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Abstract. Tornado vortex is believed to be essentially nonlinear phenomenon; and the puzzle to choose the
nonlinear term(s) responsible for its formation is still unresolved. In the present work we consider the non-
linear term associated with atmosphere humidity, by introducing variable temperature gradient depending on
the vertical velocity of the fluid. Such term is able to yield energy to the system and is very suitable for such
a problem. Other nonlinear terms are neglected, assuming slow rotation, or in other words a “weak” tornado
approximation. We consider one-dimensional radial boundary problem, and use a modificaiton of shooting
method to satisfy boundary conditions at large radii. Obtained numerical solutions of the nonliferantal
equation qualitatively agree with the observed atmosphere vortices (tornados, tropical cyclones). The obtained
results show general possibility of existence of unstable motion even in convectively stable atmosphere strati-
fication.

1 Introduction It is commonly accepted that tornado solution cannot bg
derived from linear system of equations (continuity, Navier
Formation mechanisms and internal structure of severe atStokes, entropy) and therefore it is believed that tornadp
mospheric vortices have been important questions over thés described by a set of nonlinear hydrodynamic equations.
past decades. In spite of their importance for both theory andHowever, it is still unclear which non-linear processes are
applications, there is no satisfactory theory of tornado struc+esponsible for its formation. Indeed, the inertia non-linea
tures Doswell and Burgessl993 and recently there is a terms ¢V)v lead to energy dissipation, therefore cannot be
tendency towards collection of observational data or numerthe energy source of the system. Other non-linear terms ha
ical simulation of the phenomenoBl(estein et al. 1997 the same problem, since they do not introduce energy in th
Bluestein and Pazmang00Q Bluestein and Weisma200Q system.
Lehmiller et al, 2007). Renno and Ingersol(1996 described convection in the
The problem of tornado formation appears to be com-atmosphere as a heat engine between warm surface (due
plicated from both principal and technical points of view. solar radiation) and cold troposhpere, this assumption i
Tornado descends from a long-living rotating thunderstormplies heat accumulation and release by means of black-bodly
cloud. Having appeared from the cloud the funnel narrowsradiation. However, continuous and powerful source of ent
in its upper part and dynamically stretches in the bottomergy observed in tornadoes and cyclones has to come from
part, however the middle part of the tornado column remainsa source much morefficient than the black body radiation
cylindrical and almost unchanged during the entire lifetime or heat conductivity. One of possibilities is to use latent healt
of the funnel. Such structure is especially pronounced forof water vapor as the source, since vapor content in the ajir
weak tornadoedXavies-Jone2001), i.e. for tornadoes with  is widely spread in the atmosphere, phase transitions occur
high ratio of the height to the diameter. Mathematical modelfast, and the specific condensation energy is high. In this
of the middle part of tornado should have a steady-state sowork we imply a mechanism of the latent heat release b
lution or solution with very low growth rates. varying the vertical temperature profiles irfidrent parts of
the tornado structure. Unlike a heat engine, the process |s
not reversible. Indeed, atfirent points the tornado has ei-
Correspondence td?. B. Rutkevich ther upward or downward air flows. These flows naturally
BY (peterhome@gmail.com) contain saturated vapor from the surface or dry air from the
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troposphere, respectively. The upwards fluid flow transportsPo(2)=Poo[ To(2)/ Toal "R ~Poo[To(2)/ Too]/*~ 1, and den-
the vapor, which constantly condenses and releases the hesity po(2)=poo[ To(2)/ Too] ¥R ~p00[ To(2)/ Too] ¥ *~, pro-

at all levels. Therefore the vertical temperature profiles infiles wherex = cp/cy is the ratio of specific heats. Notice the
these two flows are essentiallyfiidirent. As it will be shown  density derivative

later, such system has a stable configuration with strong ver-

tical and azimuthal velocity components. 1 9o = _E’ (5)
po 0z c?
2 Formulation of the problem wherec(2)= VkRTo(2) is the sound velocity.

Linearization with the steady state Eg#)(5) leads to the

We start from the full system of hydrodynamic equations forfollowing linearized system of hydrodynamic equations:
compressible fluid, consisting of continuity equation, Navier-

Stokes equations, and entropy balaricendau and Lifshitz % v % +poV-v=0 (6)
1987): at oz ’
9p _ v VP, ge
at V(pv) =0, ORI CYPLR LS To YY) 7)
5 vp ot po  po
6_\'[/ — VWV + (V-V)V = —— +2Q6,XV+ 6,0, 2)
P
OP1 5,001 ) 2 2 J p1
LRI = ykV?P; - 2y V201 - 2Rkyya——. (8
Z—f+(v~V)s=)%V2T, @) i ot T RR0Y V2= KV Py =G Vipn = Rexyag (8)
where thermal dfusivity codficient y=k/(cpp) is used in- To derive the last equation we have used the perfect gas

stead of the thermal conductivity andce is specific heat  entropy ass=cpIn(T/Too)—RIN(P/Pqo), substituted here the
capacity of air at constant pressuseis the kinematic tur-  Pressure and temperature profiles, expressed the temperature
bulent viscositye,Q is the vector of angular velocity of the through the pressure and density using the perfect gas law,
rotating mothercloud, and is the fluid velocity. Although and finally substituted this entropy into EG)(
we describe compressible fluid, we have neglected inBq. (  Now we are constructing a steady-stat@¢=0), isotropic
the term with bulk viscosity for simplicity. (0/06=0), and vertically homogeneoud/(z=0) solution of

We introduce cylindrical coordinates with unit vector the linearized system (Eq6-8). It is convenient to express
e, directed upward. Following the standard linearization Velocity in terms of potential, toroidal, and poloidal fields
procedure l(andau and Lifshitz 1987), density, pressure (Rutkevich and Rutkevyct2009:
and temperature are representedpfsz)=po(2) + p1(r,2),
P(r,2=Po(2) + P1(r,2 and T(r,2=To(2) + T1(r,2), respec- V=VOV (&) + VX (VX (&), ©)
tively. Here the steady-state adiabatic profiles of thermody-whered(t,r), y(t,r) andy(t,r) are the potentials of the above

namic functions are denoted by index 0, and their small permentioned velocity components. In terms of these variables
turbations by index 1. The linearization procedure requiresthe set of Eqgs.6)—(8) becomes

perturbations to be small compared to the steady-state values

i.e. “weak” tornado. AD+ %Ag@ =0, (20)
The steady-state profiles are determined in an assump-

tion of zero velocities, implying the temperature profiles are AP, @ p1
close to adiabatic. The corresponding set of equations con=vAAD + —— + —— +2QAy =0, (11)
tain steady-state Navier-Stokes equatiéi®, + e,gog = 0, PO Cpo
the perfect gas law, = poRTo, and the steady-state entropy —,AAy —2QA® =0, (12)
balance equatior??T, = 0. Solution of the latter equation is
a linear temperature profile, which we postulate as gAP. g _

—VvAAAp+ = —— = =Ap1 =0, (13)
To(2 =Too+yz=Too+(ya+7)Z (4) po. po
where Too=To(0) is the temperature value near the sur- —xRy’(v,)poAg—ykAP; +yC?Apy =0, (14)

face, ya=—g/cp is a well known neutral adiabatic gradi-

ent of dry atmosphere, and is the deviation of the cho- where A = V2 = %(%(r(%?\ is the radial component of the
sen steady-state gradiemt from the neutral profiley,, Laplace operator. The system of ordinanyffeliential

g is the gravity acceleration. According to our steady- Egs. (0)—(14) describes the radial profiles of the thermo-
state assumption the deviation is smajf:<y,, and pos- dynamic parameters and velocities at any given heighy,
itive value ofy’ corresponds to convectively stable atmo- i.e. at given densityy(z) and sound velocitg(z).

sphere. Substituting temperature profile (Eginto steady- As it has been already mentioned in the introduction, only

state Navier-Stokes equations one can derive the pressuamne non-linear term is considered, namely the dependence of
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the temperature profile on the vertical velocity of the fluid.
In this work we use a simple approximation

25}
20+

whereyp>0 is the temperature gradient of stable dry atmo- 15}
sphere, cofficienty,<0 accounts for the temperature profile 19|
in moist air, andvt is the velocity normalization cdicient.
For suficiently high vertical velocity, the total temperature
gradient (Eql15) becomes negative (i.e. convectively unsta-
ble).

, Vv
Y (V) =vo+y1—, (15)
vr

3.36
3.364

3 Convection without rotation

In non-rotational $—0) and incompressiblec{o) fluid Figure 1. Profile of thex,, versus the parameteas andA. The

the system Egs.10)—(14) reduces to one equation for the peak position indicates the best approximation of the solution of th
poloidal velocity potential: nonlinear Eq. 18) in non-rotational fluid.

2 4
Ap+ To(Zo)V)(¢ 0. (16)
Other velocity components, pressure and density can be d
rived from the solution of Eq.16). Now we substitute the
temperature gradient (Efj5) in Eq. (16), expressr, in terms
of ¢ by means of Eq.9), and obtain the following nonlinear
equation

For arbitrary values of parametess and a, solution
G‘(qu. 20) diverges even for moderate However, the lo-
calized solution of our interest here should have a non-zen
value near the axis, gradually vanish at medium distanc
from the axis, and uncontrollably grow far away from the
axis due to numerical errors. We denatgA,a,) the maxi-
mum value of dimensionless radius in the far-away raage
(0% v1 @Ap 10, where the solution is small enougfi{xm,A,az)| < blA|.
(Zo)vx( v vt )= 0, 17 Hereb is a fixed number in the range<b < 1, and the “far-

o ) ) away” radiusx = 10 corresponds to= 700 m, which we sup-
or in dimensionless variables pose sfficiently large. Let us deno# anday the values of

Ao+
® To

A2f + f— fALf =0, (18) pargmgters\ anday, gorresponding to _the solution (E?p)
vanishing atx — oco. It is clear that functiorx,(A,az) defined
wherer = Axandy=Cf, and above should go teco, asA—Ag, ay—ayp.
T 1/4 1 Equation (8) has to be solved numerically, therefore the
1= (M) , C= E/lsz, Ay = _ixﬁ_ (19) exact values Ap,ay0) are hardly obtainable, however, one
o 71 XX dX can approximate the solution by choosing parametse),

Note, that according to this definition the ¢beientCis neg- ~ Which give large enough value for the functiom(Aaz).
ative. The unknown functiori(x) has to be a regular func- In this case the best solution would be the solution with

tion of its argument, therefore solution of Eq.8( can be  the biggest value okn. In our numerical scheme the co-
expanded in a Taylor series nea0: efficientsA anda; were varied simultaneously (see FiD.

to obtain maximum value okn(A,a). The sharp peak on
the plot corresponds to the best approximation of solutiof
f(X,Ao,a20) Of the nonlinear equationlB). The position

of the peak is ath~ —3.3641719 andi,~ —0.265424, giv-
where only two cofficients are independent. Indeed, one caning the maximum dimensionless radiug~25. The corre-
easily check that cdBcientsas, as, etc, can be recursively sponding solution of dimensionless poloidal potentigd) is
expressed in terms of parametéxsanda, using Eq. {8).  shown in Fig.2. Corresponding velocity profiles(,vy,v;)
Construction of the solution (EQQ) for largex is computa- ~ are plotted in Fig3 for the following values of parameters:
tionally intensive due to fast divergence of the series, thereg=9.8ms?, v=y=30n?fs?, yo=103km™, y; =-1073
fore we use 4-th order Runge-Kutta method to build a numerkm™, vr =1ms?, k=14, To=280K,c=335ms™.

ical solution of Cauchy problem for the 4-th order ordinary It should be noted here, that strictly speaking the radia
Eqg. (18), using the values of functiofi(x) and its deriva- and azimuthal velocity components, (andv,) are not so-
tives at pointx=0.1, as calculated from the Taylor expansion lutions of the full system of hydrodynamic Eq4.0§—(14),
(Eq.20). It appears impossible to apply Runge-Kutta methodsince in non-rotational case the system significantly simpli
from x=0 due to singularity of the Eq16). fies. However, one can formally derive the profiles of all

00

2 2j
1+ayx +Za2,-x J

i=2

f(xAa)=A ; (20)
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Figure 2. The best approximation of dimensionless poloidal ve- Figure 3. Profiles of velocity components in a non-rotational ap-
locity profile f(x). The values of the parametefsand a; in the proximation. Values of parameters are listed at the end of Sect.
Taylor expansion (EcR0) correspond to the position of the peak in Notice a factor in front of the radial velocity componemnt

Fig. 1.

where dimensionless parame@r= (k — 1)(2Qg1%)%v2c™
velocity components from the known profile 6(x), using  characterizes the Coriolis force and compressibility. Clearly,
definition (Eq.9) and system (Eq4.0-14) as: in the caseQ=0 one obtains Eq1Q).
. Due to 6-th order of Eq22), the expansion cdicientsag,
Ve giC|of 299/1)|(C| fx’f(x’)dx +ez|C—2|Axf. 1) G etc. can be derived from giveX) ay, as, therefore the solu-
0

T2 0x e tions now form a three-parameters $€x; A,ay,a4), making
the numerical search procedure significantly more compli-

Azimuthal component of the velocity is proportional to the cated. To solve Eq2@) we apply the procedure described in
rotation speed of the mothercloud. The profilerpfn Fig.3 ~ Sect.3, including Taylor series expansion in the vicinity of
has been plotted fof2 = 0.1sL. For the chosen values of X=0 and Runge-Kutta numerical solution frox#0.1. Due
parameters the radial and azimuthal components are signifto higher noise in the function, the values of the three inde-
cantly smaller than the radial component. This fact is in ac-Pendent parameters have been varied to achieve the smallest
cordance with the initial assumption of non-rotational fluid Possible value of integraf, * f(x)°dx, instead of the max-
(Q—0). Noteworthy, that the radial velocity of the fluw is imum X, described earlier. This choice of the convergency
positive near the axis, indicating continuous expansion of thecondition reflects the fact, that the absolute value of the func-
gas during its upwards movement. tion f should be the smallest in the medium range of radii.
Another noteworthy conclusion is that the dimensional pa-Figure4 shows the best numerical solution, which we have
rameterd decreases with decreasing temperature ().  found in such a way, using,=8, x,=14, and giverQ=0.1.
This means that for other constant conditions the radius off he solution corresponds to the following set of parameters:
the tornado column decreases with hight. However, this ef-A~1129547,a~ —5.454639,a4~ —2.179057. One can see,
fect is of the order of 1-2% for temperature variatior:6%%  that the found solution diverges g~13.
(i.e. tornado height below 2 km). The radial and vertical velocity components can be ob-
tained from the potential profilé(x) using Eq. 21), while
for the azimuthal profile one has to solvetdiential equa-

4 Convection with rotation .
tion

Taking into account compressibility of the gas (cgeo) and ave(r) ve(r) 2Qg
its rotation 2+0), one can reduce the linearized syst&@)€ “or + T + F<P
(14) to a single high-order ordinary fierential equation for . ' o - '
the poloidal fieldy. Again we assume vertically homoge- Velocity profiles are plotted in Figs. The air motion has
neous §/z=0), isotropic §/86=0), and stationaryd(/at=0) several important features, namely updrift in the central area,
system. Using the same dimensionless units (B).the  "elatively small radial velocity, and azimuthal velocity has

(r)=0. (23)

equation reads as maximum at approximately~8. The azimuthal velocity in
axially-symmetrical system is the parameter with the slowest
Ax[AXAKT () + F(X) = F(QAKT ()] - Qf(X) =0, (22) radial convergency, because itis limited only by the viscosity
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The absolute value of velocity of 3 mmisin non-rotational

% 507 fix) case is reasonable, sinc@egtively this is the velocity of a
= 25t free localized convection in atmosphere. Account of rotatior
9 ol in the system leads to dramatic growth of velocity, especially
2 its vertical component. This suggests that a model of tornado
2 25 must include other non-linear dissipating terms to suppregs
8 the fluid flow.
D -50
>
8 -5 5 Conclusions
S 100}
(&) - . . .
a The proposed one-dimensional vertically-homogeneous
-125 : : : model cannot be applied to the tornado funnel near the moti-
0 4 8 12 ercloud, or to the turbulent area near the ground surface. The
Dimensionless radius, model is applicable at the middle level of a weak tornado

where the shape of the column changes slowly in space and
Figure 4. Profile of dimensionless potential fiefgx) with rotation. ~ time. The model shows that the system of linearized hydr
The values of parameters are the same as the non-rotational casgynamic equations can have a stable solution with only on
except the Coriolis paramet@=0.23 s non-linear term. Since the full system of equations has sey-
eral important non-linear terms (including viscosity and cen
trifugal force) this paper cannot be regarded as the final solu-

- 300 ¢ tion of the hydrodynamic system or as a complete theory
E_ tornado. However, the results show, that a steady-state cop-
g 200 ¢ figuration is possible even in convectively-stable atmospher¢.
@ Proposed non-linearfliect related to asymmetric vapor
S 100 transport in a “weak” tornado-like structure introduces the
e source of energy, which can be the true mechanism in naturgl
3 0 intensive vortices. Obtained structures have all features
2 of real tornadogsyclones, however estimations show that
38 -100 | the size of the solution is closer to the size of tornado. We
g expect, that accounting other non-linear terms (which are
200 usually dissipating) in the full system of equations will lead

0 4 8 12 to stabilization of the solution and especially far from the

. . . axis.
Dimensionless radius,

Figure 5. Profiles of velocity components with rotation, parameter Edited by: D. Giaiotti
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