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Abstract. Renewable energy sources (RES), such as wind and solar photovoltaic (PV), account for a significant
share of today’s power systems. This share is set to grow significantly in the near future, due to ambitious emis-
sion reduction targets in many countries. A significant proportion of energy generation in the future, therefore,
will be dependent on weather conditions, which can potentially change significantly over short time horizons.
These changes in renewable generation will need to be managed by power system operators, who will need to
ensure sufficient ramping capacity to maintain grid stability, particularly if an increase/decrease in renewable
generation is coincident with a decrease/increase in electrical demand.

RES ramps are defined as changes in generation, taking place over a number of hours, that exceed a given
threshold. RES-induced ramps are generally caused by changes in weather, which can result in fairly rapid and
large changes in electricity generation, particularly as weather fronts sweep across a country with the associated
winds and cloud coverage. Other events linked to large ramps are solar eclipses for PV (which are rare and
predictable) and high-wind periods that can lead to wind farm shutdowns. In this work, ramping events over
Ireland are explored at national scale, with insights at the farm scale for onshore wind.

First, models driven by ERAS reanalysis data are used to generate hourly, farm-level wind and PV data from
1940 to 2023, and their error when representing national ramps in recent years is quantified. This model is then
used for temporal analysis of national RES ramping events, allowing us to capture a broader range of extremes
and return periods, and better understand the seasonality and temporal cycles linked to ramps. This is done under
three different energy scenarios representative of the Irish reality at different stages of its energy transition: an
onshore wind-only scenario, a scenario with some PV added to the onshore wind, and a scenario with a more
balanced proportion of onshore wind and PV with the addition of offshore wind farms. Finally, we extend our
analysis to wind farm ramps, quantifying the error of our model at reproducing farm ramps and exploring the
spatial patterns that govern RES ramping in Ireland.

1 Introduction

Renewable energy sources (RES) present a large contribu-
tion to an increasing number of energy systems worldwide,
especially dominated by the rising share of wind and solar
photovoltaic (PV) technologies (IEA, 2024). This change is
leading to power systems becoming more dependent on lo-
cal weather conditions. The inherent variability of the driv-
ing weather is posing additional challenges to power system
operators, who need to guarantee supply, regardless of the
weather conditions. In this context, ensuring that the system
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has sufficient available flexibility to manage variations in re-
newable generation or electrical demand becomes crucial.
Ramping events are defined as changes in the production
of RES. The main parameters used for the characterisation
of ramps are magnitude, duration, ramp rate (magnitude/du-
ration), timing, and direction (Gallego-Castillo et al., 2015).
Although the presence of national ramps has decreased due
to the geographical distribution of RES, it is set to increase
with the presence of very large farms, especially for offshore
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wind technology (Drew et al., 2017), and will also be influ-
enced by the widespread introduction of PV.

In Ireland, onshore wind is the dominant renewable energy
source, but PV is starting to play a role in the system, and
there are plans to make both sources almost equally present
(EirGrid and SONI, 2024). For wind, once an extensive geo-
graphical distribution of farms is in place such as in the case
of Ireland, future expansions will make little difference to the
climatological-scale frequency and magnitude of wind ramp-
ing events (Drew et al., 2015). Something similar happens
for PV, where most ramps are quite specific in location and
time. This leads to smoother responses from the combina-
tion of spatially diverse PV farm distributions at shorter time
scales, but more similar and predictable behaviours between
the different PV farms for longer ramp events (Raygani et al.,
2015).

Previous studies have centred on conducting a
climatological-scale study of national scale ramps (see
Cannon et al., 2015, for a case study in the UK) or on
ramps in a limited number of wind farms (Drew et al., 2017;
Cheneka et al., 2023). The effects of combining PV and wind
energy have been widely explored (Lopez Prol et al., 2024;
Pedruzzi et al., 2023), but to the authors’ knowledge, there
is no specific study on the impact on ramping behaviour.
Additionally, even though the characteristics of ramps from
different wind farms have been studied in some cases, only a
few selected wind farms have been considered, or clustering
has been applied (Cheneka et al., 2020; Drew et al., 2018).

In this work, we characterise the patterns followed by RES
ramps in Ireland, focusing on three energy scenarios rep-
resentative of different stages of the transition of the Irish
energy system, and applicable to most Northern European
countries. The first stage (from a few years ago) is repre-
sented by a system with onshore wind as the only RES, the
second stage (the current one) incorporates a small share of
solar PV generation, and the coming years are expected to
bring a diversified mix of onshore and offshore wind, along
with solar PV generation. National ramps are characterised
by means of their magnitude, frequency, seasonality, and re-
turn periods. The spatial distribution of wind ramps is also
explored. In the process, the error of ERAS5-driven models at
reproducing both national and farm ramps is quantified.

After introducing the data and methods in Sect. 2, we as-
sess the error of ERAS5-driven models at reproducing national
ramps in Sect. 3. We then use these models to explore the
climate-scale features of national ramps for the three consid-
ered scenarios in Sect. 4. Section 5 provides an assessment
of the error of reanalysis-driven models at reproducing wind
farm ramps, while showing their spatial patterns in Ireland.
Finally, the main conclusions from this work are outlined in
Sect. 6.
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2 Data and methods

The atmospheric data source used to drive the simulations
is the ERAS reanalysis (Hersbach et al., 2020). National
and farm availability data (availability, or available power,
is picked over generation to focus on atmospheric-driven be-
haviours) are obtained from EirGrid, the Irish transmission
system operator. National solar (since May 2023) and wind
(since 2014) availability are publicly available at a temporal
resolution of 15 min (EirGrid, 2024), which we resample to
hourly to agree with the ERAS reanalysis dataset. The same
process is followed with the wind farm availability (2022 and
2023), which EirGrid provided to the authors.

In terms of farm information, the location of wind farms
and the corresponding turbine model information were pro-
vided by EirGrid. This information was completed by the au-
thors by adding the publicly available installation date (Eir-
Grid, 2024). The location of PV farms was identified via on-
line search, by using project websites (such as https://www.
statkraft.ie/ (last access: 28 July 2025) for the Gallanstown
project) or online mapping platforms (such as Google Maps
or Open Street Map) for each individual farm. Only the fi-
nal installation dates were provided for large PV farms, so
the steps at which they were connected to the system were
estimated by the authors from the generation time series for
each individual farm, which was directly provided by Eir-
Grid. Sudden and consistent jumps in the energy production
were identified and assigned to step changes in the installed
capacity. Similarly, the installed capacity for any given farm
was estimated to be 1.4 times its maximum export capac-
ity (MEC) on average, as this is the value that more closely
represents the observed farm energy production. This value
was obtained by simulating generation profiles at each solar
farm assuming different ratings above the declared MEC, and
identifying the one that minimised the root mean square error
(RMSE). These individual farm values were then averaged to
get a MEC scalar representative of the national behaviour.

Three different capacity distributions are used in this work.
First, a distribution of onshore wind capacity as of the end
of 2023 (WIND); second, a combined distribution of on-
shore wind and PV capacity as of the end of 2023, with over
4.5GW of wind in but only 0.58 GW of PV (W90-PV10,
named after the percentage of each technology) (EirGrid,
2024); and finally, a distribution based on the target plans for
2030 (EirGrid and SONI, 2023), which aim for capacities of
9 GW for onshore wind, 8 GW for utility-scale PV and 5 GW
for offshore wind (W41-PV36-OW23).

In addition to the observed data for the wind and PV distri-
bution up to 2023, we use the Atlite model (Hofmann et al.,
2021) to simulate the PV and wind farms and estimate the
climatic-scale behaviours of any given capacity distribution.
Both the PV and wind models were selected as the ones best
representing the historical national ramp data for Ireland. In
this work, we focus on ramps with a duration of 3 h, with
ramp amplitude defined as the change in power output in
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Table 1. Error metrics for the CF for the two observed scenarios:
WIND (2014-2023) and W90-PV10 (2023).

Scenario WIND W90-PV10
RMSE 0.060 0.046
MBE —0.005 —0.004
CC 0.950 0.962

terms of capacity factor (CF) over a 3h time period. Only
the CF that is part of an observed ramp with an amplitude
larger than 0.2 in CF is used for the model error calculation.

The wind power curve was selected out of the database
provided by renewables.ninja (Staffell and Pfenninger, 2016)
with the different levels of smoothing (amplitude dependent
on wind speed) — the NEG Micon NM 60/1000 with 0.20 w
smoothing and a fixed hub height of 100 m was selected as
the best at representing national ramps. The PV models in-
cluded in Atlite were tested against observations and the best
results were obtained from the Beyer et al. (2004) PV model
with the Kaneka hybrid panel with the optimal panel orienta-
tion (all options included in Atlite), which takes as inputs the
surface downward solar radiation and the 2 m temperature.
Ireland has not yet developed large offshore wind projects,
so we select the IEA 15 MW offshore reference turbine at a
hub height of 150 m (Gaertner et al., 2020), and smooth it
equivalently to the onshore wind turbine.

3 Results — Part 1: Model error quantification

This first part of the results focuses on quantifying the error
of the national simulated data at reproducing the observations
for the two scenarios based on the actual wind and solar farm
installation at the end of 2023: WIND and W90-PV10. The
error is calculated using the CF series during times when it
is part of a 3 h ramp with an amplitude larger than 0.2 in CF.
This threshold is somewhat arbitrary, but is used to exclude
periods with no significant change in the generation, and of-
fline analysis show qualitative consistency to changes in the
threshold. The error is assessed by means of three metrics:
root mean square error (RMSE), mean bias error (MBE),
and correlation coefficient (CC), with RMSE and MBE be-
ing widely used in the assessment of ramps (Gallego-Castillo
et al., 2015), and the correlation coefficient being a standard.
These error metrics for WIND (Table 1) show that the gen-
eral distribution of wind ramps is well reproduced by the
modelled data. In fact, the addition of PV into the system,
despite the small proportion (W90-PV10), improves the er-
ror metrics, with reductions in the overall error relative to the
observed ramps. The models are able to represent reality for
both scenarios, especially considering the limited availability
of PV data and the uncertainty around the size of the farms.
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4 Results — Part 2: The impact of PV and offshore
wind on national RES ramps

The general distribution of the three modelled energy scenar-
ios (Fig. 1a) shows how RES spatial diversification can re-
duce the number of aggregated high-amplitude ramps. W90-
PV10 shows a small reduction in ramp amplitude relative to
WIND, but the effect of diversification only becomes clearly
visible when W41-PV36-OW?23 is considered. This scenario
is expected to severely reduce the number of large ramps, in
terms of CF, even when the absolute size of the ramps may
increase due to the higher installed capacity.

Only ramps with an amplitude larger than 0.3 CF are con-
sidered to assess the seasonal distribution of ramps (Fig. 1b).
Ramps exceeding this threshold are considered large ramps,
which will likely impact the system. The specific threshold
is selected based on the distributions observed in Fig. la
and the definitions compiled in Gallego-Castillo et al. (2015).
Wind ramps (WIND) present a strong seasonal variation, be-
ing much more common during the winter months, followed
by autumn, spring and summer. These results are consistent
with previous literature (Cannon et al., 2015; Cheneka et al.,
2020). The introduction of PV (W90-PV10) allows for a re-
duction (almost 45 % in total) in the number of ramps for all
months of the year, with a stronger effect in the winter lead-
ing to a reduction of seasonality. As in the distribution, W41-
PV36-OW23 provides the best results, with the total number
of ramps coming to under 15 % of the WIND ones, and the
seasonal signal largely disappearing thanks to the comple-
mentarity of the resources.

Again, note that this change is analysed in terms of CF
ramps, and does not directly translate in terms of absolute
ramps. The addition of PV farms slightly increases the num-
ber of significant absolute ramps, showing that there may be
potential for the co-installation of wind and solar PV capacity
to mitigate ramps. For the future, an increase in onshore and
offshore wind capacity, along with solar farms, will increase
the absolute magnitude of the ramps observed, especially for
those linked to large offshore wind farms (Drew et al., 2017).
However, the magnitude of the ramps relative to the installed
(wind and solar) capacity can be expected to reduce due to
spatial and technology diversity.

Return periods are used to explore the most extreme ramps
under each energy scenario (Fig. 1c). The transition from
WIND to W90-PV 10 increases the return period for a given
ramp duration (decreases the ramp amplitude for a given
return period). This effect is even stronger for W41-PV36-
OW?23, showing large reductions in ramp amplitude for a
given return period. For reference, a ramp with a return pe-
riod of 10 years has an amplitude in terms of CF of 0.57 for
WIND, 0.51 for W90-PV 10, and 0.44 for W41-PV36-OW23.
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Figure 1. Analysis of national ramps for the three scenarios: WIND (blue), W90-PV10 (orange), and W41-PV36-OW23 (green) in terms
of (a) distributions (with normalised area), (b) seasonality of ramps with an amplitude larger than 0.3 in CF per month over the 1940-2023
period, and (c) return periods (x axis) for any given ramp amplitude (y axis).
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Figure 2. Distribution of error metrics for onshore wind farm ramps for the 2022—-2023 period (a) using the power curve for each turbine
and farm with the smoothing yielding the lowest RMSE (blue) and the single national optimal power curve (red); and spatial distribution of
onshore wind farm ramp amplitude with a 1-year return period (b) using the simulated 1940-2023 series using the national power curve.

5 Results — Part 3: Spatial distribution of wind
ramps

Here, we focus on onshore wind farms for the ramp analysis
for two main reasons: its dominant role in the Irish power
system and widespread access to long-term data for most
farms. The aim of this section is twofold. On the one hand,
the performance of two different models with different levels
of complexity for farm-level ramps is tested to quantify and
compare their error. On the other hand, the spatial distribu-
tion of wind farm ramps is estimated to identify those regions
experiencing the largest ramps.

The observed time series and modelled time series for
farms are compared under two modelling approaches: one
using the selected national power curve, and one using the ac-
tual power curve for each farm, with the smoothing level that
more closely represents reality (minimises RMSE). These
two approaches show comparable error in their representa-
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tion of farm ramps (Fig. 2a). Therefore, the national power
curve can be used without increasing error, allowing for a
crucial advantage: any spatial patterns identified can be di-
rectly linked to the driving wind resource.

The spatial distribution of the wind ramps over Ireland us-
ing the national power curve shows that the strongest ramps
take place near the coast (Fig. 2b). The ramp amplitude de-
creases inland, although the minimum is shifted eastward due
to the strong Atlantic winds coming from the west.

6 Conclusions

National ramp patterns are well reproduced by the ERAS-
driven model, showing relatively low error. The wind-only
Irish system (WIND) shows several high-amplitude ramps,
with most of them concentrated in the winter months. The
incorporation of PV (W90-PV10) contributes to the reduc-
tion of high-amplitude CF ramps, the strong winter-dominant
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seasonality, and the CF amplitude of the most extreme ramps.
However, the biggest difference comes from the introduction
of widespread PV and the addition of offshore wind (W41-
PV36-OW23), reducing ramps, effectively eliminating sea-
sonality and severely reducing the occurrence of extreme
ramps. These effects are observed for CF ramps, showing
how a fixed total capacity benefits from the diversification.
However, the absolute ramp amplitude may not decrease in
the actual Irish case, as the capacity is being developed.

We have focused on wind for our farm-based spatial anal-
ysis. Models show much higher error when reproducing farm
ramps than their national counterparts. The main reason ex-
plaining this discrepancy is the misrepresentation of local to-
pography and winds in ERAS, whose 0.25° resolution may
be too low, as the compensation mechanisms that take place
in national modelling do not occur at the farm scale. Still,
using the national optimal power curve shows similar error
to using individual power curves for each farm, while pro-
viding a direct association of ramps to wind patterns. From a
power systems perspective, the greater concern is on national
ramps, which are quite well represented.

The combined installation of wind and PV farms has been
widely considered a favourable factor for power systems with
net zero ambitions, as it increases overall generation capacity
while reducing its power production variability. This work
has shown that this effect extends to ramps, which are the
most concerning type of variability due to their large ampli-
tude in short time periods. This is also the case when adding
offshore wind farms, where a combination of the three inputs
offers the best option for ramp reduction. In terms of simu-
lating ramps, ERAS5-driven models show high potential for
representing system-wide (aggregated) ramps, but their large
errors at farm level pose a limitation, as the main problem
is the driving wind itself. Still, the estimated distribution of
wind farm ramps highlights those locations likely to experi-
ence large ramps.

Future expansions of this work could explore the effect
of using higher resolution reanalysis data. Tools such as
COSMO-REA6 (Bollmeyer et al., 2015) offer higher res-
olution reanalysis data, but also pose additional limitations
in their shorter temporal span and their ERA-Interim based
initial and boundary conditions (Jourdier, 2020). Still, this
model shows skill as a wind energy model (Niermann et al.,
2019), and the higher spatial resolution could improve the
representation of wind farm ramps.

Code and data availability. The code required to reproduce
this article is available at https://github.com/ainamaimofar/
ramps_Ireland_EMS, last access: 28 July 2025. EirGrid in-
formation is publicly available at https://www.eirgrid.ie/grid/
system-and-renewable-data-reports, last access: 4 February 2025.
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