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Abstract. We report on an approach to distributed wind power forecasting, which supports wind energy inte-
gration in power grid operation during exceptional and critical situations. Forecasts are generated on-site the
wind power plant (WPP) in order to provide blackout-robust data transmission directly from the WPP to the
grid operator. An adaptively trained forecasting model uses locally available sensor data to predict the available
active power (AAP) signal in a probabilistic fashion. A forecast generated off-site based on numerical weather
prediction (NWP) is deposited and combined on-site the WPP with the locally generated forecast. We evaluate
the performance of the method in a case study and find that the locally generated forecast significantly improves
forecast reliability for a short-term horizon, which is highly relevant for enabling power reserve provision from
WPPs.

1 Introduction

The volatility of wind power generation poses a challenge
to grid operators when integrating it into the power grid.
Obtaining grid-supporting services from wind power plants
(WPPs) requires a reliable knowledge about the available ac-
tive power (AAP) signal. Accurate forecasts, especially the
nowcasting time horizon, hence play a crucial role, as they
enable and allow for a more accurate planning of ancillary
services like frequency containment reserve (FCR) and fre-
quency restoration reserve (FRR) provision (Gomes et al.,
2020). Probabilistic forecasts play an important role, since
they allow an estimation of the uncertainty and reliability of
the prediction (Späth et al., 2015) and they have the potential
to improve human decision making, e.g, by taking less risky
decisions (Möhrlen et al., 2022). One can predict the mini-
mal AAP with certain levels of reliability, depending on the
chosen percentile. A conservative choice (small percentile)
of the power setpoint of a WPP is more reliable, whereas a
more progressive choice (large percentile) predicts more con-
trol reserve with reduced reliablity. A useful tool for evalu-
ation and the choice of an adequate percentile are reliability
lines, i.e. is the ratio of the observed frequency of the AAP

being larger than a forecast quantile qα and the predicted fre-
quency 1−α, which reads

r (α)=
p(Pobs ≥ qα)

1−α
. (1)

To ensure blackout-robust availability of forecast data to the
grid operator we suggest a two-fold setup: From a central
computing server a probabilistic power forecast (hereafter
called off-site component poff) is distributed to the WPP. This
forecast is derived from 7 different regional and global NWP
models from different national and international weather ser-
vices – each model serves as one ensemble member. On-site,
an adaptive machine learning based forecasting system im-
proves the NWP forecast ensemble in the nowcasting time
horizon using data from local sensors (hereafter called on-
site component pon; see Sect. 2). The NWP forecast is cal-
culated for single turbine locations based on various meteo-
rological variables, where turbine-specific power curves are
used to transfer wind speed to power. Each model is bias
corrected with turbine specific observations of mainly wind
and power data leading to typical error metrics of from 1 to
2 m s−1 RMSE for wind speed. In this study we used the most
recent NWP data available. Experiments with a time lag of
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Figure 1. The process chain of the local forecasting model. Groups
of arrows represent ensembles of scenarios.

Figure 2. Root mean squared error (nRMSE) over leadtime, nor-
malized to the installed power. Shown are on- and off-site compo-
nent (each as stand-alone) as well as the final combination of both
components.

up to 24 h showed a minor impact on the presented findings
and are not reported here. Based on these data we then pro-
duce an hourly forecast of the different curtailments by using
specific information of the turbine control strategy. We con-
sider external factors (storm and icing shut down), regulatory
curtailments (bat and bird protection, shadow and nighttime
curtailment) and other losses (maintenance shut down, cable
losses and others) to compile a forecast of the actual AAP
for each turbine, which can then readily be aggregated, e.g.
to WPP level.

This setup enables a blackout-robust forecast delivery via
the WPP telecontrol interface to the grid operator, which is
available as long as the WPP itself is available. The blackout-
robust forecast transmission in combination with a special
control mode of the WPP designed to support the grid op-
erator in critical situations with FCR and an adjustable fre-
quency setpoint has been validated in a field testing (Holicki
et al., 2022; Abels et al., 2023).

2 Local model

Wind speed time series exhibit non-stationarity on short time
scales already. Forecasting wind power generation therefore
requires adaptive models, which are continuously improved
upon sequentially arriving new data. The local model trains
on a sliding window with a width of 24 h of local sensor
data: wind speed from the nacelle anemometer, tempera-
ture at hub height and the technically available active power
(AAP). The wind direction is estimated from the nacelle az-
imuth angle, which is corrected to account for misalignments
among the turbines. Wind power generation can be viewed as

a stochastic process. Following this perspective we generate
data-based forecast ensembles by treating the input variables
for the forecast models as stochastic variables, that are aggre-
gated over 15 min bins. The input data scenarios (observation
scenarios) are randomized using the variance and the mean of
the time series in each bin. The ensemble spread hence rep-
resents the fluctuation of the data w.r.t. the time resolution.
Figure 1 shows a sketch of this process.

The on-site component of the forecast is generated on
hardware available in the WPP. It is therefore necessary to
use only little computational resources (the set-up is designed
to run on a Raspberry Pi type hardware). We use two very
simple regression methods for the short-term forecast: The
ensemble persistence model continues the distribution of the
latest observations, modified with a lag-dependent weight
factor. The probability density function (PDF) of the pre-
dicted variable y is constructed like

p (t + dt,y)∝
∫ t

−∞

ds p (s,y)e−
|t−s|/ξ , (2)

where ξ is the temporal correlation length of the time series,
that is obtained from a fit to past observations. Furthermore
we use gradient boosted tree regression following an interval
ansatz as described in Schicker et al. (2017) and Papazek et
al. (2020).

The regressor outputs are then combined via genetic op-
timization w.r.t. their performances in earlier forecast cycles
(“genetic metaforecast”). To this end an archive with 24 h of
past forecasts and corresponding observation data is contin-
uously updated. The combination weights are lead-time de-
pendent such that the combined predictor reads

ymeta (t)=
∑

m∈{regressors]
wm (t − t0)ym (t) , (3)

where t0 is the first time stamp in the forecast. The weight
functions wm(t − t0) are normalized polynomials, whose pa-
rameters are subject to the genetic optimization procedure
w.r.t. to the root mean square error (RMSE). This evolution
is a Markov chain, which is tuned to not produce the optimal
solution in each iteration. The solution candidates sluggishly
follow the local minima of the cost function, and the termi-
nation criterion depends on the local density of agents in so-
lution space. This way the weight evolution is robust against
fluctuations and outliers in the data.

The forecast ensemble generated on-site pon (t,y) is then
combined with the off-site component poff(t,y) like

p (t,y)= (f (t) pon (t,y))∗ ((1− f (t)) poff (t,y)) , (4)

where f (t)∝ e−t/γ is a lead-time dependent relaxation func-
tion, that smoothly connects the two components. The com-
bined ensemble is then calibrated using Ensemble Copula
Coupling, as in Späth et al. (2015).
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Figure 3. (a) Reliability lines for different forecast horizons (1/2, 1, 2 h). The x-axis of the plots shows the prediction quantile and the
y-axis the relative frequency with which the actual AAP is below or equal the respective prediction quantile. The diagonal represents the
ideal reliability. (b) The mean slopes of the reliability lines over lead time.

3 Performance evaluation

As a case study, the forecasting system was subjected to a
long-term test for a single WPP with 22 turbines and a total
installed power of 51.9 MW over a period from June to De-
cember 2022. We find that, depending on the forecast hori-
zon, the availability of up-to-date measurement data has a
major impact on the forecast quality. Compared to the off-
site generated forecast, these data lead to a significant im-
provement in a time horizon of up to 2 h, whereas for fore-
cast horizons larger than one hour, the consideration of the
off-site component improves compared to the on-site com-
ponent alone (see Fig. 2). The relevant time-horizon depends
on the actual use case at the grid operators control centre and
in case of a grid restoration process, this includes the hori-
zons of less than one hour for taking actions to a few hours
for planning purposes.

In the left panel of Fig. 3 the reliability lines of the forecast
of the minimal AAP at lead times 1/2, 1 and 2 h are shown.
The diagonal indicates ideal reliability. In order to assess the
average reliability of a prediction, the mean slope of the relia-
bility line is determined from a fit. In the right panel of Fig. 3
these mean slopes of the reliability lines are plotted over the
forecast lead time. For lead times up to 2 h the reliability is
very high and then drops, where the off-site component be-
comes dominant in the forecast. We conjecture, that the on-
site component strongly improves upon forecast reliability
for lead times where observation data has the largest impact.
The improvement in forecast quality due to this forecast set-
up occurs exactly in the time window that has the greatest
relevance for short term decision making in grid operation,
e.g. during exceptional or critical situations.

4 Conclusion and outlook

In this article we have described a distributed power fore-
casting procedure for short time horizons (nowcast) of the

first few hours that consists of an off-site component (from
a central computing server) and an on-site component (to be
generated at the WPP). This setup provides the grid operator
with valuable information about the AAP and hence enables
the provision of power reserve from WPPs. Data delivery di-
rectly via the WPPs telecontrol interface ensures blackout-
robust forecast transmission. To our knowledge, it is the first
time such a forecasting system has been designed and tested
that allows, also in case of a wide-spread blackout, to com-
bine NWP forecast data with actual sensor data and to de-
liver the forecast to the grid operators control centre to sup-
port grid operation. Furthermore, the incorporation of most
recent observation data improves the forecast quality and en-
sures a high level of reliability of the predicted AAP signal.
From our point of view, a research entity could consider fur-
ther research building on the results of our case study, e.g. by
comparing different forecasting methods or by investigating
whether the on-site improvements to the power forecast de-
pend on parameters such as location (wind farm size, climate
zone, terrain complexity, height above ground, . . .) or season
or time-of-day, to name just a few possible parameters.
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