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Abstract. At MeteoSwiss an integrated modelling system is used to simulate the dispersion of radioactive
material in emergency situations. For the prediction of the atmospheric flow, the COSMO numerical weather
prediction model is used. The model is run operationally at 6.6 and 2.2 km horizontal resolution, respectively
and uses a 1.5 order turbulence closure with a prognostic equation for turbulent kinetic energy. Both versions
of the COSMO model are coupled off-line with a Lagrangian particle dispersion model (LPDM). The aim of
this study is to investigate the sensitivity of the dispersion model to different interfacing approaches between
LPDM and the COSMO model. The diagnosed turbulence variables are validated on an ideal convective
case and two measurement campaigns. Simulations of hypothetical pollutant releases show that the different
interfacing approaches can lead to substantial changes in the forecasted concentrations.

1 Introduction

Lagrangian particle dispersion models are among the most
sophisticated tools to simulate atmospheric dispersion of pol-
lutants. For this type of model the pollutant cloud is sim-
ulated by a large number (more than 100 000) of individual
particles. To be able to calculate the trajectories of each parti-
cle, information from the mean atmospheric variables as well
as from the turbulence state of the atmosphere is required. In
most operational systems, the mean meteorological variables
can directly be extracted from a numerical weather predic-
tion (NWP) model but turbulence characteristics have to be
parameterized. This is done by using a meteorological pre-
processor or interface. In the present study the sensitivity of
a dispersion model to different interfacing approaches will
be presented. First, the models used operationally at Me-
teoSwiss and two different diagnostic methods for turbulence
variables are described. Second, the validation of diagnosed
turbulence characteristics is presented and finally, the impact
on dispersion characteristics is studied on a hypothetical pol-
lutant release.
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2 Methodology

At MeteoSwiss an integrated modelling system is used to
simulate the dispersion of radioactive material in emergency
situations. In this system the COSMO numerical weather
prediction model is used for the prediction of the atmo-
spheric flow. The COSMO model is a limited-area numer-
ical weather prediction model (Doms and Schaettler, 2002)
which is being developed in the framework of the COSMO
consortium (COnsortium for Small-scale MOdelling). At
MeteoSwiss the COSMO model is run operationally at two
horizontal resolutions. COSMO-7 has a horizontal resolu-
tion of 6.6 km and is integrated for 72 h twice a day on a
European domain. COSMO-2 has a 2.2 km horizontal res-
olution and provides 24 h forecasts eight times a day for a
smaller domain covering Switzerland. For the parameteri-
zation of atmospheric turbulence the COSMO model uses
a one-and-a-half order closure (Buzzi et al., 2009), which
corresponds to level 2.5 in the Mellor and Yamada nota-
tion (Mellor and Yamada, 1982). This closure type carries a
prognostic equation for turbulent kinetic energy (TKE). The
COSMO model predicts all the meteorological parameters
(e.g. wind and temperature profiles) which are relevant for
dispersion modelling with high accuracy. At MeteoSwiss the
COSMO model is continuously verified against radio sound-
ings (Arpagaus, 2005) and surface observations (Kaufmann,
2005).
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The model used for the calculation of pollutant disper-
sion in an emergency situation is the Lagrangian Particle
Dispersion Model (LPDM), which was developed by Glaab
et al. (1996) at the German Weather Service (DWD). In
LPDM the trajectory of each particle is calculated using the
actual wind speed at the position of the particle, which is
decomposed into a mean and a turbulent component. The
mean wind component is taken directly from the COSMO
model, while the turbulent component is computed using
the Langevin equation (Legg and Raupach, 1982). Evalua-
tion of this equation requires the following turbulence vari-
ables at the particle’s position: autocorrelation function and
the Lagrangian timescale (parameterized according to Taylor
(1921), and the standard deviation of the wind fluctuations
(σk). The latter are derived from the turbulent kinetic energy
(e), which is taken directly from the COSMO model:

σk =
√

2mke, (1)

wheremk is the portion of TKE for the given coordinate di-
rection. In the standard application of LPDM the vertical
portion of TKE is determined according to:

mw =
σ2

w

2e
=

1
3
− 2Lc

1+ 2Rf

1− Rf
. (2)

Rf is the flux Richardson number andLc=0.052 is the ratio of
the vertical and horizontal diffusion length scales. In LPDM
a horizontally isotropic turbulence is assumed, which leads
to:

mu = mv =
1
2

(1−mw). (3)

Standard deviations of velocity fluctuations derived accord-
ing to this approach will be further referred to as the “Direct”
method.

A different approach to diagnose the turbulence variables
for a dispersion model is to apply similarity theory considera-
tions. In this case usually the surface fluxes and a diagnosed
planetary boundary layer (PBL) height is needed from the
NWP model. This approach is used e.g. in the Lagrangian
dispersion model FLEXPART (Stohl et al., 2005). In the
FLEXPART model the turbulence characteristics are param-
eterized according to Hanna (1982). In this approach for the
diagnosis of turbulence characteristics the boundary layer pa-
rametersh, L, w∗, z0 andu∗ are used, i.e. the PBL height, the
Obukhov length, the convective velocity scale, the roughness
length and the friction velocity, respectively. During unsta-
ble conditions the standard deviations of wind fluctuations
are computed as:

σu

u∗
=
σv

u∗
=

(
12+

h
2 |L|

)1/3

(4)

σw

w∗
=

[
1.2

(
1− 0.9

z
h

) ( z
h

)2/3
+

(
1.8− 1.4

z
h

)
u2
∗

]1/2

. (5)

For stable conditions standard deviations are assumed to de-
crease linearly with height:

σu

u∗
= 2.0

(
1−

z
h

)
(6)

σv

u∗
=
σw

u∗
= 1.3

(
1−

z
h

)
. (7)

Standard deviations of the wind fluctuations derived accord-
ing to this approach will be further referred to as the “Hanna”
method. To be able to use similarity theory approaches for
the determination of dispersion parameters, first the PBL
height has to be diagnosed from COSMO model outputs.
Several methods have been tested for this purpose, using,
e.g., the bulk and gradient Richardson number, a TKE crite-
rion or criteria on heat and momentum fluxes from the model.
Various theoretical approaches for the evolution of both the
stable and convective PBL have been investigated over the
years. For the stable case the diagnostic multi-limit formula-
tion by Zilitinkevich et al. (2007) is used in the present study,
while in the convective case the prognostic slab model of
Batchvarova and Gryning (1991) is applied. Results were
validated with profiles from five radio sounding stations over
a one-month period (Fig. 1). Overall, methods based on
the bulk Richardson number and momentum fluxes of the
COMSO model yield good agreement with measurements
(Szintai and Kaufmann, 2008). PBL heights diagnosed form
TKE profiles are considerably overestimated. For the present
purpose both approaches (the bulk Ri and the TKE meth-
ods) to determine the boundary layer heights are employed
in Sect. 4 as a sensitivity test.

3 Validation of turbulence characteristics

The diagnosed turbulence variables are validated on several
measurement data sets, before applying them to the disper-
sion model. First, an ideally convective case is investigated,
which is described in Mironov et al. (2000). The setting for
this simulation was a horizontally homogeneous and flat ter-
rain with constant heating rate at the bottom. In the simula-
tion no phase changes were considered (dry case) and wind
shear was neglected. For this case the Large Eddy Simulation
(LES) data set is available that contains all the necessary tur-
bulence characteristics, which can be compared to single col-
umn runs of the COSMO model. Figure 2 shows profiles of
the standard deviations of wind fluctuations after the steady
state was achieved in the simulation. In the horizontal direc-
tion the standard deviation is considerably overestimated by
the “Hanna” approach throughout the whole PBL, while the
“Direct” approach gives good results, especially in the mid-
dle of the PBL. As wind shear was neglected in the simula-
tion, the along-wind and cross-wind standard deviations are
identical. The vertical standard deviation is simulated well
by both methods: However, in the upper PBL the “Hanna”
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Figure 1. Relative root mean square error (RMSE) of the diagnosed PBL height from the 

COSMO-7 (blue) and COSMO-2 (red) model for a one-month period in March 2008. Model 

results are validated with 5 radio sounding stations in Europe. Left: unstable situations, right: 

stable situations. Methods: gradient Ri number method (“Ri”), bulk Ri number method (“Bulk 

Ri”), TKE profile (TKE_rel), Momentum flux profile (“Mom. Flux”), heat flux profile (“Heat 

flux”), Slab model, Zlitinkevich method (“Zil.”). Applied thresholds for the different methods 

are indicated in parentheses.  
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Figure 2. Profiles of the(a) horizontal and(b) vertical standard
deviations of wind fluctuations for the ideal convective case. Tur-
bulence variables are diagnosed with two different approaches (“Di-
rect” and “Hanna”) from single column simulations of the COSMO
model. The reference is output from LES simulations according to
Mironov et al. (2000).

method overestimates while the “Direct” method underesti-
mates the LES values. It has to be noted, that in the case
of the “Hanna” approach, the bulk Richardson number was
used to determine the PBL height, which show good agree-
ment with the PBL height evaluated subjectively from the
heat flux profile of the LES.

Diagnosed turbulence variables were furthermore evalu-
ated on the LITFASS-2003 measurement campaign (Beyrich
and Mengelkamp, 2006). In this case both the single col-
umn and the full three dimensional version of the COSMO
model were used. In the case of the single column model,

simulations were initialized with the measured soil temper-
ature and moisture profiles and the radio sounding. In the
case of the three dimensional model a long term (1 month)
run was performed with the standalone version of the soil
module of COSMO to produce a correct soil analysis. The
single column and the 3-D runs gave similar results consider-
ing turbulence characteristics. The model results were com-
pared to surface micrometeorological measurements and to
turbulence data from a 100 m high tower. Figure 3 presents
verification results of the single column model for the stan-
dard deviations of horizontal and vertical wind fluctuations
at 90 m height. It can be noted, that the “Hanna” approach
always predicts higher turbulence values than the “Direct”
approach. In the case of horizontal wind fluctuations the
measured turbulence intensity lies between the two predicted
values. For the vertical fluctuations the “Direct” gives ac-
curate values while the “Hanna” approach overestimates the
measured turbulence intensity, especially during daytime.

The diagnosed turbulence characteristics were also eval-
uated on a MeteoSwiss measurement campaign using four
sonic anemometers near Swiss nuclear power plants (CN-
Met campaign). Operational forecasts of the COSMO-2
model were evaluated on a three month period between
1 August 2008 and 31 October 2008. The verification re-
sults show an overall good performance of the COSMO-2
model (Fig. 4), with all the selected turbulence parameters
being in an acceptable range (20–30% relative bias). Tur-
bulent kinetic energy, which is the only turbulence related
model variable in COSMO, is generally underestimated by
the model, except for the Beznau site, where the model grid
points are characterized by significantly higher roughness
lengths, compared to other sites. Very good performance
was observed in the case of vertical turbulence, which is the
most important turbulence variable with respect to mesoscale
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Figure 3. Time series of the standard deviations of cross-wind (left) and vertical (right) wind fluctuations at 90 m height for 30 May 2003
in Falkenberg, Germany (time in UTC). Red and yellow lines: COSMO single column simulations (“Hanna” and “Direct” approach). Black
line: tower turbulence measurements.

 

 

Figure 4. Relative bias (upper panel) and relative standard de-
viation (lower panel) scores for the four measurement sites (in
different colours). Verified parameters: wind speed, standard
deviation of horizontal and vertical wind fluctuations (“Direct”
approach: sigmax, sigmay and sigmaz; “Hanna” approach:
sigmau, sigmav, sigmaw), Turbulent Kinetic Energy (TKE).

dispersion modelling. The standard deviations of horizontal
wind speed are not so well predicted, as that for the vertical
component. The “Hanna” method shows slightly better per-
formance than that based on the direct use of TKE from the
COSMO model.

4 Impact on dispersion

In order to study the impact on dispersion characteristics,
the two different interfacing approaches are introduced to
the emergency system applied at MeteoSwiss, and the im-
pact is evaluated on hypothetical case studies. In the fol-
lowing, the case study of 8 September 2008 will be pre-
sented. As the simulated concentrations cannot be com-
pared to measurements, we will compare the different sim-
ulations to each other and investigate the relative differ-
ence. The synoptic situation was characterized by an an-
ticyclone over Central-Europe, which caused weak south-
westerly flow over Switzerland. Due to the calm winds and
the lack of precipitation, turbulence potentially plays a sig-
nificant role in the dispersion of pollutants. Three differ-
ent simulations were made with the COSMO-7 – LPDM
system for this case. First, the “Hanna” approach was ap-
plied with PBL heights determined with the bulk Richard-
son number method. In the second case, the “Hanna” ap-
proach was used again, but with PBL heights determined
from TKE profiles. In the third case, the “Direct” approach
was used, which does not use the PBL height explicitly as
input variable for the turbulence calculations. The hypothet-
ical release of Cs-137 was made in northern Switzerland on
8 September 2008 between 00:00 UTC and 06:00 UTC, with
an emission rate of 46290 MBq/s, and the pollutant transport
was calculated for 18 h. Figure 5 shows the forecasted near-
surface (below 500 m a.g.l.) mean concentration fields for the
three simulations on 8 September 2008 18:00 UTC. Highest
concentrations (maximum: 258 Bq/m3) occur in the case of
the first simulation (“Hanna” with Ribulk). If PBL heights
are derived from TKE profiles, the resulting cloud is more
dispersed, and smaller concentrations (max: 163 Bq/m3) are
predicted. The lowest concentrations (max: 81 Bq/m3) are
simulated with the “Direct” approach. Comparing only
the first two simulations, it is observed that changing the
diagnostic approach for the PBL height leads to a differ-
ence in maximum concentrations by a factor of about 1.6.
This is due to the fact, that PBL heights diagnosed from
TKE profiles are higher than those calculated with the bulk
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Figure 5. Forecasted near-surface (below 500 m AGL) mean concentration fields by the 

COSMO-7 – LPDM system for 8 September 2008 18 UTC (18 hour forecasts, hypothetical 

case). Simulations differ from each other in the interfacing approach applied: (a) “Hanna” 

approach with PBL heights determined with the bulk Richardson number method; (b) 

“Hanna” approach with PBL heights determined from TKE profiles; (c) “Direct” approach. 
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Figure 5. Forecasted near-surface (below 500 m a.g.l.) mean concentration fields by the COSMO-7 – LPDM system for 8 September 2008
18:00 UTC (18 h forecasts, hypothetical case). Simulations differ from each other in the interfacing approach applied:(a) “Hanna” approach
with PBL heights determined with the bulk Richardson number method;(b) “Hanna” approach with PBL heights determined from TKE
profiles;(c) “Direct” approach. 

 

 

Figure 6. Mixing heights (m AGL) diagnosed from outputs of the COSMO-7 model for three 

times indicated on 8 September 2008. Left: bulk Richardson method; right: mixing heights 

diagnosed from TKE profiles. 
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Figure 6. Mixing heights (m a.g.l.) diagnosed from outputs of the COSMO-7 model for three times indicated on 8 September 2008. Left:
bulk Richardson method; right: mixing heights diagnosed from TKE profiles.
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Richardson number method (Fig. 6). Since the “Direct” ap-
proach implicitly contains a PBL height definition based on
TKE, the third simulation should be compared to the sec-
ond one. The difference between these two runs is due to
the different interfacing approach. For the case investigated,
the “Direct” approach results in lower maximum concentra-
tions by a factor of 2. This can mainly be traced back to the
stronger near-surface turbulence diagnosed in this approach.

5 Conclusions

The impact of two different interfacing approaches on dis-
persion has been studied with the COSMO–LPDM system
operationally used at MeteoSwiss. One of the interfacing ap-
proaches estimates velocity variances directly from the TKE
profile of the COSMO model (“Direct”), while the other em-
ploys similarity relations (“Hanna”) and thus requires the
boundary layer height as an input. An extensive validation
exercise for methods to diagnose the PBL height had ren-
dered methods based on the bulk Richardson number or mo-
mentum flux profiles of the NWP model as the two best
approaches. The diagnosed turbulence variables are evalu-
ated on three turbulence measurement campaigns, with the
“Hanna” approach performing slightly better. Simulations
of hypothetical pollutant releases showed that the different
interfacing approaches can lead to substantial changes in
the forecasted concentrations. It is planned to evaluate the
COSMO-LPDM system on real dispersion experiments to
further investigate the relative performance of the two inter-
facing methods.
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