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Abstract. Tornado vortex is believed to be essentially nonlinear phenomenon; and the puzzle to choose the
nonlinear term(s) responsible for its formation is still unresolved. In the present work we consider the non-
linear term associated with atmosphere humidity, by introducing variable temperature gradient depending on
the vertical velocity of the fluid. Such term is able to yield energy to the system and is very suitable for such
a problem. Other nonlinear terms are neglected, assuming slow rotation, or in other words a “weak” tornado
approximation. We consider one-dimensional radial boundary problem, and use a modificaiton of shooting
method to satisfy boundary conditions at large radii. Obtained numerical solutions of the nonlinear differential
equation qualitatively agree with the observed atmosphere vortices (tornados, tropical cyclones). The obtained
results show general possibility of existence of unstable motion even in convectively stable atmosphere strati-
fication.

1 Introduction

Formation mechanisms and internal structure of severe at-
mospheric vortices have been important questions over the
past decades. In spite of their importance for both theory and
applications, there is no satisfactory theory of tornado struc-
tures (Doswell and Burgess, 1993) and recently there is a
tendency towards collection of observational data or numer-
ical simulation of the phenomenon (Bluestein et al., 1997;
Bluestein and Pazmany, 2000; Bluestein and Weisman, 2000;
Lehmiller et al., 2001).

The problem of tornado formation appears to be com-
plicated from both principal and technical points of view.
Tornado descends from a long-living rotating thunderstorm
cloud. Having appeared from the cloud the funnel narrows
in its upper part and dynamically stretches in the bottom
part, however the middle part of the tornado column remains
cylindrical and almost unchanged during the entire lifetime
of the funnel. Such structure is especially pronounced for
weak tornadoes (Davies-Jones, 2001), i.e. for tornadoes with
high ratio of the height to the diameter. Mathematical model
of the middle part of tornado should have a steady-state so-
lution or solution with very low growth rates.
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It is commonly accepted that tornado solution cannot be
derived from linear system of equations (continuity, Navier-
Stokes, entropy) and therefore it is believed that tornado
is described by a set of nonlinear hydrodynamic equations.
However, it is still unclear which non-linear processes are
responsible for its formation. Indeed, the inertia non-linear
terms (v∇)v lead to energy dissipation, therefore cannot be
the energy source of the system. Other non-linear terms have
the same problem, since they do not introduce energy in the
system.

Renno and Ingersoll(1996) described convection in the
atmosphere as a heat engine between warm surface (due to
solar radiation) and cold troposhpere, this assumption im-
plies heat accumulation and release by means of black-body
radiation. However, continuous and powerful source of en-
ergy observed in tornadoes and cyclones has to come from
a source much more efficient than the black body radiation
or heat conductivity. One of possibilities is to use latent heat
of water vapor as the source, since vapor content in the air
is widely spread in the atmosphere, phase transitions occur
fast, and the specific condensation energy is high. In this
work we imply a mechanism of the latent heat release by
varying the vertical temperature profiles in different parts of
the tornado structure. Unlike a heat engine, the process is
not reversible. Indeed, at different points the tornado has ei-
ther upward or downward air flows. These flows naturally
contain saturated vapor from the surface or dry air from the
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troposphere, respectively. The upwards fluid flow transports
the vapor, which constantly condenses and releases the heat
at all levels. Therefore the vertical temperature profiles in
these two flows are essentially different. As it will be shown
later, such system has a stable configuration with strong ver-
tical and azimuthal velocity components.

2 Formulation of the problem

We start from the full system of hydrodynamic equations for
compressible fluid, consisting of continuity equation, Navier-
Stokes equations, and entropy balance (Landau and Lifshitz,
1987):

∂ρ

∂t
+∇(ρv)=0, (1)

∂v
∂t
−ν∇2v+ (v·∇)v=−

∇P
ρ
+2Ωez×v+ezg, (2)

∂s
∂t
+ (v·∇)s=

χcP

T
∇2T, (3)

where thermal diffusivity coefficient χ=k/(cPρ) is used in-
stead of the thermal conductivityk, andcP is specific heat
capacity of air at constant pressure;ν is the kinematic tur-
bulent viscosity,ezΩ is the vector of angular velocity of the
rotating mothercloud, andv is the fluid velocity. Although
we describe compressible fluid, we have neglected in Eq. (2)
the term with bulk viscosity for simplicity.

We introduce cylindrical coordinates with unit vector
ez directed upward. Following the standard linearization
procedure (Landau and Lifshitz, 1987), density, pressure
and temperature are represented asρ(r,z)=ρ0(z) + ρ1(r,z),
P(r,z)=P0(z) + P1(r,z) and T(r,z)=T0(z) + T1(r,z), respec-
tively. Here the steady-state adiabatic profiles of thermody-
namic functions are denoted by index 0, and their small per-
turbations by index 1. The linearization procedure requires
perturbations to be small compared to the steady-state values
i.e. “weak” tornado.

The steady-state profiles are determined in an assump-
tion of zero velocities, implying the temperature profiles are
close to adiabatic. The corresponding set of equations con-
tain steady-state Navier-Stokes equations∇P0+ ezgρ0 = 0,
the perfect gas lawP0= ρ0RT0, and the steady-state entropy
balance equation:∇2T0=0. Solution of the latter equation is
a linear temperature profile, which we postulate as

T0(z)=T00+γz=T00+ (γa+γ
′)z, (4)

where T00=T0(0) is the temperature value near the sur-
face, γa=−g/cP is a well known neutral adiabatic gradi-
ent of dry atmosphere, andγ′ is the deviation of the cho-
sen steady-state gradientγ from the neutral profileγa,
g is the gravity acceleration. According to our steady-
state assumption the deviation is small:γ′�γa, and pos-
itive value of γ′ corresponds to convectively stable atmo-
sphere. Substituting temperature profile (Eq.4) into steady-
state Navier-Stokes equations one can derive the pressure

P0(z)=P00[T0(z)/T00]−g/(Rγ)≈P00[T0(z)/T00]κ/(κ−1), and den-
sity ρ0(z)=ρ00[T0(z)/T00]−g/(Rγ)−1≈ρ00[T0(z)/T00]1/(κ−1), pro-
files whereκ= cP/cV is the ratio of specific heats. Notice the
density derivative

1
ρ0

∂ρ0

∂z
=−

g
c2
, (5)

wherec(z)=
√
κRT0(z) is the sound velocity.

Linearization with the steady state Eqs. (4)–(5) leads to the
following linearized system of hydrodynamic equations:

∂ρ1

∂t
+vz

∂ρ0

∂z
+ρ0∇·v=0, (6)

∂v
∂t
−ν∇2v+

∇P1

ρ0
+

gezρ1

ρ0
+2Ωez×v=0, (7)

∂P1

∂t
−c2∂ρ1

∂t
+κRρ0γ

′vz= χκ∇
2P1−c2χ∇2ρ1−2Rκχγa

∂

∂z
ρ1

ρ0
. (8)

To derive the last equation we have used the perfect gas
entropy ass=cPln(T/T00)−Rln(P/P00), substituted here the
pressure and temperature profiles, expressed the temperature
through the pressure and density using the perfect gas law,
and finally substituted this entropy into Eq. (3).

Now we are constructing a steady-state (∂/∂t=0), isotropic
(∂/∂θ=0), and vertically homogeneous (∂/∂z=0) solution of
the linearized system (Eqs.6–8). It is convenient to express
velocity in terms of potential, toroidal, and poloidal fields
(Rutkevich and Rutkevych, 2009):

v=∇Φ+∇× (ezψ)+∇× (∇× (ezϕ)), (9)

whereΦ(t,r), ψ(t,r) andϕ(t,r) are the potentials of the above
mentioned velocity components. In terms of these variables
the set of Eqs. (6)–(8) becomes

∆Φ+
g
c2
∆ϕ=0, (10)

−ν∆∆Φ+
∆P1

ρ0
+

g2

c2

ρ1

ρ0
+2Ω∆ψ=0, (11)

−ν∆∆ψ−2Ω∆Φ=0, (12)

−ν∆∆∆ϕ+
g
c2

∆P1

ρ0
−

g
ρ0
∆ρ1=0, (13)

−κRγ′(vz)ρ0∆ϕ−χκ∆P1+χc2∆ρ1=0, (14)

where ∆ = ∇2
r =

1
r
∂
∂r

(
r ∂
∂r

)
is the radial component of the

Laplace operator. The system of ordinary differential
Eqs. (10)–(14) describes the radial profiles of the thermo-
dynamic parameters and velocities at any given heightz=z0,
i.e. at given densityρ0(z0) and sound velocityc(z0).

As it has been already mentioned in the introduction, only
one non-linear term is considered, namely the dependence of
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the temperature profile on the vertical velocity of the fluid.
In this work we use a simple approximation

γ′(vz)= γ0+γ1
vz

vT
, (15)

whereγ0>0 is the temperature gradient of stable dry atmo-
sphere, coefficientγ1<0 accounts for the temperature profile
in moist air, andvT is the velocity normalization coefficient.
For sufficiently high vertical velocityvz the total temperature
gradient (Eq.15) becomes negative (i.e. convectively unsta-
ble).

3 Convection without rotation

In non-rotational (Ω→0) and incompressible (c→∞) fluid
the system Eqs. (10)–(14) reduces to one equation for the
poloidal velocity potentialϕ:

∆2ϕ+
gγ′

T0(z0)νχ
ϕ=0. (16)

Other velocity components, pressure and density can be de-
rived from the solution of Eq. (16). Now we substitute the
temperature gradient (Eq.15) in Eq. (16), expressvz in terms
of ϕ by means of Eq. (9), and obtain the following nonlinear
equation

∆2ϕ+
gγ0

T0(z0)νχ

(
ϕ−

γ1

γ0

ϕ∆ϕ

vT

)
=0, (17)

or in dimensionless variables

∆2
x f + f − f∆x f =0, (18)

wherer = λx andϕ=C f , and

λ=

(
T0(z0)χν

gγ0

)1/4

, C=
γ0

γ1
λ2vT , ∆x=

1
x
∂

∂x
x
∂

∂x
. (19)

Note, that according to this definition the coefficientC is neg-
ative. The unknown functionf (x) has to be a regular func-
tion of its argument, therefore solution of Eq. (18) can be
expanded in a Taylor series nearx=0:

f (x,A,a2)=A

1+a2x2+

∞∑
j=2

a2 j x
2 j

, (20)

where only two coefficients are independent. Indeed, one can
easily check that coefficientsa4, a6, etc, can be recursively
expressed in terms of parametersA anda2 using Eq. (18).
Construction of the solution (Eq.20) for largex is computa-
tionally intensive due to fast divergence of the series, there-
fore we use 4-th order Runge-Kutta method to build a numer-
ical solution of Cauchy problem for the 4-th order ordinary
Eq. (18), using the values of functionf (x) and its deriva-
tives at pointx=0.1, as calculated from the Taylor expansion
(Eq.20). It appears impossible to apply Runge-Kutta method
from x=0 due to singularity of the Eq. (18).
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nonlinear equation (18) in non-rotational fluid.
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Figure 2. The best approximation of dimensionless poloidal veloc-
ity profile f (x). The values of the parametersA anda2 in the Taylor
expansion (20) correspond to the position of the peak in Fig.1.
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Figure 1. Profile of thexm versus the parametersa2 andA. The
peak position indicates the best approximation of the solution of the
nonlinear Eq. (18) in non-rotational fluid.

For arbitrary values of parametersA and a2 solution
(Eq. 20) diverges even for moderatex. However, the lo-
calized solution of our interest here should have a non-zero
value near the axis, gradually vanish at medium distance
from the axis, and uncontrollably grow far away from the
axis due to numerical errors. We denotexm(A,a2) the maxi-
mum value of dimensionless radius in the far-away rangex>
10, where the solution is small enough| f (xm,A,a2)| < b|A|.
Hereb is a fixed number in the range 0< b< 1, and the “far-
away” radiusx=10 corresponds tor =700 m, which we sup-
pose sufficiently large. Let us denoteA0 anda2,0 the values of
parametersA anda2, corresponding to the solution (Eq.20)
vanishing atx→∞. It is clear that functionxm(A,a2) defined
above should go to+∞, asA→A0, a2→a2,0.

Equation (18) has to be solved numerically, therefore the
exact values (A0,a2,0) are hardly obtainable, however, one
can approximate the solution by choosing parameters (A,a2),
which give large enough value for the functionxm(A,a2).
In this case the best solution would be the solution with
the biggest value ofxm. In our numerical scheme the co-
efficientsA anda2 were varied simultaneously (see Fig.1)
to obtain maximum value ofxm(A,a2). The sharp peak on
the plot corresponds to the best approximation of solution
f (x,A0,a2,0) of the nonlinear equation (18). The position
of the peak is atA≈−3.3641719 anda2≈−0.265424, giv-
ing the maximum dimensionless radiusxm≈25. The corre-
sponding solution of dimensionless poloidal potentialf (x) is
shown in Fig.2. Corresponding velocity profiles (vr ,vθ,vz)
are plotted in Fig.3 for the following values of parameters:
g= 9.8 ms−2, ν = χ = 30 m2 s−1, γ0 = 10−3 km−1, γ1 = −10−3

km−1, vT =1 ms−1, κ=1.4, T0=280 K,c=335 ms−1.
It should be noted here, that strictly speaking the radial

and azimuthal velocity components (vr andvθ) are not so-
lutions of the full system of hydrodynamic Eqs. (10)–(14),
since in non-rotational case the system significantly simpli-
fies. However, one can formally derive the profiles of all

www.adv-sci-res.net/4/77/2010/ Adv. Sci. Res., 4, 77–82, 2010
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Figure 2. The best approximation of dimensionless poloidal ve-
locity profile f (x). The values of the parametersA anda2 in the
Taylor expansion (Eq.20) correspond to the position of the peak in
Fig. 1.

velocity components from the known profile off (x), using
definition (Eq.9) and system (Eqs.10–14) as:

v=er
g|C|
c2λ

∂ f
∂x
−eθ

2Ωgλ|C|
νc2x

x∫
0

x′ f (x′)dx′+ez
|C|
λ2
∆x f . (21)

Azimuthal component of the velocity is proportional to the
rotation speed of the mothercloud. The profile ofvθ in Fig. 3
has been plotted forΩ = 0.1 s−1. For the chosen values of
parameters the radial and azimuthal components are signifi-
cantly smaller than the radial component. This fact is in ac-
cordance with the initial assumption of non-rotational fluid
(Ω→0). Noteworthy, that the radial velocity of the fluidvr is
positive near the axis, indicating continuous expansion of the
gas during its upwards movement.

Another noteworthy conclusion is that the dimensional pa-
rameterλ decreases with decreasing temperature (Eq.19).
This means that for other constant conditions the radius of
the tornado column decreases with hight. However, this ef-
fect is of the order of 1–2% for temperature variation of±5%
(i.e. tornado height below 2 km).

4 Convection with rotation

Taking into account compressibility of the gas (i.e.c,∞) and
its rotation (Ω,0), one can reduce the linearized system (10)–
(14) to a single high-order ordinary differential equation for
the poloidal fieldϕ. Again we assume vertically homoge-
neous (∂/∂z=0), isotropic (∂/∂θ=0), and stationary (∂/∂t=0)
system. Using the same dimensionless units (Eq.19) the
equation reads as

∆x
[
∆x∆x f (x)+ f (x)− f (x)∆x f (x)

]
−Q f(x)=0, (22)
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proximation. Values of parameters are listed at the end of Sect.3.
Notice a factor in front of the radial velocity componentvr .

where dimensionless parameterQ= (κ− 1)(2Ωgλ3)2ν−2c−4

characterizes the Coriolis force and compressibility. Clearly,
in the caseQ=0 one obtains Eq. (18).

Due to 6-th order of Eq. (22), the expansion coefficientsa6,
a8 etc. can be derived from givenA, a2, a4, therefore the solu-
tions now form a three-parameters setf (x;A,a2,a4), making
the numerical search procedure significantly more compli-
cated. To solve Eq. (22) we apply the procedure described in
Sect.3, including Taylor series expansion in the vicinity of
x=0 and Runge-Kutta numerical solution fromx=0.1. Due
to higher noise in the function, the values of the three inde-
pendent parameters have been varied to achieve the smallest
possible value of integral

∫ x2

x1
f (x)2dx, instead of the max-

imum xm described earlier. This choice of the convergency
condition reflects the fact, that the absolute value of the func-
tion f should be the smallest in the medium range of radii.
Figure4 shows the best numerical solution, which we have
found in such a way, usingx1=8, x2=14, and givenQ=0.1.
The solution corresponds to the following set of parameters:
A≈11.29547,a2≈−5.454639,a4≈−2.179057. One can see,
that the found solution diverges atxm≈13.

The radial and vertical velocity components can be ob-
tained from the potential profilef (x) using Eq. (21), while
for the azimuthal profile one has to solve differential equa-
tion

∂vθ(r)
∂r
+
vθ(r)

r
+

2Ωg
νc2

ϕ(r)=0. (23)

Velocity profiles are plotted in Fig.5. The air motion has
several important features, namely updrift in the central area,
relatively small radial velocity, and azimuthal velocity has
maximum at approximatelyx≈8. The azimuthal velocity in
axially-symmetrical system is the parameter with the slowest
radial convergency, because it is limited only by the viscosity

Adv. Sci. Res., 4, 77–82, 2010 www.adv-sci-res.net/4/77/2010/



P. B. Rutkevich and P. P. Rutkevych: Tornado-type stationary vortex with nonlinear term due to moisture transport 81

P.B. Rutkevich and P.P. Rutkevych: Tornado-type stationary vortex with nonlinear term due to moisture transport 5

 3.36

 3.364

 3.368

 3.372

-0.2661-0.2657-0.2653-0.2649

 10

 15

 20

 25

Figure 1. Profile of thexm versus the parametersa2 and A. The
peak position indicates the best approximation of the solution of the
nonlinear equation (18) in non-rotational fluid.

-4

-3

-2

-1

 0

 0  5  10  15  20  25

P
ol

oi
da

l v
el

oc
ity

 p
ot

en
tia

l f(
x
)

Dimensionless radius, x

f(x)

Figure 2. The best approximation of dimensionless poloidal veloc-
ity profile f (x). The values of the parametersA anda2 in the Taylor
expansion (20) correspond to the position of the peak in Fig.1.

 0

 1

 2

 3

 0  5  10  15  20  25

V
el

oc
ity

 c
om

po
ne

nt
s,

 m
 s-1

Dimensionless radius, x

10 × vr
vθ
vz

Figure 3. Profiles of velocity components in a non-rotational ap-
proximation. Values of parameters are listed at the end of Section
3. Notice a factor in front of the radial velocity componentvr.

-125

-100

-75

-50

-25

 0

 25

 50

 0  4  8  12

P
ol

oi
da

l v
el

oc
ity

 p
ot

en
tia

l f(
x
)

Dimensionless radius, x

f(x)

Figure 4. Profile of dimentionless potential fieldf (x) with rotation.
The values of parameters are the same as the non-rotational case,
except the Coriolis parameterΩ=0.23s−1.

www.adv-sci-res.net Adv. Sci. Res.
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Figure 5. Profiles of velocity components with rotation, parameter
values are the same as in Fig.4.

of the fluid. In our simulation the azimuthal velocity changes
the sign and infinitely increases, however we suppose this is
an artifact of the numerical method. The expected conver-
gency region of the azimuthal velocity is in the rangex≥ x2,
where the profilef (x) used in Eq. (23) has large errors. The
actual profile of azimuthal velocity, which can be regarded as
fine-tuning of the solution, is a subject of further study.

The coefficient λ used for dimensionless radii (Eq.19)
equals to 70 m for the chosen values of parameters. There-
fore one can conclude, that the main upward air stream in
Fig. 3 has radius slightly more than 100 m. Although this
value is relatively large for a tornado, the model does not in-
clude the rotation, which is likely to sharpen the structure.
Indeed, solution with rotation in Fig.5 has the radius of the
upwards flow less than 70 m, which is very close to a typical
tornado size (Davies-Jones, 2001).

The absolute value of velocity of 3 ms−1 in non-rotational
case is reasonable, since effectively this is the velocity of a
free localized convection in atmosphere. Account of rotation
in the system leads to dramatic growth of velocity, especially
its vertical component. This suggests that a model of tornado
must include other non-linear dissipating terms to suppress
the fluid flow.

5 Conclusions

The proposed one-dimensional vertically-homogeneous
model cannot be applied to the tornado funnel near the moth-
ercloud, or to the turbulent area near the ground surface. The
model is applicable at the middle level of a weak tornado,
where the shape of the column changes slowly in space and
time. The model shows that the system of linearized hydro-
dynamic equations can have a stable solution with only one
non-linear term. Since the full system of equations has sev-
eral important non-linear terms (including viscosity and cen-
trifugal force) this paper cannot be regarded as the final solu-
tion of the hydrodynamic system or as a complete theory of
tornado. However, the results show, that a steady-state con-
figuration is possible even in convectively-stable atmosphere.

Proposed non-linear effect related to asymmetric vapor
transport in a “weak” tornado-like structure introduces the
source of energy, which can be the true mechanism in natural
intensive vortices. Obtained structures have all features
of real tornadoes/cyclones, however estimations show that
the size of the solution is closer to the size of tornado. We
expect, that accounting other non-linear terms (which are
usually dissipating) in the full system of equations will lead
to stabilization of the solution and especially far from the
axis.
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