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Abstract. In this work, we present the most recent updates in the E-OBS gridded data set for daily mean
wind speed over Europe. The data set is provided as an ensemble of 20 equally likely realisations. The main
improvements of this data set are the use of forward selection linear regression for the monthly background field,
as well as a method to ensure the reliability of the ensemble dispersion. In addition, we make a preliminary study
into possible causes of the observed terrestrial wind stilling effect, such as local changes in surface roughness

length.

1 Introduction

Providing gridded climate data sets is part of climate data
services. Gridded climate data sets are popular products in
climate data services because of their ease in handling and
their ability to homogeneously cover the complete domain.
Such gridded data sets can be exploited in studies into cli-
mate change mitigation and adaptation. For Europe, E-OBS
provides a gridded data set for a family of variables (van den
Besselaar et al., 2011; Cornes et al., 2018); a recent addi-
tion to the E-OBS family is the present gridded data set for
daily mean wind speed (de Baar et al., 2023). The E-OBS in-
situ based gridded data set is part of the Copernicus Climate
Change Services and is based on a large number of European
stations, mostly from National Meteorological and Hydro-
logical Services. Currently, the variables mean temperature,
minimum temperature, maximum temperature, precipitation
amount, sea level pressure, surface shortwave downwelling
radiation, relative humidity and wind speed can be down-
loaded from https://cds.climate.copernicus.eu/ (last access:
14 August 2023) or from https://surfobs.climate.copernicus.
eu/ (last access: 14 August 2023).

Published by Copernicus Publications.

2 Data

For this gridded data set, validated in situ station data for
h =10 m wind speed is used which is supplied by the Euro-
pean National Meteorological Services (NMHSs) and other
data holding institutes to the European Climate Assess-
ment & Dataset (ECA&D) (Klein Tank et al., 2002; Klok and
Klein Tank, 2009; ECA&D Team, 2012). For the areas in Eu-
rope where these data are missing, we use the in situ daily
mean wind speed compiled by the Global Summary Of the
Day (GSOD) (Smith et al., 2011).

Inspired by Brinckmann et al. (2016), we use a set of co-
variates as predictors for the daily mean wind speed: (1) lati-
tude and longitude coordinates (from the ECA&D geograph-
ical extent); (2) multi-year ERAS monthly average 800 hPa
wind speed (Hersbach et al., 2020); (3) terrain altitude, slope
and positioning index (from USGS GTOPO30); (4) distance
to coast; and (5) terrain roughness length (obtained from
Copernicus Climate Data Store). Because wind speed is a
spatially high-resolution variable, we have maintained the
spatial representation of the covariates and only used piece-
wise linear downsampling to match the 0.1° x 0.1° E-OBS
grid resolution.
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Figure 1. Example E-OBS grid for daily mean wind speed, showing the passing of storm “Kyrill” (2007) over Europe. The subplots show
(a—c) ensemble mean and (d—f) ensemble standard deviation for 16-18 January 2007.

3 Methodology

A detailed description of the methodology is provided in
de Baar et al. (2023), here we provide a short description.
We consider the log-transformed daily mean wind speed. Our
procedure is to first compute the monthly mean station val-
ues, and then exploit the covariates to learn a background
field for each year and month. For the background field we
allow for higher-order terms and interaction terms of the co-
variates — as an improvement over more standard methods.
Because such a model contains many potential basis func-
tions and coefficients and is therefore susceptible to over-
fitting, we use forward selection linear regression (James et
al., 2013) to select the most important basis function. Instead
of using the root mean squared (rms) residual as a selec-
tion criterion, we use the 10-fold cross-validation rms error
(James et al., 2013), which is a further safe-guard against
over-fitting of the monthly background field.

After finding the background fields for each year and
month, we use gaussian process regression (Wikle and
Berliner, 2007) to regress the daily station anomalies. We
use an exponentially decaying covariance function, with a
relative measurement uncertainty level (“nugget”) of 1 %.
We use a maximum likelihood estimate to tune the corre-
lation length of the covariance function, and use a search
range (i.e. mask) of 150km to the nearest station. The grid-
ded anomaly is then added to the backround grid.

We provide the gridded data set as an ensemble of
20 equally likely realisations as a means to quantify the un-
certainty. The initial ensemble is created through random
bootstrapping (James et al., 2013) of the monthly background
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grid. This implies that each ensemble member of the back-
ground grid can have different basis functions and coeffi-
cients. Then, we make another improvement by applying the
newly developed Ensemble Dispersion Improvement auto-
Tune (EDIT) to adjust the ensemble spread during post-
processing to reflect realistic uncertainty levels in the data
set (de Baar et al., 2022, 2023).

4 Results and discussion

Figure 1 illustrates the E-OBS gridded data set for daily mean
wind speed, for storm “Kyrill” (2007) passing over Europe.
In Fig. 1, the top row shows the ensemble mean, while the
bottom row shows the ensemble standard deviation. It can be
seen that the uncertainty is larger in areas with high mean
wind speeds, areas with low station density (like Eastern Eu-
rope) and areas with complicated topography (like the coast
of Norway).

4.1 |Initial comparison between E-OBS and ERA5-Land

Figure 2 shows a comparison of the ensemble mean E-
OBS grid and the daily mean ERAS-Land (Mufioz-Sabater
et al., 2021) grid during storm “Karim” (2021). It should be
noted that ERAS-Land is not assimilated for wind speed, al-
though wind speed does enter in an indirect way because
ERAS5-Land is forced by the atmospheric component of
ERAS which was assimilated by information from boundary
layer, e.g., ground-based wind profile or air balloon (Mufioz-
Sabater et al., 2021). Although the general features are quite
similar, we note that E-OBS shows more detail (i.e. less
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Figure 2. Comparison of E-OBS and ERA5-Land grids for daily mean wind speed, showing the passing of storm “Karim” (2021) over
Europe. The subplots show (a—c) E-OBS and (d—f) ERAS5-Land for 18—-20-22 February 2021. The ERAS5-Land data for creating the bottom
row figures was downloaded from the Copernicus Climate Change Service (C3S) Climate Data Store (Hersbach et al., 2020; Mufioz-Sabater

etal., 2021).

smoothness) than ERAS5-Land. Also, we see some differ-
ences along the coast of Norway and of Portugal. A more
detailed comparison between E-OBS and ERAS5-Land is pro-
vided in de Baar et al. (2023), which confirms that E-OBS
preserve the extremes in wind speed a bit better and gener-
ally shows more structure in the wind field.

4.2 Towards understanding terrestrial wind stilling

The new E-OBS daily mean wind speed gridded dataset over
Europe might be helpful to better understand an interesting
and elusive phenomenon: terrestrial wind stilling. According
to different studies, the yearly mean wind speed over land
has seen a downward trend, in particular in the period 1980—
2010 (e.g. Vautard et al., 2010). We extracted the daily mean
wind speed during the selected period to better explore this
hypothesis. Figure 3a illustrates the reduction in yearly mean
wind speed spatially averaged over the area covered by E-
OBS, which would be in line with what previous research
has identified. However, when this one-dimensional trend is
unraveled to the geographic space, we can find some spa-
tial patterns that might not conform with previous findings.
Figure 3b shows that the trend depends very much on the lo-
cation with the strongest decreases in wind speed over Swe-
den. Recently, this decrease in wind speed over Sweden was
also discussed in Minola et al. (2023), and change of surface
roughness was mentioned as one of the possible causes.

In order to better understand the cause of this wind still-
ing effect, we use forward selection linear regression (James
et al., 2013) to learn the local wind stilling trend shown in
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Fig. 3b as a function of local covariates. The resulting model
is illustrated in Fig. 3c, where the basis functions (vertical
axis) have been ordered from high to low by magnitude of
their effect. In the top panel of Fig. 3c we show the basis
functions, where the color indicates the power of each basis
function during multiplication: open circle indicates power
zero, orange circle indicates power one and purple indicates
power two. For example, basis function “2” is linear in to-
pographic position index (TPI), while basis function “3” is
a constant. A basis function with multiple circles indicates
an interaction term. In the bottom panel, we show the corre-
sponding coefficients. We observe an important effect from
the local trend in the logarithm of the surface roughness
length suggesting land-use changes to drive wind stilling.
However, the indicated 2 value is low, indicating that the
picture of terrestrial wind stilling is probably more complex
and involves many significant terms. Some of these terms
might be even higher-order terms or interactions or covari-
ates that were not included in this study. Further investigation
is taken up, for example, by Luu et al. (2023).

5 Conclusions

We have presented a new E-OBS gridded data set for daily
mean wind speed. The main improvements are the use of for-
ward selection linear regression to fit a covariate-based back-
ground field, as well as EDIT to ensure reliable ensemble
dispersion. The study of the terrestrial wind stilling effect
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Figure 3. Illustration of the wind stilling effect, showing (a) the surface-averaged yearly mean wind speed over Europe, with a slope of
~ —0.038 £0.009 ms ! per decade, (b) the spatially-smoothed local trend in yearly mean wind speed over the full period and (c) forward
selection linear regression based on several normalised predictors (lon: longitude, lat: latitude, alt: log altitude, slope: log abs terrain slope,
tpi: log abs terrain position index, d2c: sqrt distance to coast, slopeLR: multi-year trend in terrain surface roughness length, slopeL.og10LR:
multi-year trend in log terrain surface roughness length. In (c¢), the top image illustrates the basis functions, with orange indicating a first-order
contribution and purple indicating a second-order contribution; while the bottom image indicates the respective weights (r ~0.26).

provides some initial results, however, more research is re-
quired.

Code and data availability. The R scripts for E-OBS wind
are available from  https://doi.org/10.5281/zenodo.8189422
(jdebaar, 2023). The gridded data is available from
https://doi.org/10.24381/cds.151d3ec6 under the tab “Down-
load data”, followed by selection “Wind speed” (Copernicus
Climate Change Service, Climate Data Store, 2020).
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