basically, ε is
maximized when the amount of (supercooled) liquid water
and the ice portion in the convective cloud are equal. If one
of the two parts is close to one (either liquid or solid water),
ε tends to zero. This is where the LPI takes into account the
microphysical properties of the cloud for each of the model
vertical levels in order to assess the potential for charge sep-
aration to occur.

The COSMO-D2 EPS LPI fields for the 20 ensemble
members are originally made available with a 15 min fore-
cast step. In order to reduce the computational resources nec-
essary to process the whole dataset, the time frequency has
been reduced from 15 min to 1 h by taking the maximum of
the LPI in each time window. The forecasts cover 1.125 d
with a forecast length of 27 h and there is a new model run
every 3 h. For this work, just the 00:00 UTC runs and only the
first 24 h lead times in each run have been considered. Over
Central Europe, this leads to the following side effect: the
hourly forecast steps coincide with the solar time +1 h. This
is an important aspect to consider when verifying convective
activity, as most of the time it is strongly coupled to daytime
heating. The direct consequence of this is that the vast major-
ity of the observed lightning (more than 80 % of the strokes
in the dataset) are populating only the forecast steps between
+12 and +20 h. As already mentioned, the analysis covers
the summer months (June, July, August) of 2019.

3 Methodology

As the time of the day plays a central role in the convec-
tive cycle, this analysis has been conducted for each hourly
forecast step available after reshaping and reorganizing the
data. Therefore, all the verification scores presented below
provide 24 different values, one for each forecast step, which
coincides with the hours of the day, as previously described.
Furthermore, as the temporal domain covers the three sum-
mer months, for each forecast step a total of 92 d and there-
fore also a total of 92 model runs is available. See Sect. 3.3
for further details.

As the analysis has been done on a high resolution EPS
for rare and extremely localized events such as lightning
strikes, the choice of the verification approach is critical.
Given these premises and in order to address all the require-
ments, a neighbourhood verification method, the Fractions
Skill Score (FSS) and an object-oriented one, the Structure-
Amplitude-Location (SAL) has been adapted for this specific
case.

3.1 FSS and dFSS

Very high resolution forecasts can represent meteorological
processes and features in a much more realistic way com-
pared to models with coarse resolution, especially when it
comes to forecasting convection. However, this does not nec-
essarily lead to better scores when using grid-point verifica-
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tion. Double-penalty issues (Rossa et al., 2008) and the fact
that localization errors from parent models are passed over
to nested ones can lead to lower skills for high resolution
forecasts. In order to address such distortions, fuzzy veri-
fication methods have been developed and introduced suc-
cessfully during the last decades. One of the most success-
ful examples is for sure the Fractions Skill Score, or FSS
(Roberts and Lean, 2008), which is defined as the compari-
son of the Mean Square Error (MSE) with the largest possi-
ble MSE (MSE(ref)) over a specific subset of the domain with
varying dimension n.

By letting the spatial window size n increase, one can ac-
count for possible double-penalty distortions and verify at
which spatial scale the high resolution model is reaching a
useful skill. The FSS varies between 0 and +1, with 1 be-
ing the perfect match between the two fields. According to
Roberts and Lean (2008), a forecast field at scale n is de-
fined useful when FSS≥ 0.5+ f0

2 with f0 being the base
rate. The two datasets A and B being compared with the
FSS must be binary fields, typically referring to a forecast
dataset and an observational one exceeding a predetermined
value. In fact, in order to convert the fields in binary form, a
significant threshold has to be selected for each field. In our
case, however, the two datasets have different measurement
units. It would have been possible to convert the forecasts
into flash counts using a parametrisation scheme, but such
methods can lead to a large mismatch (McCaul et al., 2009).
Our goal has been not to modify the original data, when-
ever possible. Thus, after conducting a previous statistical
analysis that also involved a more conventional verification
score, the Symmetric Extremal Dependence Index or SEDI
(Ferro and Stephenson, 2011) and after looking at different
FSS scores for different values of the LPI and the LINET
lightning, the optimal thresholds for this study has been de-
fined by:

LPI> 1Jkg−1 and LINET strokes > 1. (3)

When it comes to probabilistic forecasts, the FSS can be
applied in two different ways. On the one hand it can be used
in a conventional way by comparing the observations A with
the ensemble mean forecasts B (LeDuc and Hiromu, 2013).
In this work, this version of the FSS is called error FSS or
eFSS and it addresses the spatial skill of the system. The re-
sulting, total eFSS for each forecast step will be the average
of all the eFSS values calculated for each day in the dataset.
On the other hand, one can take two members of the ensem-
ble as A and B, obtaining a FSS value from two forecast
fields. By applying this to all the ensemble members and then
averaging, a measure which is directly related to the spatial
spread of the ensemble can be obtained. Therefore, in this
study this second version of the FSS is called dispersion FSS
or dFSS (Dey et al., 2014). The resulting, total dFSS for each
forecast step will then be the average of all dFSS values cal-
culated for each day and each couple of ensemble members
in the dataset. This method aggregates the single components

of the FSS before averaging. Note that this is not always the
best choice, depending on each specific case (Mittermaier et
al., 2021). eFSS and dFSS can be directly compared and as
the dimension of the subdomain n varies, they provide an
additional dimension – the spatial scale – to the classical
spread-error relationship analysis. The higher the dFSS, the
more alike the ensemble members are (less spread). On the
contrary, a lower dFSS means that the ensemble members are
less alike (higher spread). Finally, in order to speed up the
calculation, all eFSS and dFSS algorithms have been devel-
oped using the summed area table or integral image method
(Faggian et al., 2015), which optimizes the way each fraction
is calculated.

3.2 SAL and eSAL

Another method that goes beyond basic grid-point verifica-
tion is the object-based Structure-Amplitude-Location (SAL)
(Wernli et al., 2008). Key of the SAL is the individuation
of single targets or objects within the domain. SAL is com-
posed of three different parts: the structure component S in-
vestigates the shape and volume of the objects, the amplitude
partA analyzes the overall magnitude of all the objects in the
domain and the location component L compares the centers
of mass of each identified object and the center of mass of the
whole domain to give a measure of spatial skill. In this study,
the threshold that defines a SAL-object is set to 1 lightning
strike over the whole domain for each grid point. Two (or
more) adjacent grid points with contiguous values above 1
are therefore considered as one object. The S and A com-
ponents can take values between −2 and +2, with 0 being
the best performing result. The L component consists of the
difference between the domain-wide center of mass plus the
difference between the centers of mass of all the objects in
the domain and the domain-wide center of mass. Both terms
vary between 0 and +1. If both are equal to 0, then the two
fields perfectly match in terms of centers of mass.

The SAL has proven to be particularly effective for study-
ing precipitation fields from high resolution models as it
takes into account the shape and the spatial distribution of
the targets in the domain. Therefore, this method seems to
be appropriate also for lightning activity. The adaptation
of the SAL for probabilistic forecasts (ensemble SAL or
eSAL) has already been documented for precipitation fields
(Radanovics et al., 2018; Marsigli et al., 2019). In our case
however, the objects of the study originate from two differ-
ent parameters using different units: the observed number of
strokes and the LPI. This makes some further adaptations
necessary. Most importantly, the LPI forecast fields need to
be translated into number of strokes. In order to achieve this,
the exponential function a · x · exp(b · x)+ c has been used
for a curve fitting process. The parameters a, b and c have
been optimized using a non-linear least squares regression
analysis for each forecast step. In this study, the curve fitting
process is based on the same dataset that is being analyzed.
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Ideally, a different time window should be used to train the
curve fitting model. However, a differentiated curve fitting
process has been conducted for each week and each month
of the dataset, showing only little change in the fitting param-
eters for different time frames. This supports the hypothesis
that in this case the curve fitting process is only weakly sen-
sitive to the chosen data sample. Finally, the LPI fields have
been translated to strokes. In order to avoid distortions and be
coherent with the thresholds used for the FSS analysis (see
Eq. 3), the translated fields have been set to zero a priori for
LPI values below 1 J kg−1 being passed to the fitting func-
tion.

As for the eFSS/dFSS, also for the SAL it is possible
to conduct a classical forecast against observation analysis,
or use two forecast fields from two ensemble members in
order to investigate the ensemble spread. In this case, the
method described by Wernli et al. (2008) is modified only
for the fact that an ensemble average SAL – i.e. the mean of
190 SAL values resulting from the comparison of all possi-
ble pairs of the 20 members of the EPS – for each model run
is being calculated. The reference equations of the ensem-
ble SAL (eSAL) are described in Radanovics et al. (2018),
with only the Structure component being calculated differ-
ently. For two ensemble members C and D, the analysis has
been conducted as follows and then averaged over the en-
semble:

S =

∑
M

∑
obj

(
C · C

Cmax

)
∑
obj
C

−

∑
M

∑
obj

(
D · D

Dmax

)
∑
obj
D



·

0.5 ·

∑
M

∑
obj

(
C · C

Cmax

)
∑
obj
C

+

∑
M

∑
obj

(
D · D

Dmax

)
∑
obj
D



−1

(4)

where
∑
M

is the sum over the whole list ofM detected objects

in the domain, while
∑
obj

is the sum of the values for each grid

point inside each object. Cmax and Dmax are the maximum
values inside a single object for the two fields.

3.3 Data filtering

It is well known that lightning are very localized events both
in time and space. This is true also for convection in gen-
eral. In order to focus this analysis on truly active convective
days, a general data filtering affecting both the FSS and the
SAL analysis has been conducted. For each forecast step, the
domain-wide average number of grid points with at least one
observed lightning strike LS(Avg) has been calculated. If the
average for a specific day is smaller than LS(Avg)

3 , this day is
omitted from the study. This results on average to halve the
number of days processed for each forecast step. As the fil-
tering method is based only on the observed fields, there is

the risk of introducing a fictitious bias into the analysis. How-
ever, in this case the filtering process retains around 90 % of
both the observed and the forecasted lightning activity. Fur-
thermore, the statistics of the False Alarm Rate (FAR) for
the filtered and the unfiltered dataset shows changes in the
range 0.1 % to 1 % of the FAR, with absolute values ranging
between 0.85 and 0.90 depending on the forecast step.

Furthermore, the SAL verification method is inherently
object-oriented. In order to prevent large areas of the domain
without lightning activity to slightly distort the results (es-
pecially for the Location component), a further sub-setting
method has been applied prior to the eSAL algorithm. For
each day in the dataset, the maximum and minimum latitude
and longitude values of the grid points with observed light-
ning activity has been extrapolated. In the next step, the full
domain has been downsized with a zooming function in order
to include only the areas with active convection. A buffer of
20 gridpoints (around 45 km) in each geographical direction
has been allowed in order to include possible location errors
in the forecast as well as possible lightning striking far away
from the originating convective cloud. As a result, the anal-
ysed domain using SAL changes from hour-to-hour, without
affecting the ability to detect large displacement errors.

4 Results

Figure 2 shows eFSS (Fig. 2a) and dFSS (Fig. 2b) for all
forecast steps from +1 to +24 h and for varying neigh-
borhood sizes n from one grid mesh (2.2× 2.2 km2) up to
500× 500 grid points (around 1100× 1100 km2). The white
line denotes values that are equal to 0.5, as in this case f0

2
is extremely small throughout the dataset. Therefore, this
line approximately identifies the first spatial scale delivering
an acceptable skill. This analysis conveys several useful in-
formation. First of all, the dFSS values are overall slightly
higher that those of the eFSS, regardless of the neighborhood
size or the forecast step. This means that the EPS is gener-
ally underdispersive and that the members of the ensemble
are not diverging enough to fully represent the spatial uncer-
tainty in the forecast. However, during the time window with
most of the lightning activity (i.e. between +14 and +19 h)
the spread-error relationship is improving compared to other
lead times.

Another very interesting feature is the sudden and evident
lack of spatial skill occurring at around +11h. The eFSS is ba-
sically dropping to a no-skill level even for extremely large
neighborhood sizes, which means that there is a significant
bias in the model. However, this apparent spatial bias is in
fact a timing offset. Looking at the hourly distribution of the
LINET flashes and of the LPI values, it is evident that this
lack of skill is occurring at the beginning of the diurnal con-
vective cycle. This leads to the conclusion that the model is
wrongly delaying the start of the first thundery cells of about
1 h, as the skill then quickly improves again in the early af-
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Figure 2. (b) Error Fractions Skill Score (eFSS) for 24 forecast steps and neighborhood sizes up to 500 grid points. An eFSS value of
0.5+ f0

2 is considered as skillful. As f0
2 is extremely small in this case, the 0.5 line has been highlighted for better reference. (c) Dispersion

Fractions Skill Score (dFSS) for 24 hourly forecast steps and neighborhood sizes up to 500 grid points. For COSMO-D2, 1 grid mesh equals
2.2× 2.2 km2. For better reference, (a) is showing the average of all the masked fields used for the study (i.e., the average fraction of the
domain with observed/forecasted lighting activity), with a clear maximum of the convective activity during the afternoon and evening hours.

ternoon hours. However, the dFSS analysis is also showing
the same drop at around the same time, meaning that the
members of the ensemble are diverging more as well and the
EPS is likely able to catch some of this lack of predictability.
In other words, at least some of the members of the ensem-
ble are likely able to correctly forecast an earlier start of the
convective cycle. Even if the magnitude of the drop is not
matching the one in the eFSS plot, this is probably signaling
that the EPS is able to produce more spread also in case of
time related biases. In order to confirm this hypothesis how-
ever, further studies with focus on this time window should
be conducted.

Concerning the skillful scale presented by the white line
on the eFSS plot in Fig. 2, it is interesting to note that this
is located at around the 100 grid points scale (220 km) dur-
ing the afternoon hours, corresponding to the peak hours of
lightning activity. On the other hand, the EPS is producing
a spatial spread that covers on average half of that value
( dFSS

eFSS ≈
110
220 ≈

1
2 ). This means that the ensemble is overcon-

fident, being too sure to deliver a skillful forecast of lightning
activity already at around 50 grid points (or 110 km).

In Fig. 3 the eFSS and dFSS scores for all neighborhood
sizes for just four selected forecast steps (+2, +8, +13 and
+16 h) are shown. These four steps have been chosen to
investigate the spread-error relationship at the beginning of
the model run, at the beginning of the main convective win-
dow and when lightning activity reaches its daily peak. One

should keep in mind that the total eFSS and dFSS values pre-
sented in Fig. 2 are actually averages over the whole summer
period. However, the eFSS and dFSS values can vary a lot
on a day to day basis and for the dFSS also on a member
to member basis. For this reason, Fig. 3 also includes the
20th and 80th percentiles of the eFSS/dFSS distributions for
the specific forecast step (FC-Step). It becomes even more
evident that the ensemble system generally struggles to cover
the actual uncertainty in the forecast. The spread-error rela-
tionship seems however to get better for small neighborhood
sizes and therefore at higher spatial resolutions.

The three components of the SAL analysis are shown in
Fig. 4 for eSAL and the ensemble mean. The most evident
result is that the eSAL (red dashed line) remains close to
zero for the S and A components, meaning that the ensemble
is not dispersive at all. This is somehow expected, as Struc-
ture and Amplitude describe the shape and magnitude of the
lightning activity. Both components are dependent on the LPI
algorithm itself or on how the model generally processes con-
vection – how strong and how sparse – with all the members
finally looking very similar. Therefore, when averaging over
large datasets, the random discrepancies between the ensem-
ble members get filtered out. The Location component is dif-
ferent, as it is more easily influenced by – and very sensitive
to – perturbation of the model physics. However, given that
the eSAL method has been thoroughly tested only for pre-
cipitation fields so far, there is also the possibility that the
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Figure 3. Summer average of the eFSS and dFSS for the selected time steps +2 h (a), +8 h (b), +13 h (c) and +16 h (d). The skillful
threshold 0.5+ f0

2 is highlighted. 20th and 80th percentiles of the datasets leading to the eFSS/dFSS are shaded. For the eFSS, the whole
dataset is composed by single daily values. For the dFSS a total of 190 daily values – one for each couple of ensemble members – have been
processed.

Figure 4. (a) Structure, (b) amplitude and (c) location components of SAL for 24 forecast steps for the ensemble mean. The eSAL (or
spread) has been calculated between all ensemble members.
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Structure and Amplitude components are not well defined
quantities for probabilistic lightning verification. Neverthe-
less, a few comments can be made about the classical SAL
analysis. According to the Structure plot, areas with light-
ning activity are in general too widespread and intense in the
COSMO-D2 EPS compared to the observed activity. When
looking at the Amplitude component for the ensemble mean
(blue lines in Fig. 4), there is clearly an overestimation of
the lightning activity especially during nighttime hours. This
is in accordance with some preliminary statistical checks. In
fact, by comparing the daily distribution of the two datasets
relative to the daily maximum, the overestimation for this
time window becomes evident.

The most interesting part of the SAL analysis is the Lo-
cation component. In this case, the eSAL, which represents
the spread of the system, is slightly lower compared to the
classical SAL for the ensemble mean, representing the error.
This means that the EPS is slightly underestimating the spa-
tial uncertainty, which is consistent with the results from the
eFSS/dFSS analysis. Both the SAL and the eSAL show a sec-
ondary minimum during the main convective window. This
could be related to a more scattered signal when convection
activity is low and a more predictable signal when it is orga-
nized (afternoon). The spread-error relationship is however
slightly better compared to the FSS study. This likely relates
to the fact that the Location component of the SAL is focus-
ing only on the centers of mass of the fields, while letting
the other two components take care of eventual bias in the
magnitude or intensity of the fields. By comparing the two
results, one possible conclusion is that the COSMO-D2 EPS
performs well in terms of skill and spread-error relationship
when it comes to spatial errors and uncertainties for light-
ning activity. Some concerns remain with respect to possible
biases affecting both the overall magnitude of the fields and
the shape/intensity of the single objects. Finally, the analy-
sis of the single components L1 and L2 (not shown here) do
not add much information to the study, with only negligible
differences between the two.

5 Conclusions

Innovative verification methods have been applied to the high
resolution COSMO-D2-EPS LPI in order to analyze the skill
of the system and the ability of the ensemble to forecast the
predictability of lightning activity. For the afternoon hours,
an average skillful scale of 220 km has been determined for
the summer months of 2019, while the EPS would rate the
forecast as useful already at around 110 km. This means
that the EPS is overall slightly underdispersive. In any case,
the eFSS/dFSS comparison shows that the probabilistic ap-
proach can help smoothing specific issues such as the de-
layed triggering of the first convective cells in the model.
The SAL method confirms the lack of spread between the
ensemble members, but it highlights the fact that the sys-

tem is fairly good at localizing the areas with lightning ac-
tivity. Some concerns remain with respect to possible biases
in magnitude and intensity of the forecast.

As this study was just a first attempt at addressing whether
convective-scale ensembles can forecast lightning with any
skill, there are several areas where this analysis can be
developed further. First of all, other model runs such as
the 03:00, 06:00, 09:00 or 12:00 UTC should also be added
to the dataset in order to evaluate the role and importance of
data assimilation in improving the skill during the afternoon
hours, when most of the lightning strikes occur. This would
also decouple the forecast steps from the hour of the day,
leading to a much more significant analysis of the spread-
error relationship as a function of the forecast lead time.

Furthermore, in this study the datasets have been analyzed
on an hourly frequency, but potentially a much more detailed
analysis is possible with the COSMO-D2 fields being avail-
able every 15 min. This might help locating the issue regard-
ing the delayed triggering of the diurnal convective cycle
with a higher temporal precision. However, an increase in
the temporal resolution often leads to lower skill for light-
ning forecasts (Mittermaier et al., 2022a, b). Another aspect
which might be investigated is the different skill and spread-
error relationship between different geographical and topo-
graphical regions. For example, the model performance in
forecasting deep convection in the alpine region might be
considerably better compared to the lowlands in Central Eu-
rope. Other areas that could be investigated include the com-
parison between the LPI and other convective indices (both
based on parcel theory and cloud microphysics) in a high
resolution EPS or the usage of other non-conventional ob-
servational datasets in addition to lightning strikes, such as
satellite pattern recognition applied to convective cells.

Code and data availability. The real time forecast products of
the new ICON-D2 EPS (which has replaced the COSMO-D2 EPS
at the DWD as operational convection-permitting ensemble) are
freely available on the Opendata portal of the German Weather
Service and also include the Lightning Potential Index (https:
//opendata.dwd.de/weather/nwp/icon-d2-eps/; Deutscher Wetterdi-
enst, 2022). The original COSMO-D2 EPS and LINET datasets
for the Summer 2019 used in this work as well as all the Python
scripts are also available upon request by email (Michele Salmi –
a01656041@unet.univie.ac.at).
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