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Abstract. In order to forecast the impact of meteorological events, such as large wind storms, on the Belgian
offshore wind energy production and mitigate its impact on the high-voltage electricity grid, the Royal Mete-
orological Institute of Belgium (RMI) has in the past developed a dedicated storm forecast tool for Elia, the
Belgian transmission system operator (TSO). The storm forecast tool, which has been operational since Novem-
ber 2018, provides 15 min wind speed and wind power forecasts for each wind farm in the Belgian offshore wind
energy zone (BOZ), together with cut-out probabilities and uncertainty quantification, by combining the RMI
high-resolution (4 km) ALARO model with the ENS ensemble forecasts of the European Centre for Medium
Range Weather Forecasting (ECMWF).

Since the completion of the first Belgian offshore wind energy zone in 2020, for an installed capacity of
2.26 GW, a significant amount of wind energy is now available in the Belgian part of the North Sea. There are
considerable wake losses in the BOZ, as all wind farms lie close together in a narrow band, and each wind farm
has a high density, in terms of number of turbines, and/or installed power per area. Moreover, the adjacent Dutch
Borssele Wind Farm Zone, completed in 2021, can also significantly influence the BOZ (and vice versa).

We report on two approaches to improve RMI’s offshore wind power forecasts, and in particular to take into
account wake losses. First the Fitch et al. wind farm parameterization (WFP) was implemented in the ALARO
model, based on an earlier implementation by KNMI into HARMONIE-AROME. Both these models are being
developed in the ACCORD consortium, and use the same dynamical core to some extent, with [IFS/ARPEGE
global codes as basis, but differ greatly in the different physics parameterizations used, and the physics-dynamics
coupling (tendencies vs fluxes). Secondly, we investigated using an artificial neural network trained on Elia wind
power production data and NWP forecasts. Verification of the improved wind and power forecasts is based on
lidar data at an anonymous wind farm, and power data from Elia. Each method is found to improve forecast
accuracy and able to capture certain wake effects in the BOZ. A combination of both methods gives the best
results on average, and leads to competitive forecast scores.

1 Introduction

Since the end of 2020, eight offshore wind farms (or nine
zones) are operational in the Belgian Offshore wind energy
Zone (BOZ), with a total capacity of 2.26 GW. Together,
these produce approximately 8 TWh of electricity annually,
see e.g. the Belgian Offshore Platform website (BOP, 2025).
All wind farms lie close together in a narrow band in the
Belgian part of the North Sea, adjacent to the Dutch Borssele
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wind farm zone that became fully operational in 2021, see
Fig. 1.

Using the operational high-resolution (4km) ALARO
model, the Royal Meteorological Institute of Belgium (RMI)
makes custom 15 min wind speed and wind power forecasts
for each wind farm in the BOZ. These are then combined
with ENS ensemble forecasts of the European Centre for
Medium Range Weather Forecasting (ECMWF), to deliver
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Figure 1. The Belgian Offshore wind energy Zone (BOZ).

probabilistic power forecasts and storm cut-out alerts to Elia,
the Belgian TSO, as part of an operational “Storm Forecast
Tool” (Smet et al., 2019). In this product, the ALARO fore-
cast is added to the ENS ensemble as extra members with a
certain weight that minimizes CRPS, with ALARO typically
being worth 15 to 7 ENS members, depending on the lead
time.

To improve RMI’s offshore wind energy forecasts, and
in particular to be able to take into account the consider-
able wake effects in the BOZ, we have investigated both
the implementation of a wind farm parameterization in the
ALARO model, and using an artificial neural network trained
on power observations. Each method can be used separately,
but both can also be combined by training the neural network
on the output of the ALARO model with wind farm param-
eterization. This paper is organized as follows: In Sect. 2 we
discuss some relevant aspects of the wind farm parametriza-
tion as used in this work. Section 3 shortly describes the neu-
ral network and its training setup and in Sect. 4 we give an
overview of the different types of wind power forecasts that
were studied. In Sect. 5 the various forecasts are compared
through validation against observations and the results are
discussed. Finally, Sect. 6 contains a short summary, with
conclusions and outlook.

2 Wind farm parameterization

For a systematic literature review on WFP implementations
in mesoscale NWP models, we refer to Fischereit et al.
(2022). Our approach is based on the HARMONIE-AROME
implementation (van Stratum et al., 2022) of the Fitch (Fitch
et al.,, 2012) wind farm parameterization (WFP). Concep-
tually this WFP represents wind turbines as a sink of mo-
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mentum and source of turbulent kinetic energy (TKE). More
precisely the tendencies of horizontal wind (V = (u, v)) and
TKE are set by the formula

WV _ _Peyviva 1)
9t = ) T rotor

dTKE p
” =5<CT—CP>|V|3AMr 2)

where p is the air density, M the mass of the parcel consid-
ered, Aroror the area spanned by the rotor blades and Cr, Cp
respectively the thrust and power coefficients of the turbine.
In the NWP model the above is discretized over both horizon-
tal gridpoints and vertical levels, with contributions only for
gridboxes where turbines are present (multiple contributions
are summed) and only for vertical levels that overlap with the
rotor blades (weighted by the fraction of Aroor covered.)

The ALARO model (Termonia et al., 2018) differs from
HARMONIE-AROME used in (van Stratum et al., 2022) in
several ways. The boundary layer is modeled using the TOU-
CANS scheme (Durén et al., 2014) while the parametriza-
tion of microphysical processes is similar to those as de-
scribed in (Lopez, 2002). Unlike HARMONIE-AROME
(and AROME), the ALARO model also still has an explicit
deep convection scheme (3MT) designed to work at multi-
ple resolutions from 10km to a few hundred meter, as first
described in (Gerard et al., 2009). Furthermore, ALARO dif-
fers from HARMONIE-AROME in two ways relevant to the
WEP. First of all the turbulence scheme of ALARO (Durén
et al., 2018) includes two prognostic energy variables. In
addition to TKE there is also total turbulent energy (TTE),
which is the sum of TKE and turbulent potential energy
(TPE). This TPE is that part of potential energy that can be
converted into TKE and is proportional to the square of tem-
perature fluctuations (Zilitinkevich et al., 2013). The turbines
are considered not to alter TPE and thus, the change in TTE
is equivalent to the change in TKE here, i.e. % = aTKE
with the right side determined by (2). Secondly, ALARO 1n-
ternally represents changes of prognostic variables through
fluxes rather than tendencies. The former are integrals over
the vertical direction of the latter, e.g. the ﬂux q’v of hori-
zontal wind velocity is related to its tendency % as

Ztop

v

=—— | —d 3
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Here we have expressed the formula in terms of an integral
over geopotential z, with zp being its value at the top of
the atmosphere, where the flux ¢y, generated by the turbines
vanishes. The ALARO WFP works as follows: a call is made
to the WFP routine of van Stratum et al. (2022) to obtain
the contribution to the tendencies of V and TKE by all tur-
bines, the turbine contribution to V' tendency is transformed
into a contribution to V flux via (3), after which the WFP

contributions agle and ¢y are added to the contributions

https://doi.org/10.5194/asr-22-59-2025



D. Van den Bleeken et al.: Improving wind power forecasts in the Belgian North Sea 61

Figure 2. NWP domain for ALARO at 4 km resolution (with and
without WFP).

of other physics parameterizations. The forward step of the
model will then use these to compute updated values for all
variables at the next time step.

The ALARO model runs (at 4km resolution) were per-
formed over a domain that includes a large part of Europe,
spanning roughly from the north of the United Kingdom to
the south of France and the west of Ireland to the east of Ger-
many, see Fig. 2. The turbine characteristics and locations
originate from a static private database that covers the best
knowledge of these over the whole domain as they were at the
end of 2022. Only those turbines in or close to the BOZ are
effectively relevant for the study presented here, their relative
locations can be seen in Fig. 3 and some of their properties,
such as hub height and nominal power can be found on (BOP,
2025). Both the BOZ and Borssele wind farms were already
fully operational during the entire period of this study (2022
and 2023). Other wind farms in the North Sea were still be-
ing build during this period. For instance the construction of
the Dutch wind farms Hollandse Kust Zuid and Noord was
ongoing in 2022 and 2023, both being fully operational only
at the end of September 2023 and December 2023, respec-
tively. However, giving the distance of these wind farms to
the BOZ, we believe the use of a static wind turbine database
shouldn’t have too much impact on our results.

A forecast example from two identical ALARO runs with
the WFP implemented, and either switched off/on, and their
difference is shown in Fig. 3. Significant wake effects are
visible, showing that both the WFP is functioning, and that
wind speed differences due to wake effects can indeed be
quite significant in the BOZ. Further validation results will
be shown in Sect. 5.

3 Neural network for wind to power conversion

Since RMI has a multi-year database of wind power produc-
tion data and ALARO 4 km wind forecasts a data-driven ap-
proach where wind speed is converted to power by a machine
learning model presented itself. Given the limited number of
parameters in the problem it was decided to consider a model
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as simple as possible and to investigate if even such minimal
models, trainable in a few minutes on a laptop, can already
have significant impact. A Neural Network architecture was
selected that takes as input NWP forecast model wind speed,
wind direction and lead time, and that is trained to produce
the corresponding wind power. Wind direction is included
in the input to allow the model to learn about wake effects
(Barthelmie et al., 2009; Platis et al., 2018) while lead time
allows it to take into account time of day effects (we con-
sider only forecasts initialized at 00:00 UTC in this paper) as
well as biases that can depend on the number of steps in the
forecast.

More precisely, the network is a multi-layer perceptron
(Almeida, 2020) with a 3 node input layer and single node
output layer. After exploring a few different settings an op-
timal configuration of three intermediate layers of each 64
nodes was selected in combination with mean absolute er-
ror (MAE) as training loss, using stochastic gradient descent
with Adam optimizer, and early stopping. We refer to this
neural network architecture as the Neural Power Net (NPN).
The NPN is separately trained for each wind farm in the BOZ
on one year of training data (2022), consisting of 15 min
ALARO wind speed and wind direction forecasts, and Elia
wind power production data. Further validation is then per-
formed on the 2023 test data. The 2022 training data was
randomly split in 15 % for hyperparameter tuning and 85 %
for NPN weight optimization.

4 Forecast data

In RMTI’s operational Elia Storm Forecast Tool, wind speed
predictions by the ALARO NWP model at 4 km horizontal
resolution (ALO4) are currently converted to wind power us-
ing power coefficient Cp curves:

P= gcpw)AmerP )

and are then for some undisclosable wind farms further cor-
rected using quantile regression (and historical power pro-
duction data). We will refer to these operational power fore-
casts as ALO4_CP, and take them as benchmark. Three dif-
ferent ways to improve these forecasts have been investi-
gated.

The first consist of adding a WFP to the ALARO NWP
model to allow it to capture wake effects and enhance
its wind speed prediction skill. Then converting this cor-
rected wind speed to wind power using power coefficient
curves amounts to a power forecasting model we refer to as
ALO4_WFP_CP. No further quantile regression corrections
are applied here.

A second model, ALO4_NPN, uses the original ALO4
wind speed forecasts but converts them to power using NPN
(trained on ALO4 wind speed and wind direction data).

Finally, the third configuration is a combination of the first
and second, where NPN is trained on ALO4_WFP wind fore-
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Figure 3. ALARO 4 km runs with WFP switched off (left), switched on (middle), and difference (right) between the two runs, initialized on
17 February 2022 at 00:00 UTC, for lead time +24 h, with from top to bottom showing 50, 100, 150 and 200 m wind speed.

casts and then used to convert such ALARO with WFP wind
forecasts into power. We call this model ALO4_WFP_NPN.

Since ALO4_WFP forecast data was available from
1 June 2021 until 31 May 2024, we decided to train the
ALO4_NPN and ALO4_WFP_NPN on the full year of 2022,
and produce forecasts for the year 2023. All models are
therefore compared in the next section for the year 2023, in
fact between 1 January and 14 December 2023, due to some
missing power production data. We only consider forecasts
initialized at 00:00 UTC in this work, and for a lead time up
to 60 h.

Adv. Sci. Res., 22, 59-67, 2025

5 Validation results and discussions

5.1 Wind speed

Wind speed forecasts at turbine height from ALO4 and
ALO4_WFP were evaluated against lidar data from an
anonymous wind farm, with BIAS and RMSE shown in
Fig. 4. A clear benefit of the WFP is seen in terms of RMSE,
but with a negative BIAS of 0.5 ms ™!, while the model with-
out WFP has a positive BIAS of more than 1 ms~!. It’s pos-
sible the WFP has too strong wakes in certain cases, leading
to an underestimation of the wind speed on average. How-
ever, the lidar might also not see the full influence of wake
effects depending on the wind direction, due to its location,
inside the wind farm (at the offshore high voltage station).
We indeed see significant differences in BIAS, when split-
ting the results per wind direction, especially pronounced for
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ALO4_WEFP, see Fig. 5. These wake effects could be further
investigated using turbine SCADA data, but this is outside
the scope of the current study.

5.2 Wind power

Power forecasts aggregated for the BOZ, from ALO4_CP,
ALO4_WFP, ALO4_NPN and ALO4_WFP_NPN and eval-
uated against 15 min power production data from Elia are
shown in Fig. 6. One observes that each of the three new ap-
proaches improve upon the currently operational forecasts.
Using NPN to improve wind to power conversions seems to
outperform improving wind forecasts using a WFP but keep-
ing power curved based conversion. The most skilled model
is however the combination of the WFP improved wind fore-
casts with NPN based wind to power conversion.

Averaging the results over all lead times but splitting
them up per wind direction (from the model forecasts), see
Fig. 7, reveals that NPN manages to incorporate wake ef-
fects through the wind to power conversion. This is most
notable in the wind directions SE and NW, where there is
a large difference between ALO4 and ALO4_WFP. The fact
that WFP+NPN outperforms NPN on its own shows however
that the neural net benefits from taking wake corrected wind
forecasts as input, and needs further investigation. Also note
in Fig. 7 the relatively small wake effects in the SW direc-
tion, which is the most dominant wind direction, and a con-
sequence of the BOZ design. Another curious feature seen
in Fig. 7 is the worse performance of ALO4_WFP compared
to ALO4 when wind comes from the North, which might be
related to the nearby Borssele Wind Farm Zone and also de-
serves to be looked into further.

Our approach to machine learning (ML) wind power fore-
casting at farm level differs from another recently proposed
modular deep learning method (Ally et al., 2025) applied to
the BOZ, in at least two ways. First, we take as input NWP
forecasts (not SCADA data) to train the ML power model
and thus also automatically correct (at least partly) for NWP
forecast deficiencies. Two, we also consider as input NWP
models with a wind farm parameterization, which is not yet
widely available as operational forecast product, and thus
also take into account influence of nearby wind farms, e.g.
wake effects, blockage, etc., at the mesoscale resolution of
the NWP model. Note that the MAE scores of the NPN mod-
els in Fig. 6 are competitive with the 9 % MAE and 9.4 %
MAE mentioned in figure 36 of (Ally et al., 2025) for in-
traday (up to 12h lead time) and day-ahead (up to 36 h lead
time), respectively.

5.3 Storm Ciaran

A downside of the neural networks trained to optimize MAE,
seems to be a worse performance during extreme events, in
particular cut-out events due to large wind storms, which are
particularly interesting for the Belgian TSO. An example is
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shown in Fig. 8 for wind power forecasts at BOZ level dur-
ing storm Ciardn in November 2023. This was a case where
all wind farms in the BOZ shut down for some time, and
ALO4_CP and ALO4_WFP_CP forecasted this cut-out rel-
atively well, albeit with some timing error(s), while the neu-
ral network forecasts ALO4_NPN and ALO4_WFP_NPN
continued to forecast close to maximum production. This
may be due to the relatively few storms in the 2022 train-
ing data, although several large storms like Eunice were still
present, and/or due to the fact that false alarms or timing er-
rors of extreme events can lead to large (and double) penal-
ties in terms of MAE, thereby favoring more smoothed fore-
casts. While a simple solution would be to use ALO4_CP or
ALO4_WFP_CP when forecasted wind speeds are above a
certain threshold, other solutions are under investigation as
well. These include oversampling of cut-out events, use of
loss functions that give more weight to cut-out events, and
use of advanced ML-based techniques such as extreme gradi-
ent boosting (Chen and Guestrin, 2016) and temporal fusion
transformers (Lim et al., 2021).

To forecast events such as large wind power ramps and cut-
outs adequately, a probabilistic approach may be necessary,
with conversion to power performed with ML-based ensem-
ble postprocessing methods (Worsnop et al., 2018; Muschin-
ski et al., 2022; Bouallegue et al., 2024; Van Poecke et al.,
2024).

6 Conclusions and outlook

We implemented a WFP in RMI’s ALARO model, to take
into account wake effects in the densely build BOZ. To fur-
ther improve wind power forecasts, we also trained an arti-
ficial neural network, called NPN, giving NWP forecasts as
input and trained on power data from Elia. It was shown that
both the WFP and NPN are able to capture certain wake ef-
fects in the BOZ and improve forecast accuracy. Curiously,
giving NPN data from the NWP with WFP still leads to a fur-
ther improvement in forecast scores. Combining both meth-
ods thus gives the best results (on average), and leads to com-
petitive power forecast scores.

The method(s) should be extendable to other offshore clus-
ters. In particular the NPN models show that significant im-
provement in forecast scores can be attained when enough
power data to train is available, and that the impact of wake
effects can be included this way, even if they are not yet taken
into account in the (NWP) input data. Having NWP with
WFP as input data can still give extra benefits however, and
can also be useful to investigate wake impacts of nearby fu-
ture offshore zones being build, such as the planned Princess
Elisabeth Zone (PEZ) (Porchetta et al., 2024; Borgers et al.,
2025), Belgium’s second offshore wind zone.
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Figure 4. BIAS and RMSE of turbine height wind speed forecasts for ALO4 and ALO4_WFP, evaluated against lidar data from an anony-
mous wind farm in the BOZ, averaged over the period 1 January—14 December 2023.
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Figure 5. BIAS of turbine height wind speed forecasts for ALO4 and ALO4_WFP, evaluated against lidar data from an anonymous wind
farm in the BOZ, averaged over the period 1 January—14 December 2023, split per wind direction (all forecast lead times from 5 up to 24 h).

A downside of the current NPN models, is their tendency
to miss extreme events, like cut-outs due to high wind speeds,
or produce too smooth forecasts in these cases. Possible so-
lutions are under investigation, as discussed in the previous
section.

In a next step, we intend to implement the best power con-
version method (which should give both accurate power fore-
casts as well as capture cut-out events) in combination with
ALARO WFP into the operational RMI Storm Forecast Tool.

Further improving accuracy of high-impact events such as
wind power ramping (Gallego-Castillo et al., 2015), in addi-

Adv. Sci. Res., 22, 59-67, 2025 https://doi.org/10.5194/asr-22-59-2025



D. Van den Bleeken et al.: Improving wind power forecasts in the Belgian North Sea 65

Normalized wind power, BOZ, 20230101-20231214
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Figure 6. MAE of wind power forecasts for ALO4_CP, ALO4_WFP_CP, ALO4_NPN and ALO4_WFP_NPN, as a percentage of installed
capacity, verified against wind power production data aggregated at BOZ level, and averaged over the period 1 January—14 December 2023.
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Figure 7. MAE of wind power forecasts for ALO4_CP, ALO4_WFP_CP, ALO4_NPN and ALO4_WFP_NPN, as a percentage of installed
capacity, verified against wind power production data aggregated at BOZ level, and averaged over the period 1 January—14 December 2023,

split per wind direction (all forecast lead times from 5 up to 24 h).

tion to cut-out events, is another future priority, as the impact
on the Belgian electricity grid of ramping events due to off-
shore wind will increase significantly when the PEZ is being
developed (currently planned for 2028-2030).

Finally, work is also ongoing to include the ALARO WFP
implementation in the latest code cycles of the ACCORD
NWP consortium (previously ALADIN and HIRLAM), and
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into the operational workflow of the Destination Earth On-
Demand Extremes Digital Twin.

Data availability. The wind forecasts at wind farm level and
power forecasts at BOZ level are available under certain condi-
tions by contacting the corresponding author. Power production
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Storm Ciaran, BOZ, 00h run, Nov 2023
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Figure 8. Time series of wind power forecasts for ALO4_CP, ALO4_WFP_CP, ALO4_NPN and ALO4_WFP_NPN, for the period

1 November—2 November 2023, during storm Ciaran.

data at BOZ level with 15 min temporal resolution is available on
the Elia website (https://opendata.elia.be/explore/dataset/ods031/
information/, last access: 15 October 2025). Hourly power produc-
tion data per wind farm in the BOZ can be found on the ENTSO-E
Transparency Platform (https://transparency.entsoe.eu/, last access:
15 October 2025).
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