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Abstract. To promote cloud and HPC computing, GRAPEVINE* project objectives include using these tools
along with open data sources to provide a reusable IT service. In this service a predictive model based on Ma-
chine learning (ML) techniques is created with the aim of preventing and controlling grape vine diseases in the
wine cultivation sector. Aside from the predictive ML, meteorological forecasts are crucial input to train the
ML models and on a second step to be used as input for the operational prediction of grapevine diseases. To this
end, the Weather and Research Forecasting model (WRF) has been deployed in CESGA’s HPC infrastructure
to produce medium-range and sub-seasonal forecasts for the targeted pilot areas (Greece and Spain). The data
assimilation component of WRF – WRFDA – has been also introduced for improving the initial conditions of
the WRF model by assimilating observations from weather stations and satellite precipitation products (Inte-
grated Multi-satellitE Retrieval for GPM – IMERG). This methodology for assimilation was developed during
STARGATE∗ project, allowing the testing of the methodology in the operational service of GRAPEVINE. The
operational production of the forecasts is achieved by the cloudify orchestrator on a Kubernetes cluster. The
connections between the Kubernetes cluster and the HPC infrastructure, where the model resides, is achieved
with the croupier plugin of cloudify. Blueprints that encapsule the workflows of the meteorological model and its
dependencies were created. The instances of the blueprints (deployments) were created automatically to produce
operationally weather forecasts and they were made available to the ML models via a THREDDS server. Valu-
able lessons were learned with regards the automation of the process and the coupling with the HPC in terms of
reservations and operational production.

1 Grapevine methodology overview

In the era of big data and cloud computing, a pressing de-
mand has risen for systems and pipelines capable of han-
dling different types of models, data and data formats to
produce meaningful outcomes for the user in an operational
manner. The importance of this goal is highlighted, amongst
others, by the UN Sustainable Development Goals (SDG)
agenda and the European Green transition, focusing on Digi-

tal Ecosystems (DEs) and particularly Digital Twins that pro-
vide flexible and operative frameworks (Nativi et al., 2021).
The framework of GRAPEVINE aligns with the concept of
Digital Twins (DT) of the earth and the initiative Destina-
tion Earth – also known as DestinE. Conceptually, the goal
of Destination Earth is to develop a dynamic, interactive,
multi-dimensional, and data intensive replica of the Earth
(system), which would enable different user groups (public,
scientific, private) to interact with vast amounts of natural
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and socio-economic information. A common infrastructure
that provides access to data, sophisticated computing (includ-
ing high performance computing), software, AI applications,
and analytics is at the core of Destination Earth. Additionally,
this infrastructure supports numerous DTs that replicate var-
ious elements of the Earth system, including weather predic-
tion and climate change, the security of food and water, the
global ocean circulation, the biogeochemistry of the oceans,
and more yet-to-be-defined elements (Nativi et al., 2021). In
GRAPEVINE we followed and demonstrated the intercon-
nected use of cloud and k8s clusters (as was in a prototype of
the DT; Nativi et al., 2021) by creating blueprints to develop
an operational or on-demand service, which can be executed,
combing HCP cloud and AI applications.

Data driven and physic-based models that have differ-
ent types of requirements in computational power and soft-
ware packages can work in a harmonized way. This can be
achieved by delivering tools that combine the computational
power of HPC and the services of cloud computing. For the
latter, the cloud provisions tools that connect to the HPC and
manage the workloads of the models in the HPC while dic-
tating the sequence of the operations for the targeted output.
In the heart of this process lies GRAPEVINE, a project that
elegantly demonstrates how physics-based models such like
numerical weather prediction models can be operated in HCP
centers, by defining blueprints of the processes in a Kuber-
netes cluster’s orchestrator. The produced information is then
accessible to data driven models that inform the user for po-
tential risks of grapevine diseases.

In the work of this paper, particular focus is placed on the
weather forecasting service of Grapevine, creating a work-
flow that combines cloud computing with the services of
HPC. The weather forecasting production aims to deliver
weather forecasts in a timely manner and thus necessitates
considerable computational power - a computational power
that increases for higher spatio-temporal resolutions. Sub-
sequently, it is considered as a traditional HPC application.
Cloud computing represents a paradigm shift in several ar-
eas: corporations are adopting Cloud Computing’s pay-per-
use model instead of constructing in-house datacenters while
dynamic, on-demand, and adaptable infrastructures are re-
placing datacentres (Monteiro et al., 2015). The migration
of traditional HPC application such as the weather forecast-
ing to the cloud is not a straightforward procedure. To gen-
erate templates, running systems must be virtualized, oper-
ating systems must be tuned for the new architecture, and
applications must be adapted to cloud standards (Monteiro et
al., 2015). However, cloud computing offers developers and
users of HPC numerous potential benefits.

These benefits include the dynamic acquisition of comput-
ing and storage resources and the access to scalable services.
On top of this, cloud services can abstract away the under-
lying system and automate deployment and control of sup-
ported software and service, a process that takes weeks to
configure in conventional datacentres (Bunch et al., 2011).

In this context, GRAPEVINE has developed a methodol-
ogy to provide an operational service that uses both cloud
and HPC power and it is – to the authors’ knowledge – a
unique case. The hypothesis of our work is that by facili-
tating the execution of agriculture-related models in cloud
and HPC, we can enable new features and improve the accu-
racy of such models, becoming more useful for this ecosys-
tem. More specific, the developed methodology highlights
the use of HPC, instead of abolishing the HPC with Virtual
Machines on the cloud. The development showcased that de-
spite some challenges found in HPC and CPU hours reser-
vations, the cloud can be used to create blueprints of proce-
dures that are executed in an operational manner in HPCs,
thus providing a pathway to create services on cloud that in-
volve computational demanding tasks in HPCs. Interestingly,
and considering the number of HPCs centers in Europe, this
GRAPEVINE service showcased that a setback regarding the
use of a particular HPC allowed to seamlessly transfer the
service from one HPC center to another with the help of the
methodology based on “blueprints” that reside on the Kuber-
netes cluster.

The Grapevine processing pipeline comprises the HPC in-
frastructure where the models reside, the Kubernetes cluster
that hosts the orchestrator and a platform where the results
are showcased (see Fig. 1). The models include both data
driven and physically based systems. Phenology models de-
scribing the phenology state of grapevines and disease mod-
els forecasting the on-set of diseases like botrytis and black-
rot amongst others are operationally executed as dictated by
the orchestrator (Moshou et al., 2023). The main driver for
the prediction of the phenology state and the on-set of dis-
eases are the prevailing weather conditions at the area of in-
terest. For this reason, a numerical weather prediction model
is deployed to produce weather forecasts at high spatial res-
olutions enclosing vineyards at pilot locations of Aragon in
Spain and Central Macedonia in Greece. The topography of
the selected pilots necessitates forecasts with high spatial res-
olutions of up to 2 km to properly resolve the terrain and the
earth-atmosphere interactions. Considering that the project
has been running operationally the Numerical weather pre-
diction since 2021, the partners have agreed to move to a
6 km spatial resolution weather forecasts for 2022 and on-
wards to reduce computational consumption. In the next sec-
tions the HPC and cloud resources and the methodology to
deploy the model on HPC and run it from the cloud are de-
scribed.

2 High performance computing

CESGA has different computing platforms of different ar-
chitectures to allow the researcher to always choose the ar-
chitecture that best suits their calculation needs. For simu-
lations that require calculation of high performance and su-
percomputing, the FinisTerrae (generic name of the different
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Figure 1. Grapevine high-level architecture.

generations of CESGA’s supercomputers) offers higher per-
formance and a high-performance interconnection network
for parallel work or work that requires the use of GPUs
(Centro de Supercomputation de Galicia, 2022). FinisTer-
rae also allows for simulations that require the handling of
large volumes of data. It is an advanced computer equip-
ment, integrated in the Singular Technical Scientific Facil-
ity (ICTS), Spanish Supercomputing Network (RES). It is a
Bull ATOS bullx equipment distributed in 8 racks or cabinets
and has 320 computer nodes, 7712 cores, 44 544 GB of mem-
ory and 750 000 GB of high-performance storage Lustre. All
processing and computing nodes are interconnected through
a Mellanox Infiniband FDR low latency network. The peak
computing capacity of the equipment is 328 272 Gflops and
the sustained performance obtained in the Linpack test is
213 000 Gflops.

GRAPEVINE project uses FinisTerrae II (and FTII) HPC
system at CESGA to run the weather forecast simulations.
The system has the following configuration nodes, the spec-
ifications of each of those nodes are:

– Node’s Model: R424;

– Node’s Processor Model: Intel® Xeon® E5-2680 v3 E5-
2680v3 12c;

– number of cores per node: 24;

– RAM per node: 128 GB.

The weather forecasting model, empowered by CESGA’s
HPC FinisTerrae, is able to produce high resolution weather
forecasts of up to 7 d and sub-seasonal forecasts of up to
2.5 months. The number of nodes involved in the jobs
run from the weather forecasting model ranges from 4 to
14 nodes depending on the part of the model being executed.
The model is executed twice a day, updating the initial condi-
tions with the most recent atmospheric information. To do so,
jobs are submitted to the software manager of the HCP, the
slurm workload manager (Yoo et al., 2003). The procedure

includes adding SBATCH commands to the scripts which in-
form the slurm manager about the cores needed, the number
of nodes, the allocated time on the cores and when needed
the reservation name. This is the typical way to submit jobs
to the HPC, which in the framework of the GRAPEVINE
project was replaced by the orchestrator, described later.

To configure the job submission needs, scaling experi-
ments were conducted, and the optimal combination of time
and cores needed was selected. These needs come with close
relation to the spatial resolution and geographical extension
of the selected domain. The model configuration included the
telescoping nesting in which a coarser domain of 18 km was
dynamically downscaled to a finer resolution domain of 6 km
enclosing the pilot areas of the project. The weather forecast-
ing model was able to deliver with an hourly output of 7 d
forecast (raw data) and an allocation of 336 cores for 3.5 h.

To provide an operational framework to the weather fore-
casting service, the necessity of reservations to the HPC sys-
tem became apparent. When a job is submitted to the HPC
system, it is not executed immediately but it is assigned a pri-
ority from the slurm workload manager according to internal
rules and based on the availability of nodes/cores in the sys-
tem. The reservations are done after request to the dedicated
HPC department that books the requested number of cores
for a specific amount of time, a date, and a starting time. The
booking procedure comes with a dedicated name of the reser-
vation, assigned to the user of the HPC. This name is added
as an SBATCH command when using the scripts to submit
the jobs or through the blueprints (discussed later) when jobs
are submitted through the orchestrator.

The reservation task needed the seamless cooperation of
the three partners involved: CESGA created a bi-weekly list
of daily reservations as designed by AgroApps and were au-
tomatically updated in the instances of blueprints of the or-
chestrator by ATOS. This requires close monitoring by the
involved partners and is an additional process that needs con-
sideration when planning operational systems with involve-
ment of HPC centres. Another point of caution would be
which jobs will be run under reservation and which not. The
heavy jobs that need a lot of resources are definitely submit-
ted with reservations while light jobs are sent in the system’s
queue. For example, some input observational data that can
be downloaded via ftp do not need to have a reservation as
they are not computationally heavy jobs. This configuration
spares booking for a long time the HPC but requires extra
blueprints to be submitted. As an example, the weather fore-
casting model requires input from global forecasting mod-
els (see Sect. 4) and these data are available daily early in
the morning. For this process we submit a blueprint with the
sole purpose to download the data with no reservation. Later
in the morning some necessary observational data are made
available, and this is when we submit a second blueprint with
a reservation to execute the model.

As will be discussed in the Weather Forecasting Architec-
ture Section, the weather forecasting modelling framework
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has a modularity, meaning dedicated scripts carry out sub-
tasks. Each sub-task may depend on a previous job to fin-
ish and takes a different number of resources from the HPC
to complete the job. When designing the submission process
and the reservations in such a modular framework, a trade-off
must be considered between the time of the HPC allocation
and number of reservations. For example, the pre-processing
part of the forecasting model takes 24 cores for fifteen min-
utes and when this job finishes, the heavy part with the 336
cores that performs the weather forecasting, starts. The ques-
tion in this situation is how to handle reservations when many
such small jobs precede the heavy job. One way would be to
create a blueprint for each sub-task and a dedicated reserva-
tion name. This solution raises three problems: firstly, it adds
the complexity of creating multiple reservation names; sec-
ondly, creating several reservations at the same time does not
ensure that they are done on the same node; and thirdly, the
utility of the orchestrator to define dependencies within one
blueprint with many jobs is lost. The latter translates to sub-
mitting multiple instances of the blueprints from the orches-
trator and makes monitoring of the processes harder. Another
way to deal with this is to create one reservation with one
name and occupy the maximum number of cores the heaviest
job needs and add all smaller jobs to the same reservation. Of
course, this means that, while the smaller jobs are executed, a
great number of reserved cores will remain idle and unreach-
able to other HPC users. If the time the smaller jobs take is
small enough this solution is acceptable, but a limit should
be placed in order not to waste valuable core-hours from the
HPC community.

Another question that had to be addressed was the ac-
counting of HPC hours inside and outside reservations:

– if no reservation is made the account of HPC hours is
similar to this formula:

HPC hours=duration of the job’s run · number

of nodes · number of cores per node; (1)

– if the user does not delete the reservation once the job
ends the account of HPC hours is similar to this formula:

HPC hours=duration requested · number of nodes

requested · number of cores per node
requested; (2)

– if the user deletes the reservation once the job ends the
account is similar to this formula:

HPC hours=time since the reservation starts to the

deletion of the reservation · number
of nodes requested · number of cores
per node requested. (3)

This means that the user must delete the reservation once the
jobs end or the full amount of resources requested will be
accounted for, even if they are not used, as the resources will
not be available to other users. It is one of the tasks of the
Orchestrator (or the user) to delete the reservation once the
jobs end so as not to waste resources. In the following section
a description of the Kubernetes cluster and the components
utilised to communicate with the HPC, where the models and
scripts reside, is detailed.

3 Orchestrator in Kubernetes cluster

The orchestrator is a key component in the GRAPEVINE in-
frastructure that is responsible for the execution of computa-
tional workflows on the available resources, namely Cloud
VM resources provided by the GRAPEVINE K8S clus-
ter and HPC resources provided by CESGA’s HPC system
FinisTerrae II. After CESGA’s migration to FinisTeraeIII,
Grapevine tool was successfully re-deployed also in the new
infrastructure. The Kubernetes (K8s) cluster was deployed
on CESGA premises to run the Orchestrator and consists of
8 virtual machines dedicated to the cluster configured as fol-
lows:

– 3 master nodes with 4 VCPU, 8 GB RAM, 80 GB of
disk;

– 5 worker nodes with 8 VCPU, 16 GB RAM, 80 GB of
disk.

The orchestrator is crucial for the execution of all the models
in the project on these resources. In that sense, the orchestra-
tion optimises the execution of the workflows by modulariz-
ing them and dividing them into sizeable chunks that can be
run as jobs on back-end nodes on CESGA. The added value
of using the orchestrator is that the dependencies between
jobs can be easily specified, such that different parts of the
workflow can be executed as jobs running in parallel or se-
quentially. The orchestrator is a specific plugin for Cloudify
(Cloudify, 2022) that enables the usage of HPC, supporting
scheduled execution of the workflows at a specific time, such
that the GRAPEVINE infrastructure will be able to always
show results generated on the latest available raw data. Ad-
ditionally, thanks to its connectors for Slurm, PBS Pro and
Torque, it provides an abstraction layer that makes easier to
change the location to execute the jobs (abstracting the com-
plexity of HPC systems to the user). Everything is secured by
using Keycloak for users management and Vault for users’
credentials storage (so the orchestrator can take credentials
directly, not requiring users to provide them for each exe-
cution). On top of these features, the orchestrator supports
data management as it includes a built-in data mover com-
ponent based on gridFTP (and to access data from ECMWF,
if required). This component allows for secure and fast data
transfer within different infrastructure components deployed
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Figure 2. Weather forecasting components (in green). Group of components that belong to the same sub-process are under the same grey
box and the sub-process can be seen as run_[name_of_subproces]. With punctuated blue lines, numbered 1, 2 and 3, are the blueprints for
the orchestrator. Each blueprint encloses a number of components of the model.

in CESGA, such as the shared hard drive, where the com-
putational results are stored, and the THREDDS Web Data
Server (Unidata THREDDS Data Server, 2022), where the
results are regularly transferred so they can be queried by
the Front-end/Visor of the project. Moreover, the Orchestra-
tor has been integrated with the monitoring component based
on Prometheus (Prometheus, 2022). We have implemented
a new exporter for the Prometheus collector that is able to
retrieve metrics from different schedulers (mainly, PBS Pro
and Slurm). Such exporter makes use of different features
of the schedulers commands in order to collect information
about the jobs and the queues (job execution time, job queue
time, job exit status, number of CPUs used by the job, nodes
available in the partitions, status of the queues, etc.). The Or-
chestrator can also send metrics to Prometheus through its
pushgateway interface, if required (e.g. when starting and fin-
ishing jobs).

The Orchestrator has been following an integration pro-
cess with respect to two main elements: the meteorological
model and the Data Scientific ML Engine. In the case of the
meteorological model, such a model is seen as an application
to run through the Orchestrator. Therefore, first the pipeline
of the meteorological model was split into modular scripts
and afterwards blueprints were created that define the rela-
tionship between the tasks to be executed on the HPC. The
blueprints were created based on the TOSCA language, to
which some specific extensions were defined, enabling the
usage of HPC. Such extensions are totally in line with the
standard, defining a few new types of tasks (for jobs, data
sources and data transfer protocols) and exploiting the rela-

tionships that can be defined for the tasks (so we may force
input data movement before running a job, for instance). In
Fig. 2, the components of the weather forecasting framework
are grouped to make sub-processes that belong to the same
blueprint.

This workflow, then, is installed in the Orchestrator and
instantiated by providing the required inputs. The commu-
nication with the HPC is achieved via the Croupier plugin
of Cloudify for HPC and batch job orchestration (Git Hub
croupier, 2022). The orchestrator interface allows an easy
monitoring process for the admin of the Grapevine tool as
it provides a web access where all the jobs and their status
are displayed. Such interface is complemented with Grafana
dashboards connected to the Prometheus, with information
about the infrastructure and the jobs. This feature allows the
admin to surpass the connection to the HPC infrastructure
(requiring VPN access) and simply submit again a new job
from the web interface in case a job fails. This applies to
blueprints that do not have a reservation name defined. Mean-
ing that in case of failure, a set of identical to the original
blueprints should be set but without reservation information.

4 Weather forecasting architecture

The architecture of the weather forecasting system is illus-
trated in Fig. 3. The core system is based on the Weather
and Research Forecasting system (WRF) (Skamarock et al.,
2019). WRF is designed for both operational and atmo-
spheric research applications. WRF modelling framework
supports two dynamical cores, a data assimilation system,
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Figure 3. Weather forecasting model architectural design.

and a software architecture supporting parallel computation
and system extensibility. Both the weather forecasting model
WRF and its assimilation component (WRFDA) have been
deployed in CESGA’s HPC FinisTerrae. The assimilation
model, as can be seen in Fig. 3. is fed with observational
data and creates the initial conditions for the forecasting
model by considering both observations and the background
model state. The WRF dynamical core is then fed along with
the new initial conditions the boundary conditions from the
Global Forecasting System (GFS) (NCEI, 2022) and inte-
grates in time the atmospheric state, producing the medium
range forecasts. The hourly output is then post-processed in a
common meteorological format (GRIB format). At the final
stage, meteorological fields (temperature, wind speed, rela-
tive humidity, and precipitation) as forecasted by the model
are compared with the reanalysis data ERA5 (Hersbach et al.,
2020) from the Copernicus Data Store (CDS) (CDS, 2022)
and scores like Mean Absolute Error and Root Mean Square
error are produced.

The deployment of the framework is based on bash and
python scripts, each responsible for a sub-task. The scripts
reside in dedicated paths in the HPC and are executed by the
orchestrator. The scripts can be split into three categories:

1. download data scripts;

2. data pre-processing scripts (for observations to be fed
into the models);

3. model execution scripts.

Satellite, weather station data and GFS data are downloaded
via FTP with simple bash scripts and erased after usage. The
reanalysis data are downloaded via the cds api and dedicated
python scripts to download the data. The pre-processing
scripts include fortran compiled code to read netCDF and
HFD5 data and convert them to a suitable WRFDA format
(little-r). For weather stations data conversion, the madis-to-
little-r utility (WRFDA Users Page, 2022) is applied. For the
satellite data conversion, a dedicated fortran compiled code
was created that cuts the information to the domain of interest
and converts the rain rate to 6 h accumulation and writes the
output into the little-r format. The model execution scripts in-
clude the data handling, moving appropriate executable files

from residing paths in HPC to the working folders of the
HPC system. Once the submitted jobs are finished, the pro-
duced data are moved to a shared folder to all partners al-
lowing them to use these data for training and forecasting
purposes. The complexity of the meteorological output for-
mat created the need for an additional step, the THREDDS
server instance. The THREDDS server provides catalogue,
metadata, and data access services for scientific data, allow-
ing thus an easy access to partners needing meteorological
information for their models.

The described workflow has in its core compiled code that
has performance relationships to the selected compiler (for
this work intel compiler) and selected physics packages. To
support portability, containerized environments are the opti-
mal solution. HPC systems do support containerization tech-
nologies like Docker and Singularity but often these come
with some limitations. These include restrictions of building
your own image due to permission issues on the HPC and
compiler compatibility issues between singularity sand boxes
and HPC installed compilers. For the Grapevine project a
Singularity image of the verification model was set up by the
application department of CESGA. The availability of an of-
ficial image of the verification model in Docker Hub (Docker
Hub, 2022) allowed the easy transfer to a singularity sandbox
effortlessly called via the module system of the HPC (mod-
ule load configurations). For the meteorological model, no
official image exists as there are many user-related options to
the compilation configuration. This added to the complexity
of creating first the image on the HPC and then translating
it as a singularity sandbox. When one already has set the
optimal configuration for the model (at compilation stage),
it is best practice to ensure portability by creating singular-
ity recipes or translating Docker images to Singularity sand
boxes. Caution and close work with the HPC application de-
partment will assure that the compiler issues (the sandbox
must have the same compiler type and version as the ones
from the HPC system) will pose no issue at execution time.

5 Conclusions and outlook

To fulfil GRAPEVINE’s objectives, the involved partners
have been closely working to combine research (Numerical
Weather prediction and ML for agricultural sector), cloud in-
frastructure (K8s cluster) and high-performance computing.
Numerical weather prediction is a traditional HPC applica-
tion that demands large amounts of computational resources.
In the context of an operational service, that includes physics
and data driven models, cloud and HPC can be fruitfully
combined as showcased in GRAPEVINE project. Although
one could use cloud computing to run a weather prediction
model, depending on the resolution and time to execute the
model, one would need to handle and set-up large number of
resources on the cloud.
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HPC centres offer these computational resources and li-
braries to easily perform such tasks. Weather forecasting can
be added to an operational or on-demand service, demon-
strated for the first time to our knowledge in Grapevine, by
utilising both HCP and the cloud. Cloud resources are acting
as the brain of the service, that dictates what is to be run and
when taking into account the dependencies of the involved
jobs. Such a service though comes with limitations, includ-
ing the need to create computing reservations into the HCP
system, which has challenges and is a possible area of work
into automating the processes.

An area of interest lies also in portability of the service.
Although the cloud easily connects to different HPC cen-
tres, the code has to be present on those clusters to run the
model. The service could be enhanced by working with sin-
gularity containers (a containerised application for HPC that
does not come with the limitations of docker containers re-
garding root access), allowing easy transfer of the weather
forecasting from one HPC centre to another. Simultaneously
the same blueprints residing on the cloud could be used to run
the weather service to different HPC centres (EGI, 2022).

Finally, the framework of GRAPEVINE aligns with the
concept of Digital Twins (DT) of the earth and the initiative
Destination Earth – also known as DestinE. In GRAPEVINE
we followed and demonstrated how using the cloud and the
k8s clusters (as was in a prototype of the DT; Nativi et
al., 2021) and by creating blueprints an operational or on-
demand service can be executed, combing HCP, cloud, and
AI applications. The processes defined in GRAPEVINE have
facilitated a straightforward data management and generation
that can help to improve the involved models by creating op-
erational or on demand crucial data to train models. Subse-
quently we believe the lessons we learned from developing
such framework are of importance to be sheared with the sci-
entific community.

Data availability. The blueprints can be found in the project’s
git lab repository: https://gitlab.com/grapevine-project/a3_
climate_model_workflow (Grapevine’s GitLab repository,
2023). The produced meteorological data, available through
THREDDS server can be found here: http://193.144.42.171:
8080/thredds/catalog/agroapps_folder/catalog.html (Grapevine’s
THREDDS server, 2023). Medium range folder data format:
YYYY-MM-DD, under folders named UPP and Sub-Seasonal data
folder format: S_YYYY_MM_DD.
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