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Abstract. Ensemble forecasting is widely recognised as a more powerful and informative approach than de-
terministic forecasting, especially for anticipating high-impact events and supporting decisions under uncertain
weather evolution. However, many end-users still struggle to interpret probabilistic forecasts and apply them in
operational contexts. Misunderstandings, improper usage, miscommunication, and/or inappropriate design can
lead to suboptimal or delayed decisions. In response, Météo-France has developed tools that aim to better adapt
ensemble forecast information to the needs of different users. This article presents two prototype applications de-
signed in collaboration with stakeholders. The first supports heat stress events management during the Paris 2024
Olympic and Paralympic Games, based on the WBGT (Wet Bulb Globe Temperature) index. The second focuses
on late frost affecting vineyards during spring, with regard to mitigation measures and financial cost/loss optimi-
sation. In both cases, ensemble forecasts were used to generate impact-oriented products to enhance operational
decision-making procedures. The tools were evaluated through retrospective testing and end-user feedback. The
results suggest that probabilistic forecasts are helpful when adapted to specific contexts. They can provide earlier
and more confident decisions, even for users without meteorological expertise. These tools are not intended to
replace expert assessment, but rather to clarify when action may be needed. Generalising such approaches could
help extend the benefits of ensemble forecasting for sectors in which its potential remains underused.

1 Introduction

The initial ensemble prediction system (EPS) was devel-
oped in 1992 by the European Centre for Medium-Range
Weather Forecasts (ECMWF) (Palmer et al., 1993; Molteni
et al., 1996). Subsequently, several national meteorological
services initiated the production of ensemble forecasts (Toth
and Kalnay, 1993; Bowler et al., 2008; Descamps et al.,
2015). Over the years, extensive research on initial condition
perturbation and model physics has significantly enhanced
the accuracy of operational EPSs. These developments have
led to more reliable forecasts in terms of statistical repre-
sentation (Palmer, 2019). Overall, probabilistic forecasting
has brought fundamental progress over deterministic fore-
casting or “poor man’s ensemble” (Ebert, 2001) by provid-

ing a more realistic representation of uncertainty. A poor
man’s ensemble is a set of independent numerical weather
prediction model forecasts from several operational centres.
Unlike deterministic forecasts, which present a single pre-
dicted outcome, probabilistic forecasting generates a range
of possible scenarios with different likelihoods (Gneiting and
Raftery, 2005). Probabilistic forecasting from the ensemble
distribution then provides a greater ability to assess the oc-
currence of extreme events. In fact, rare events are associated
with a lower probability of occurrence, which, in particular,
for long-range forecasts, is difficult to accurately estimate
(Leutbecher and Palmer, 2008; Buizza and Hollingsworth,
2002). This shift from a binary to a probabilistic perspective
in weather forecasting applications is crucial, as it enables
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users to refine their assessment of risks of intense events
rather than a simple yes-or-no prediction. Decision makers
can plan their strategies according to the probability levels
from the ensemble forecast instead of a single threshold-
based prediction (Palmer, 2002). Furthermore, probabilistic
forecasts can be compared with historical data, helping to
assess their reliability and refine their accuracy (Gneiting
et al., 2005; Hamill et al., 2004). This systematic approach
enhances confidence in predictions. The economic benefits
derived from the probabilistic forecast consistently exceed
those based on deterministic forecasts (Richardson, 2000).
Probabilistic forecasting not only provides the best estimate
of future conditions, but also alternative scenarios, making it
easier to optimise risk-based processes in low-predictability
situations (Zhu et al., 2002; LeClerc and Joslyn, 2015).

Despite its clear advantages, simplistic probabilistic fore-
casting is still hardly interpretable by end-users. Indeed, re-
search shows that comprehension varies significantly de-
pending on the context, available time, relevance of the fore-
cast to the decision at stake, and how the information is pre-
sented (Joslyn and Savelli, 2010; Morss et al., 2010; Dok-
sæter Sivle and Kolstø, 2016). Meanwhile, most users ef-
fectively incorporate probabilities into their decisions (Rip-
berger et al., 2022; Demeritt et al., 2016), but some misin-
terpret them, leading to inconsistent decisions (Gigerenzer
et al., 2005). Providing probabilistic forecasts should pay
more attention to forecast communication and representa-
tion strategies (Fundel et al., 2019). In public weather ser-
vices, ensemble forecasts are often converted to broad prob-
ability distributions, while operational frameworks are more
oriented towards decision scenarios. Alternatively, ensem-
ble statistics from EPS outputs are sometimes used to de-
rive the “most likely” forecast, which is then presented to
users in a deterministic format. Although this approach sim-
plifies communication, it may discard the probabilistic nature
of the forecast and result in a loss of consistent information.
The cost-loss trade-off refers to the balance between the cost
of taking preventive action and the potential loss incurred if
no action is taken and an adverse event occurs. In decision-
making, this concept helps to determine the optimal thresh-
old of probability of occurrence by comparing the expected
cost of false alarms to the expected loss for missed events.
When decisions involve well-defined cost-loss trade-offs, ba-
sic probabilistic products may not be optimal. Research has
shown that businesses achieve better results when probabilis-
tic information is elaborated according to their specific risk
assessments (Palmer, 2002; Steele et al., 2021). In sectors
such as energy management, and emergency planning, de-
cision makers integrate probabilistic forecasts more effec-
tively when they fit with their operational constraints (Roul-
ston et al., 2003; Dale et al., 2014; Neal et al., 2014; Young
et al., 2021).

This article focuses on how probabilistic forecasting can
be effectively communicated for high-stakes, time-sensitive
decisions, particularly in business and risk management. To

maximise the contribution of ensemble predictions, Météo-
France collaborates with end-users to develop tailored prob-
abilistic forecast products. The objective of this research is to
refine risk communication strategies so that they better adapt
to needs and lead to effective forecast-based action across
various sectors. This is achieved by engaging in interdisci-
plinary research and user dialogue. However, for probabilis-
tic forecasting to be fully integrated into operational work-
flow, it is essential to understand how users perceive uncer-
tainty and how a tailored probabilistic product can address
their specific needs. To explore these aspects, this paper first
examines the perception of probabilistic forecasting among
users. This preliminary study identifies the key factors that
influence trust, understanding, and sources of miscommu-
nication. The second section focuses on applications where
probabilistic forecasts have been integrated into decision-
support systems. Two case studies illustrate the operational
value of probabilistic forecast products. Finally, in the last
section, the broader implications of these findings are pro-
vided.

2 Preliminary study: End-user perception of
probabilistic forecasts at Météo-France

2.1 Context

Several prospective studies have been conducted at Météo-
France to identify potential applications and barriers to the
wider adoption of probabilistic forecasting. Both internal
evaluations and academic research have shown that present-
ing numerical probabilities without contextual references of-
ten leads to misunderstanding or underuse by end-users (Kim
et al., 2014; Morss et al., 2010; Windschitl and Weber, 1999).
To address this, probabilistic forecasting should be simplified
(Fundel et al., 2019), structured around specific use cases
(Mylne et al., 2024), and tailored to user needs (Roulston
et al., 2003; Palmer, 2002; Fischhoff et al., 2012). Studies
conducted with social scientists in collaboration with Météo-
France have analysed how professional users, such as those
in the energy sector, interpret and integrate ensemble fore-
casts into their decision-making processes (Breton, 2023).
Feedback from internal surveys in various economic sectors
has highlighted key challenges in understanding and using
probabilistic forecasts effectively. These findings have led to
recommendations for improving product design and commu-
nication strategies. To complement these studies, additional
interviews were conducted with developers (i.e., thematic ex-
perts working within Météo-France’s operational studies and
development units) and market managers to gain deeper in-
sights into how probabilistic products are perceived and used.
This section synthesises the key findings from these stud-
ies, along with new perspectives emerging from a compre-
hensive overview of current challenges and opportunities to
make probabilistic forecasting more accessible and helpful.
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2.2 Sectoral Differences in Forecast Usage

The way Météo-France users perceive and make use of en-
semble forecasting depends primarily on two factors: the im-
pact of weather on their operations and their ability to in-
terpret probabilistic information (Breton, 2023). A key dis-
tinction exists between industries where meteorological vari-
ability represents a sporadic, high-impact cost (e.g., trans-
portation and road management) and those where weather
is a constant operational factor (e.g., energy production). In
sectors where weather events require occasional but costly
interventions, users often perceive forecasts as a source of
indecision rather than a tool to support or optimise decisions.
For example, road managers and transport operators primar-
ily focus on rare extreme events that trigger operational re-
sponses. Since they seek clear-cut decision thresholds (“act”
vs. “do nothing”), they tend to favour deterministic forecasts
over probabilistic ones, which they may view as complex or
ambiguous. In addition, these users often lack experience in-
tegrating probabilistic data into their decision-making pro-
cesses. These behaviours may also reflect cognitive biases.
For instance, users may rely on motivated reasoning, inter-
preting forecasts in ways that support their expectations or
operational habits (Dieckmann et al., 2017), especially when
their statistical skill is low or uncertainty is poorly commu-
nicated (Durbach and Stewart, 2011; Bramwell et al., 2006).
Conversely, industrial activity in which weather is an integral
part of daily operations, such as the energy sector, incorpo-
rate probabilistic forecasts into their strategies (Zhou et al.,
2013; Pinson et al., 2007; Matos and Bessa, 2010). These
users, who generally have higher statistical competence, are
more inclined to engage with probabilistic weather forecasts
and leverage forecast uncertainty to refine their planning. The
comprehension of probabilistic forecasts may also depend on
the users’ familiarity through repeated exposure. A compara-
tive study by Gigerenzer et al. (2005) showed a significantly
better interpretation of rainfall probabilities in New York,
where such forecasts have been available the longest, com-
pared to European cities. The time horizon of the forecasts
also plays a crucial role in determining user engagement. In-
dustries involved in long-term planning, such as salt extrac-
tion for winter road maintenance, are more receptive to sea-
sonal probabilistic forecasts for salt supply management over
extended periods. Despite these variations, research indi-
cates that most users intuitively acknowledge forecast uncer-
tainty and that it increases with the prediction range (Joslyn
and Savelli, 2010; Gigerenzer et al., 2005; Stephens et al.,
2019). Even those who would rather use deterministic fore-
casts often implicitly use uncertainty estimates, for example,
by interpreting forecast variability as a confidence indicator
(Morss et al., 2008). However, surveys showed that users
with limited experience in interpreting uncertainty tend to
overreact to forecast updates, which can lead to costly last-
minute decisions (Hohle and Teigen, 2015).

2.3 Barriers to Adoption and User Misinterpretations

A major challenge in the adoption of probabilistic forecasting
is the difficulty in identifying appropriate probability thresh-
olds for decision-making. The usefulness of ensemble fore-
casts depends on whether users can turn those probabilities
into actions. At Météo-France, this is illustrated by the lim-
ited use of probabilistic forecast products for commercial
users. One such product provides users with the ability to
assess the likelihood of exceeding predefined thresholds for
key meteorological variables, including temperature, precip-
itation, wind, and snow. Ensemble forecast distributions can
be depicted using plume charts and interactive probability
diagrams, making it easier to interpret forecast uncertainty.
Forecasts of maximum and minimum temperatures can be
visualised with colour bands corresponding to percentiles to
illustrate forecast variability. Users can also view the proba-
bility of temperatures exceeding or remaining below a cho-
sen threshold, such as 0 °C for frost risk or 30 °C for heat
events. Similarly, precipitation forecasts are represented with
interactive histograms, indicating the probability of rainfall
exceeding specific thresholds. Wind and snow forecasts fol-
low the same logic, allowing users to estimate the probability
of strong winds or snow accumulation beyond a customisable
limit. These forecasts are generated using the ECMWF-EPS
model, covering forecast horizons up to 14 d lead time. De-
spite these features, surveys show that the tool is rarely used
or well understood. The main challenge reported by users is
not the complexity of probabilistic forecasts themselves, but
rather the difficulty in determining which probability thresh-
olds should guide their operational decisions related to spe-
cific risk tolerance. As a result, despite recognising the po-
tential value of probabilistic forecasts, many users still find it
simpler to rely on deterministic forecasts. Similar findings
have been observed in other studies (Fundel et al., 2019;
Juanchich and Sirota, 2016), highlighting the need for struc-
tured user guidance and targeted communication to facilitate
the transition from deterministic to probabilistic decision-
making.

2.4 Recommendations for Improved Communication
and Tool Design

To address this, co-developing probabilistic forecast prod-
ucts with end-users would ensure the correspondence be-
tween risk thresholds and probability values (Murphy, 1977).
Users’ backgrounds and decision-making processes vary sig-
nificantly, leading to different needs in terms of the type
and amount of information required (Raftery, 2016). For
industries requiring a binary decision, the integration of a
cost-loss analysis framework can help define optimal prob-
ability thresholds for operational responses. More broadly,
enhancing the adoption of probabilistic forecasts requires
user training, tailored visualisation techniques, and interac-
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tive tools that allow decision-makers to experiment with en-
semble forecasts in real-world scenarios.

2.5 Introducing the risk matrix approach

The way in which the ensemble forecast information is rep-
resented is crucial for the interpretation of probabilistic out-
puts. The aim is to ensure that ensemble forecasts help end-
users clearly assess both the potential impacts on their activ-
ities and the associated uncertainties. A relevant method to
achieve this is the use of a risk matrix, which has recently
been shown to be relevant for this objective. It relies on the
definition of a risk as a combination of the probability of
an event and its potential severity (Markowski and Mannan,
2008). By integrating these two dimensions, the risk matrix
helps synthesise the information from probabilistic forecasts,
making it easier for decision-makers to anticipate, classify,
and prioritise risks (Prata et al., 2019; Young et al., 2021;
Neal et al., 2014).

3 End-user applications: prototypes and case
studies

Building on these insights, we now examine two use cases
of probabilistic forecasting integration into decision-making:
heat stress management during the Paris 2024 Olympic and
Paralympic Games and frost risk management during spring
season in French Southwestern viticulture. These two ex-
amples try to demonstrate how user-oriented probabilistic
tools can enhance operational planning and risk mitigation
in weather-sensitive activities.

3.1 Heat stress risk management for sport events

3.1.1 Background on heat stress and WBGT index

High temperatures during major sporting events, such as the
Olympic Games, pose a significant risk to both athletes and
spectators. When combined with high humidity, high tem-
peratures can lead to heat stress events, ranging from de-
hydration to life-threatening conditions. Endurance sports or
events with prolonged exposure to the sun are particularly af-
fected (Brotherhood, 2008). In recent years, several interna-
tional competitions have faced increasing heat-related chal-
lenges, prompting organisers to establish adaptation mea-
sures, including schedule adjustments, cooling strategies,
and medical protocols. The impact of extreme heat is partic-
ularly critical in urban environments, where the heat island
effect (Kim, 1992) can significantly increase temperature ex-
tremes.

Thermal comfort indices are widely used to report the im-
pact of climatic conditions on human comfort and health
(Parsons, 2007). These indices incorporate multiple physi-
cal parameters that influence thermal perception, such as hu-
midity, wind speed, and solar radiation. During the past few

decades, numerous thermal comfort indices have been de-
veloped (Johansson et al., 2014; Blazejczyk et al., 2012),
including Humidex, UTCI (Universal Thermal Comfort In-
dex), PET (Physiological Equivalent Temperature), and Heat
Index. Among them, one of the most widely recognised and
utilised is the WBGT index. Created in the 1950s for the
US Navy (Yaglou and Minaed, 1957), the WBGT index is
used to address safety concerns in military, industrial, pro-
fessional, and sports applications (Budd, 2008). It is recom-
mended by a large number of organisations (BS EN ISO
7243, 2017; ACGIH, 1995; Sawka et al., 2007; Bergeron
et al., 2012), as well as by many international sports feder-
ations (Mountjoy et al., 2012). As an empirical measure of
heat stress, the WBGT index estimates the combined effects
of air temperature, humidity, and thermal radiation on the hu-
man body, whether indoors or outdoors. In high-performance
sports, the WBGT index is a key tool for regulating train-
ing programs and competitions, helping to prevent exhaus-
tion and heatstroke among athletes. Protocols are often es-
tablished on WBGT thresholds to suspend or cancel sporting
events. Given its widespread recognition as a reliable indica-
tor of heat stress and its direct applicability to outdoor sport-
ing events, the WBGT index was selected as the reference
index for the Paris 2024 Olympic and Paralympic Games.
For outdoor conditions, the WBGT index is calculated using
the formula:

WBGT= 0.7Tw+ 0.2Tg+ 0.1Ta (1)

This equation integrates three key factors: the Wet Bulb Tem-
perature (Tw), which represents ambient humidity and evap-
orative cooling; the Dry Bulb Temperature (Ta), which cor-
responds to the standard air temperature measured with the
thermometer; and the Globe Temperature (Tg), which ac-
counts for the influence of thermal radiation from external
sources, such as the sun. As part of the development of the
WBGT computation, the Ta and Tw parameters are directly
taken from meteorological models. The Tg component is de-
rived from formulas originally developed by (Dimiceli et al.,
2011), ensuring a consistent approach to estimating the heat
stress conditions.

3.1.2 Forecasting context for the Paris 2024 Games

For the Paris 2024 Olympic and Paralympic Games, held
during the peak of the Northern Hemisphere summer, heat
risk management was a key concern for athletes and the pub-
lic. The Olympic Games took place from 26 July to 11 Au-
gust 2024, followed by the Paralympic Games from 28 Au-
gust to 8 September 2024. This event provided an excel-
lent opportunity to test a probabilistic forecasting system de-
signed for heat stress conditions. Before its implementation,
a preliminary phase was conducted in collaboration between
the organising committee and Météo-France forecasters to
ensure that the product was designed and adapted to their
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specific needs. These discussions helped define key fore-
casting requirements, including relevant thresholds, forecast
timescales, and optimal strategies for communicating proba-
bilistic information.

3.1.3 Forecasting systems and data used

Given the high organisational standards of such international
events, it was essential to anticipate situations where heat
stress thresholds might be exceeded, considering both their
geographical and temporal distribution. To meet these re-
quirements, the probabilistic forecasting approach leverages
data from ECMWF-EPS (CY48R1 cycle ECMWF, 2023) for
its ability to provide long-range forecasts, combined with the
high-resolution Météo-France AROME-EPS (Raynaud and
Bouttier, 2017). The ECMWF-EPS operates four times a day
and delivers forecasts up to 15 d ahead. It is a 51-member
ensemble with a horizontal resolution of around 9 km. The
AROME-EPS consists of 16 members and incorporates lat-
eral boundary perturbations from the global ARPEGE global
EPS (Descamps et al., 2015). Running four times daily, it
provides hourly forecasts up to 51 h ahead, with a horizontal
resolution of approximately 1.3 km.

3.1.4 Risk matrix design and operational use

Following discussions with operational meteorologists sup-
porting major sporting events and liaising with the Paris
2024 organizing committee, the risk matrix was selected as
the most suitable probabilistic forecasting tool for this con-
text. Severity thresholds are defined based on WBGT ex-
ceedances to establish a graduated risk scale that aligns with
the operational needs of event organisers (Fig. 1). This struc-
ture aims to enable early identification of high-risk scenar-
ios, even several days in advance, when low-probability but
high-severity events may occur. The heat risk classification
was structured into three levels: no risk (safe conditions),
caution (heat stress could affect performance and requires
hydration and monitoring) and alert (severe risks requiring
strict mitigation and possible event rescheduling). The matrix
addresses this structure of risk graduation, but users remain
free to adapt their responses based on constraints, risk toler-
ance, and experience. This flexibility is essential in complex
settings where the cost of false alarms or missed events de-
pends on the activity. WBGT risks matrices were produced
at 00:00 and 12:00 UTC with the ECMWF-EPS runs up to
14 d ahead, alongside 03:00, 09:00, 15:00, and 21:00 UTC
with the AROME-EPS runs to provide short-range forecasts
up to 2 d ahead. For each forecast lead time, risk maps cover-
ing the entire mainland France domain were generated, with
a specific focus on the Paris region (Fig. 2b). Additionally,
meteograms based on the predicted risk were produced for
ten key locations (Fig. 2c, d), offering a time evolution of the
heat stress risk localised at specific grid points corresponding
to major sports venues. Probability maps were also available,

showing the chance of WBGT thresholds being exceeded for
users interested in specific probability levels.

3.1.5 Case studies analysis

Temporary WBGT stations were installed outdoors in se-
lected Olympic venues to support operational monitoring.
For the case study, we selected 12 August 2024, which was
the hottest day of the year in Paris. Observations from this
weather station network recorded WBGT values between 28
and 30 °C on 12 August. One station recorded a WBGT
peak of 29.5 °C, indicating that the 30 °C threshold was al-
most reached. On that day, the risk matrix computed with
AROME-EPS predicted the exceedance of the Alert thresh-
old (WBGT > 28 °C) across many regions in the afternoon
(Fig. 2b). A close-up on the Paris area even indicated a like-
lihood of exceeding 30 °C WBGT in some locations. The
meteograms derived from the ECMWF-EPS were also used
by end-users to anticipate potential heat stress and maintain
heightened vigilance in such a case. In the case study of the
12 August event, the meteogram (Fig. 2c) shows that the risk
had been identified several days in advance, providing a valu-
able early warning for the organisers. The meteogram de-
rived from AROME-EPS (Fig. 2d) was used to visualise the
intra-day evolution of the forecast heat stress risk with hourly
resolution, as the event approached. This detailed view com-
plemented the medium-range forecast by providing short-
range guidance for a day that had already been identified as
high-risk in the ECMWF-EPS.

Figure 2a presents a retrospective comparative analysis of
the forecast quality for 12 August, up to 5 d in advance. To as-
sess forecast behaviour according to lead time, we simulated
a decision-making framework in which the ECMWF-IFS
model was used up to 2 d before the target day (d − 2), and
AROME was used from d − 2 onward. The same approach
was applied to assess the heat stress risk based on probabilis-
tic outcomes from ECMWF-EPS and AROME-EPS, respec-
tively. For the official forecasts, we analysed the archive of
meteorological bulletins issued by forecasters from d − 5 to
the target day. These bulletins included a deterministic esti-
mate of the expected WBGT value for the target day, which
enabled a retrospective evaluation of the forecasters’ predic-
tions over the full lead time range. It is worth noting that the
deterministic model consistently underestimated the WBGT-
related heat stress risk, except for the forecast issued the day
before the event. However, at such short lead times, this in-
formation would have offered limited time for operational
adjustments. The official weather bulletins initially underes-
timated the severity of the event, before gradually adjusting
their forecast to align with the intensity that was ultimately
observed. A post-event discussion with forecasters indicated
that, although the interface was made available to them in a
demonstration format, they had not yet had sufficient time to
become fully familiar with it. As a result, their assessments
were primarily based on traditional meteorological model
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Figure 1. Risk matrix for heat stress based on WBGT thresholds and probability exceedance. The colour gradient highlights increasing
heat stress, with higher WBGT values and exceedance probability leading to greater risk. The probability thresholds of 11 %, 23 %, and
52 % reflect the discrete nature of the ECMWF-EPS ensemble prediction system, which includes 51 members. These values correspond
approximately to 6, 12, and 27 members predicting the event, respectively.

Figure 2. (a) Forecasts of heat stress risk (WBGT) issued between 7 and 12 August 2024 for the same target date (12 August), based on
three sources: deterministic model outputs, official forecasters’ predictions, and the risk matrix tool. The ECMWF IFS and ECMWF-EPS
were used for forecasts issued from 7 to 10 August, while AROME and AROME-EPS were used for forecasts from 11 and 12 August.
Deterministic values from deterministic model and forecasters’ prediction were converted into risk levels using the highest category defined
in the risk matrix within the interval that includes the predicted WBGT value. Arrows indicate whether the forecast underestimated (↓),
overestimated (↑), or correctly predicted (≈) the observed category, based on which interval of the risk matrix the observed WBGT fell into,
independently of the probability thresholds. The double arrow (↓↓) indicates that the forecast underestimated the observed value by two
impact categories. (b) Risk level forecast for 12 August at 15:00 UTC using the AROME-EPS 11 August, 03:00 UTC run. A close-up on the
Paris region highlights local risk variations. (c) Meteogram of risk levels forecast from the ECMWF-EPS 7 August, 00:00 UTC run for Paris,
showing the expected evolution from 8 to 16 August. (d) Meteogram showing the hourly risk levels forecast for 12 August in Paris, based on
the AROME-EPS 11 August, 03:00 UTC run, capturing the intraday variation of heat stress conditions. All forecast hours are expressed in
local time.
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Table 1. Example of estimated costs depending on the methods
used to protect vineyards against frost. From Hirschy et al. (2020).

Type Purchase Operating
Price (EUR) Cost (EUR ha−1)

Solid fuel heaters 9000 850
Overvine sprinkling 14 000 350
Wind machine 45 000 800

outputs. The probabilistic tool correctly anticipated the ob-
served level of risk as early as 5 d before the event, with
the forecast remaining stable throughout the period preced-
ing the target day. This case study highlights the usefulness
of the probabilistic tool in supporting decision-making, par-
ticularly for users such as event organisers who may not have
advanced expertise in weather forecasting. By providing con-
sistent early warnings, the tool helps to raise timely alerts and
supports early planning. While it is not intended to replace
expert meteorological judgement, it can serve as a valuable
complement, supporting evidence-based decisions.

3.2 Frost risk management in Viticulture

3.2.1 Context

Spring frosts can have a significant impact on yields and vine
growth (Poni et al., 2022). Recent events have shown that
spring frosts can cause major economic losses (COM, 2021).
Following a significant spring frost event in April 2017,
wine production in France for that year dropped approxi-
mately 19 %, reaching 36.7 million hL, one of the lowest lev-
els in decades (Organisation Internationale de la Vigne et du
Vin (OIV), 2017). Various methods for protecting vineyards
against frost are available (Poling, 2008). Table 1 provides a
few examples of methods of protection and their estimated
costs from a recent study (Hirschy et al., 2020). Some equip-
ment, such as wind machines, requires a major upfront in-
vestment, while others, such as solid fuel heaters, need little
advance planning.

3.2.2 End-user practices and perception

A 2022 survey of three major Bordeaux wine estates showed
that most frost protection decisions are made within 24 h,
usually to activate existing equipment. It found that users
rarely use probabilistic forecasts in real time, relying instead
on deterministic forecasts from public sources, i.e. a poor
man’s ensemble approach. On the day of action, observed
temperature monitoring is considered the most reliable refer-
ence for triggering protection. While deterministic forecasts
are simpler to interpret, they are less effective in anticipating
low-probability, high-impact events such as late spring frost.
From an economic standpoint, probabilistic forecasts offer
added value, allowing for more precise risk estimation and

improved efficiency of protection strategies considering the
high costs involved. As shown in previous studies (e.g. Joslyn
and LeClerc, 2012), incorporating the probability of occur-
rence into the risk-based decision-making process leads to
more optimal outcomes. The wine estates consultation led to
the conclusion that their lack of knowledge about probabilis-
tic forecasting highlights a gap in communication and sup-
port. While they see its potential, they need guidance to use
it effectively in daily decisions. Improving existing products
and developing new ones should involve clients who trust the
tools and are willing to collaborate.

3.2.3 Methodological framework for decision-support
tool

Involving end-users early in the development of probabilis-
tic forecasts can help them assess the economic impact of
their decision to use or not use protective measures, espe-
cially through cost / loss (C / L) analysis. As discussed ear-
lier, the cost-loss trade-off is an economic framework used
to identify whether preventive action is financially prefer-
able to risking potential losses from adverse events. This con-
cept helps define the optimal probability threshold by com-
paring the expected cost of false alarms with the expected
loss from missed events. Our frost risk prototype for viticul-
ture uses a methodology similar to that for heatwaves, based
on a risk matrix. However, we also introduce the possibil-
ity to optimise the probability thresholds in the matrix based
on the economic value of forecasts. This optimisation re-
quires a cost-loss model approach (Richardson, 2003). En-
semble forecasts lack reliability if they are not calibrated.
For this reason, the forecast skill is incorporated into a de-
cision framework to compute the probability threshold, as
illustrated by Mylne (2002). This method requires two key
elements: (i) the economic impact, including the cost of pro-
tection and potential losses without action; and (ii) a forecast
archive to evaluate the model’s predictive skill.

The tool has been tested on two frost protection options:
solid fuel heaters and overhead sprinkling systems. Only the
results for the latter are presented here. The analysis focuses
on the Bordeaux wine-growing area, specifically the Médoc
appellation in the Gironde department. To incorporate eco-
nomic loss, we consider the market value of annual vine-
yard production. We consider the annual gross revenue per
hectare, serving as a proxy for the market value of vineyard
production. In the Bordeaux region, this production value can
vary greatly depending on the estate and the wine classifica-
tion. Following discussions with stakeholders, we adopted a
reference value of EUR 50 000 ha−1, which reflects an ap-
proximate average gross revenue for high-end vineyards in
the Médoc appellation. This estimate is consistent with typi-
cal yields of 6000 bottles per hectare and average sale prices
ranging from EUR 8 to 12 per bottle. This user profile cor-
responds to a producer situated between a large cooperative
and a high-end grand cru estate. This assumption allowed us
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Figure 3. This diagram illustrates the construction of a risk matrix for late frost events in vineyards, integrating ensemble forecasts, model
calibration, and economic considerations. Impact thresholds define critical temperature levels for frost damage, which are used to establish
the C / L ratio. Archived ensemble forecasts assess model performance, ensuring that systematic biases are accounted for. If biases exist, the
probability threshold for decision-making is adjusted, as it may not align with the theoretical C / L ratio. The final risk matrix combines these
calibrated probability thresholds with impact assessments to support optimised frost risk management.

to focus on how probability thresholds affect decisions, with-
out adding complexity from different user profiles. A more
comprehensive analysis of the sensitivity of this framework
to different user profiles could provide further insights, but
it is beyond the scope of the present study. Based on expert
consultation with an agricultural engineer, the following loss
thresholds were adopted: 5 %, 10 %, and 30 % reduction in
the value of vineyard production is assumed to occur at tem-
peratures of 1, 0, and−2 °C, respectively. These temperature
values were chosen as impact thresholds for the construction
of the risk matrix. If a protection action is triggered, the as-
sociated costs, which are summarised in Table 1, are applied,
with the equipment purchase amortised over a 20-year pe-
riod.

3.2.4 Forecasting system and data used

The historical model dataset used for this study is provided
by ARPEGE global EPS (Descamps et al., 2015). This 35-
member EPS computes forecasts four times a day, providing
outputs every 3 h up to 108 h lead time. The 2 m air temper-
ature (T2m) is post-processed, as described in Taillardat and
Mestre (2020). The minimum temperature likely to occur be-
tween d−1 18:00 UTC and d 18:00 UTC is derived from this

dataset and interpolated over the kilometric AROME grid
covering Western Europe (EURW1S100). A key benefit of
this approach is that local effects are given greater consider-
ation, a crucial aspect when dealing with phenomena that are
highly localised, such as frost. The T2m forecast parameter
was selected for each lead time up to 4 d ahead. The over-
all data span five years from 1 March 2019 to 31 May 2023,
and cover three-month periods (March, April and May). A
specific geographical area encompassing the Bordeaux wine-
growing region was selected for the study, extending from
45.7 to 44.3° N and from −1.3° E to 0.8° W. The observation
dataset was obtained from the Météo-France database, and
it covers the same period as the forecast dataset. This dataset
was supplied with data from 20 weather observation stations.

3.2.5 Risk matrix design and operational use

For each impact threshold, the corresponding probability
threshold is determined by maximising the forecast value.
This monetary value reflects the average savings gained by
following the forecast instead of relying on climatology.
The climatological expense corresponds to the cost incurred
when protection measures are never implemented. In a con-
text of rapid climate change, defining a stable reference cli-
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Figure 4. (a) Relative forecast value, expressed as a percentage of the value of a perfect forecast, plotted against probability thresholds for
three impact levels defined by T2m thresholds: 1 °C (orange), 0 °C (blue), and −2 °C (purple), for a 4 d lead time. Dashed lines indicate the
probability thresholds that maximise the forecast value for each impact level. (b) Total expenses per hectare over the past five years, averaged
over the 20-station domain, under four different protection strategies: no protection (orange), protection only when the event occurs (blue),
protection triggered by a probabilistic forecast exceeding the decision threshold (green), and protection based on a deterministic forecast
(purple). For clarity, the analysis shown is limited to the 0 °C impact threshold and its associated loss and probability threshold.

matology is increasingly difficult. A 5-year period (2019–
2023) was tested, but proved too sensitive to interannual vari-
ability and the rarity of spring frost events. The 30-year ref-
erence (1994–2023) was therefore retained as a compromise
to ensure robustness and operational interpretability. Follow-
ing Mylne (2002), the forecast value is normalised with re-
spect to a perfect forecast. The relative forecast value is cal-
culated from a historical forecast dataset, taking into account
the forecast lead time and the C / L ratio specified by the user.
Figure 4a presents the loss functions for the 4 d lead time.
These probability thresholds are then used to build a risk
matrix that reflects both forecast quality and the user’s eco-
nomic exposure for a given lead time. As a result, a different
risk matrix can be built for each lead time. Preliminary tests
(not shown) confirmed that, for lower-value contexts, such as
cooperative vineyards, higher probability thresholds would
be needed to justify the implementation of frost protection
measures. Probability thresholds vary according to the im-
pact thresholds selected. Consistently, the higher the impact,
the higher the forecast value, and the lower the corresponding
probability threshold. In this case, the relative forecast value
is always positive, meaning the forecast provides greater ben-
efit than climatology. As illustrated in Fig. 3, the design of
the risk matrix follows a sequence of interconnected steps,
some of which, such as C / L analysis and impact estimation,
require input data from the end-user. In the final matrix, the
vertical axis represents the likelihood, based on the calibrated
probability thresholds, while the horizontal axis represents
the impact thresholds. The dashed lines in Fig. 4a indicate

the three probability thresholds used to define the risk matrix
for the forecast at day 4.

3.2.6 Decision-Support tool evaluation

Total expenses per hectare over a five-year period can be
computed using archived forecasts and a predefined C / L
framework (Fig. 4b). This evaluation is based on the 20
weather observation stations used in the cost–loss analysis,
each representing a vineyard. The expenses shown in the
figure correspond to cumulative total expenses per hectare
over the five-year period, averaged across all stations. This
approach illustrates the potential benefits of combining en-
semble forecasts with decision-based loss functions. As ex-
pected, inaction leads to the highest cumulative expenses.
While deterministic forecasts also result in elevated costs,
particularly in the early years due to initial investments in
protective equipment, probabilistic forecasts, when used with
optimised decision thresholds, demonstrate substantial long-
term savings. In this case study, the resulting expenses fall
between those associated with a perfect forecast (unrealistic
in practice) and a deterministic forecast. This method has the
potential to improve user perception and trust in probabilis-
tic products. However, it should be noted that the benefits
of this approach emerge only over time; when events are in-
frequent, short-term advantages may not be immediately ev-
ident. Time horizons are perceived differently: a multi-year
period may seem short in climatology but long for opera-
tional users like winegrowers. Although benefits may not ap-
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Figure 5. (a) Risk levels of occurrence of frost. (b) Forecast of frost using the C / L model approach. Method of protection is supposed to be
overvine sprinkling. Forecast issued from the last run, as well as the three previous runs are shown. (c) T2m observed in Bordeaux region on
19 April 2024 using Météo-France weather station network (available at http://climascope.meteo.fr, last access: 18 July 2025, Météo-France,
2025).

pear immediately, regular use over time can greatly improve
outcomes and resilience.

3.2.7 Case studies analysis

The probabilistic forecast diagnostic can be displayed as a
list of coloured boxes (Fig. 5a), each corresponding to a level
of benefit associated with activating frost protection. The
colours are derived from the previously defined risk matrix
(Fig. 3), where each cell reflects a combination of probability
threshold and impact level. In this particular C / L optimisa-
tion context, it was considered more relevant to communicate
in terms of the expected benefit of taking action, rather than
focusing on the abstract notion of risk. As discussed earlier
in relation to the heat stress forecasting tool, the combination
of probabilistic and impact-based thresholds does not yield a
binary forecast, but rather a graded decision-support output.
The aim is to provide end-users with clear and contextualised
information, rather than a prescribed action/no-action deci-
sion. In the case of frost, it is well recognised that multiple
parameters influence local vulnerability in vineyards, such
as soil moisture, topography, or vegetation phenology, which
are not fully integrated into this tool. The tool uses a six-level
benefit scale, allowing users to adjust their risk tolerance
based on experience and local conditions. To use this flexibil-
ity effectively, users would need to be familiar with the tool
to interpret and adapt the information. Figure 5b shows how
forecasts are displayed: the top row corresponds to the latest

available forecast run, while previous runs are also shown to
trace the evolution of the forecast across lead times. This ret-
rospective view helps highlight whether the forecast has been
consistent or volatile over time. For instance, the system suc-
cessfully predicted a light frost event on 19 April 2024, up to
4 d in advance. The observed temperature field in Bordeaux
region is shown in Fig. 5c. Forecasts remained stable across
successive runs, reinforcing trust in the tool’s reliability.

4 Conclusions

This study explored the development of customised prob-
abilistic forecasting tools to guide operational choices for
weather-dependent activities. Unlike general public fore-
casts, professional applications must reflect the economic
stakes of the enterprise and fit within the users’ decision-
making processes. The two case studies presented, heat stress
forecasting during the Paris 2024 Olympic and Paralympic
Games, and late frost risk management in vineyards, clearly
illustrate how ensemble forecasts can be transformed into
structured risk information through the integration of im-
pact thresholds, cost/loss reasoning, and calibrated probabil-
ity levels.

Beyond the development of these illustrative prototypes,
this work is part of a broader effort to assess the potential
uses of ensemble forecasting products across diverse user
profiles and sectors. Although this article presents only two
examples, it is part of a broader exploration of operational
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use cases. A systematic review of user needs and decision
contexts would better support the adaptation of ensemble
products, especially considering risk perception and techni-
cal constraints such as resolution or aggregation.

The case studies highlighted key information design prin-
ciples: the importance of simplicity, alignment with user-
specific impacts, and the ability of users to adapt the level
of risk according to their operational context and experi-
ence. Several limitations must be acknowledged. The case
studies were based on hypothetical or retrospective applica-
tions, without real-time validation from users in operational
settings. Additionally, the large and diverse pool of poten-
tial users makes it difficult to maintain close feedback loops.
More broadly, the reluctance of some meteorological ser-
vices to openly distribute ensemble forecasts remains a bar-
rier to user familiarisation and adoption. Increased exposure
to ensemble-based products across user groups would pro-
mote greater trust and help demystify probabilistic informa-
tion.

Another structural limitation lies in the fact that both eco-
nomic evaluations and the definition of probability thresholds
are highly context-dependent. They vary depending on users’
risk tolerance, operational constraints, and financial expo-
sure. In the agricultural case, for example, potential losses
could vary from one year to the next depending on the pheno-
logical stage of the crop at the time of the event. Generalising
such approaches is, therefore, complex. One option would
be to define standardised average profiles with representative
C / L ratios. However, a more flexible and user-centred alter-
native would be to develop an interactive platform, allowing
users to input their own parameters, such as loss values, lev-
els of risk at which action is triggered, or operational thresh-
olds, and dynamically derive appropriate decision thresholds.
In sectors like public safety or critical infrastructure, the loss
may be extremely high or even unbounded, as failure is not
acceptable. In such cases, users may choose to act based on
very low probability levels, reinforcing the need for tools en-
abling cautious and adaptive decision-making.

To support broader adoption and accurate interpretation of
probabilistic forecast products, it is also essential to provide
users with clear and accessible documentation. The develop-
ment of technical factsheets, explaining how the forecast is
constructed, what the predicted event represents, and how the
risk is framed can help reduce the need for direct input from
forecasters while enhancing user understanding. As high-
lighted by the systematic review of Ripberger et al. (2022),
while users often interpret probabilities correctly, confusion
frequently arises from ambiguity about what the forecasted
event actually refers to. This underlines the need for intuitive
and transparent communication of definitions of events and
associated risk.

Finally, the effective integration of probabilistic forecasts
into practice will depend on strong coordination between
those who design the tools and those who deliver them to
users. Without this dialogue, even well-designed products

may fail to reach their full potential. Advancing the role of
ensemble forecasting in decision-making thus requires not
only technical improvements, but also a commitment to user-
centred development, transparent communication, and itera-
tive feedback.
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