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Abstract. The SAL (Structure, Amplitude, Location) method is used for verification of precipitation forecasts
at horizontal grid spacings ranging from 2.5 km to 25 km, using a high-resolution 1 km precipitation analysis
as a reference. The verification focuses on a summertime period with predominantly convective precipitation.
The verification domain contains lowland as well as alpine areas. Evaluation of the individual SAL components
shows that with regard to area mean values (A) the benefit of high resolutions models becomes apparent only
in high impact weather situations. For the summertime period studied, the subjective impression of better
structured precipitation fields (S) in higher resolution models can generally be confirmed. The most significant
improvement appears to be associated with explicit simulation of deep convection.

1 Introduction

An increasing number of operational numerical weather pre-
diction (NWP) models are run with horizontal grid spacings
in the 1–5 km range, generating highly structured forecast
fields. Proper evaluation of the actual benefit of such fore-
casts compared to those in the more classical 10–20 km range
is not straightforward, especially for precipitation. The use
of conventional scores, based on point-to-point comparison
of gridded data, or for station locations, penalizes the model
that generates higher field variances. Spatial up-scaling to
a common reference grid solves the variance problem but
masks potential structural skill of the high-resolution model.
Similarly, temporal up-scaling such as verification of 24-h
totals masks potential timing skill concerning, for example,
the diurnal cycle of convection, or frontal passages.

Prompted by these issues, several pattern-oriented veri-
fication methods have recently been developed (Casati et
al., 2008). Gilleland et al. (2009) provide a comprehensive
overview and intercomparison of these methods which they
categorize into “filtering” and “displacement” types. The pri-
mary purpose of this study is to use the displacement-type
method SAL (which stands for structure, amplitude, and lo-
cation) developed by Wernli et al. (2008), to evaluate pre-
cipitation forecasts during the convective season over a wide
range of model resolutions against a high-resolution precip-
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itation analysis. Previously, raingauge data interpolated to
a 5 km grid (Fr̈uh et al., 2007) and a 10 km grid (Wernli et
al., 2008), or radar rainfall data were used, the latter however
only for a 9-day period (Wernli et al., 2009). Also, we com-
pare NWP models over a broader range of resolutions than
has been done in the past, with grid spacings ranging from
2.5 to 25 km. Forecasts of 3-hourly accumulated precipita-
tion are considered over a 2 month period in the summer of
2009, for different domains covering lowland and mountain
areas.

Section 2 describes the high resolution precipitation anal-
ysis of the INCA (Integrated Nowcasting through Compre-
hensive Analysis) system, and is followed by an overview of
the different NWP models and a summary of observed pre-
cipitation characteristics during the chosen period in Sect. 3.
The verification method SAL is briefly discussed in Sect. 4,
and results and conclusions are presented in Sects. 5 and 6,
respectively.

2 INCA precipitation analysis

The INCA precipitation analysis is a combination of station
data interpolation, including elevation effects, and radar data.
It is designed to combine the strengths of both observation
types, the accuracy of the point measurements and the spa-
tial structure of the radar field. In the following, the analy-
sis method for 15-min precipitation amounts is briefly de-
scribed. A detailed description of the entire analysis and
nowcasting system is given in Haiden et al. (2009).
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2.1 Interpolation of station data

The irregularly distributed point precipitation values mea-
sured at the station locations are interpolated onto the regular
1×1 km INCA grid using inverse-distance-squared weight-
ing (IDW). To reduce the occurrence of bulls-eyes, only the
nearest 8 stations are taken into account in the interpolation.
Furthermore, a modification to the classical IDW method has
been introduced. It takes into account the inhomogeneous
azimuthal distribution of stations around the grid point in
question and reduces the relative weight of stations located
“behind” (i.e. at a similar azimuth to) nearer stations. The
resulting field is denoted byPSTAT(i, j).

2.2 Climatological scaling of radar data

The radar data, which are available at 5 min intervals, are ag-
gregated in time and bilinearly interpolated onto the INCA
grid. Since the radar field is strongly range-dependent and
contains biases due to topographic shielding it must be scaled
before use in a precipitation analysis. In a first step, a “cli-
matological” scaling is performed. Operationally, a 3-month
temporal average of scaling factors RFC (i, j) centered at the
actual month is used. This climatological scaling only par-
tially corrects the reduced radar return in the case of snowfall
as compared to rain.

In order to compensate for some of the artifacts in the radar
field caused by topographic shielding of the radar beam, the
interpolated scaling factor is replaced by a local scaling fac-
tor in regions where the radar beam is strongly shielded (in-
dicated by beamlike structures with high local scaling fac-
tors). The local scaling factor is the ratio of the monthly ac-
cumulated precipitation gained from the interpolated station
observations to the accumulated radar precipitation at the re-
spective gridpoint.

2.3 Re-scaling of radar data using the latest
observations

In a next step the climatologically scaled radar field is re-
scaled on the basis of a comparison at analysis time of station
observations and radar values at the stations. In this compar-
ison, a spatial shift of a maximum of 4 km in either direction
between the station and the corresponding radar pixel is al-
lowed to take into account effects due to the finite settling
time of hydrometeors, effects of wind-drift, etc. The scal-
ing for a gridpoint is a weighted average of the ratio between
station and radar precipitation at the nearest stations, where
the weight decreases with increasing distance, with increas-
ing difference in climatological scaling, and with decreas-
ing precipitation at the station (relative to the precipitation at
the gridpoint). The resulting field is denoted byP∗∗RADAR(i, j)
(cf. Haiden et al., 2009).

2.4 Final combination

The two precipitation fieldsPSTAT(i, j) and P∗∗RADAR(i, j) are
finally combined to a fieldPINCA(i, j) that gives a better es-
timate of the precipitation distribution than each individual
field. The combination is obtained through a weighting rela-
tionship

PINCA(i, j)=PSTAT(i, j)+v
[
P∗∗RADAR(i, j)−P∗∗RADSTAT(i, j)

]
, (1)

where the weightv is given by

v(i, j)=


1

exp
[
−ln(2)

(
RFC−RFC0

RFCH−RFC0

)2] RFC<RFC0

RFC≥RFC0

.(2)

In Eq. (2), RFC is the spatially and seasonally varying clima-
tological scaling factor described in Sect. 2.2. The auxiliary
field P∗∗RADSTAT(i, j) is created by interpolating onto the grid,
analogous to the station observations, the scaled radar values
at the station locations. The threshold value RFC0, above
which the weight of the radar begins to decrease, is 3. The
value of RFCH, at which the radar weight has decreased to
one-half, is 5.

Figure 1 shows an example of the stepwise procedure and
final analysis from the June 2009 flood event in Austria. Note
the large difference between un-scaled radar and station in-
terpolation (top panels), and the importance of the final com-
bination (lower right panel) as a means to smoothly connect
areas seen by radar with those only covered by stations. If
the final combination step is not made, “edges” remain in the
analysis (lower left panel).

The INCA precipitation analysis reproduces (within lim-
its imposed by the grid spacing) the observed values at the
raingauge locations. The quality of the analysis as deter-
mined by cross-validation based on single-station denial ex-
periments, is superior to raingauge-only IDW interpolation.
As expected, the benefit of incorporating radar data is largest
for convective precipitation, where the reduction of mean ab-
solute error (MAE) compared to IDW is 20–50%. For strati-
form precipitation, the reduction of MAE is typically 5–10%.
A paper describing crossvalidation results of the INCA anal-
ysis scheme has been submitted. A parameterization of the
elevation dependence of precipitation, which was introduced
to the system in 2007, is described in Haiden and Pistotnik
(2009).

Any precipitation analysis contains measurement errors,
sampling and representativeness errors, and uncertainties due
to assumptions made in the analysis scheme. Following Pap-
penberger et al. (2009) we roughly estimate the raingauge
measurement errors (undercatch) to be of the order of 10%
for lowland and valley stations, and 20% for some of the
more exposed mountain stations. Note that we are dealing
with cases of rainfall only. According to Skok and Vrhovec
(2006), errors of up to 50% for point values can be introduced
by the analysis itself. However, the SAL method is equiva-
lent to using spatially aggregated values, which reduces the
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Figure 1. Example of a 15-min INCA precipitation analysis (23 Jun 2009, 00:15–00:30 Z) during a flooding event in Central Europe. Upper
left panel: pure station interpolation, upper right panel: uncorrected radar field, bottom left panel: corrected radar field, bottom right panel:
final INCA precipitation analysis. Units are mm, with color scale on the right.

error. For a comprehensive analysis and discussion of the
uncertainty issue we refer to Pappenberger et al. (2009) and
references therein.

3 Model data

The operational forecast model used at ZAMG is ALADIN
(Aire Limit ée Adaption Dynamique Developpement Interna-
tional), a spectral Limited Area Model (LAM) which is being
developed within the ALADIN consortium, a cooperation
of several mainly European national weather services. AL-
ADIN is part of a software library consisting of several mod-
els, which allows to choose among various physical schemes
and parameterizations. The operational ALADIN version
implemented at ZAMG uses the ALARO physics package.
It has been developed to address problems in the difficult
grid spacing range between 3 and 7 km, where deep con-
vection starts to be at least partly resolved. The ALARO
package comprises a prognostic large-scale cloud and pre-
cipitation scheme and prognostic convection scheme named
3MT, which stands for Modular Multi-scale Microphysics
and Transport. Detailed information about ALARO and 3MT
can be found in Gerard et al. (2009).

Apart from the operational ALADIN model (hereafter
referred to as ALA-AUT), several other model configura-
tions are used in this verification study. Table 1 gives an
overview of the main characteristics of the different models:

a 5 km hydrostatic ALADIN version (ALA5) using ALARO
physics; a 5 km non-hydrostatic ALADIN version (ALA5-
NH); a 6.5 km ALADIN version (ALA-EUR) using ALARO
physics; and the 2.5 km AROME (Applications of Research
to Operations at Mesoscale) model. These models are used at
ZAMG in a pre-operational environment. AROME is a new
model which more or less represents the merger of the phys-
ical package from the research model Méso-NH (Lafore et
al., 1998) and the non-hydrostatic version of ALADIN. The
microphysical scheme used in AROME is ICE3 (Pinty and
Jabouille, 1998).

In addition to the models listed in Table 1, two more
models are considered: The deterministic global model of
the European Center for Medium-Range Weather Forecasts
(ECMWF, 25 km horizontal resolution) and INCA precip-
itation forecasts. INCA forecasts are computed on a two
dimensional grid with 1 km resolution and start with kine-
matic extrapolation of analyzed precipitation fields (as de-
scribed in the previous section) in the nowcasting range (up
to +2 h). Outside the nowcasting range the extrapolated
fields smoothly merge into a combination of ALA-AUT and
ECMWF precipitation forecasts. The combination of these
two models uses weights computed on the basis of sev-
eral years of archived precipitation forecasts. More details
about the INCA precipitation forecast are given by Haiden et
al. (2009).

www.adv-sci-res.net/4/89/2010/ Adv. Sci. Res., 4, 89–98, 2010
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Table 1. Main characteristics of the different limited area models used at ZAMG.

ALA-AUT AROME ALA5-NH ALA5 ALA-EUR

Timestep [s] 415 60 207 207 285
Coupling model ARPEGE ALA-AUT ARPEGE ARPEGE ECMWF
Initialization ARPEGE ALA-AUT ARPEGE ARPEGE ECMWF
Resolution [km] 9.6 2.5 4.9 4.9 6.5
Grid size 300×270 432×320 540×512 540×512 720×810
Levels 60 60 59 59 45
Forecast Range [h] 72 30 48 48 72
Convection parameterization Yes (3MT) No Yes (3MT) Yes (3MT) Yes (3MT)
Microphysics ALARO ICE3 ALARO ALARO ALARO
Kernel H/NH hydrostatic non-hydrostatic non-hydrostatic hydrostatic hydrostatic

The main objective of this study is to evaluate model per-
formance with respect to convective precipitation, so June
and July 2009 were chosen as verification period. The num-
ber of observed days with precipitation was 76–91% out of
the total of 61 days, with higher values found in the more
mountainous domains. The corresponding numbers for the
forecasts are 87–100%. Only 00:00 UTC runs are consid-
ered. This is true for all models except for INCA where the
06:00 UTC runs are taken into account. This is done to al-
low a comparison of all models available to the forecaster
around or shortly after 06:00 UTC in the morning. The com-
mon forecast range is defined by the model with the shortest
integration time, which in our case is AROME, so all models
are compared up to forecast time+30 h, using 3 h accumu-
lated precipitation intervals.

In order to quantify the proportion of days with convec-
tive precipitation with respect to the total number of days
with precipitation for the chosen period, lightning data was
used. Assuming that a day can be classified as “convective”
when more than two (cloud-to-ground) lightening strokes are
detected within the considered area, the percentage for con-
vective precipitation days ranges from 76–82% with higher
values again found in the mountainous domains. The reason
for choosing two lightning strokes as a threshold is to reduce
erroneous detections. This type of characterization does not
distinguish between days with convective cells growing and
decaying within the considered area and convective systems
moving into and/or over the domain (often related to large
scale systems). A subjective, semi-quantitative estimation of
this partitioning is based on visual inspection of INCA analy-
ses of 24-h accumulated precipitation. Out of the total num-
ber of days with precipitation, the percentage of days with
local convection is about 40%, the percentage of days with
large scale systems moving over the considered domains is
about 20%. The remaining days can not be clearly assigned,
showing a mixture of both types. This is valid for the moun-
tainous areas. For the lowlands the proportion of days with
local convection is smaller (about 30%), whereas the days
with advective convection occur with similar frequency.

4 Verification method

In order to allow a fair comparison of the precipitation fore-
casts coming from models running on different horizontal
(and vertical) resolutions it was decided to use the verifi-
cation package SAL, which stands for Structure, Amplitude
and Location. In the following, a short description of the
main components of SAL is given. A comprehensive de-
scription can be found in Wernli et al. (2008).

SAL is an object-based method which allows to evaluate
QPFs on a given geographic domain according to three cri-
teria: structure (S), amplitude (A) and location (L). A is a
measure of the deviation of the areal mean QPF relative to
the observed value.S gives information on whether the pre-
cipitation objects created by the model correspond to the ob-
served objects in terms of size and shape. FinallyL yields
information about the displacement of the precipitation ob-
jects with respect to the observed objects.

To calculate theS and L components it is necessary to
identify individual precipitation objects in the forecast and
the observation fields. In SAL this is done by using a thresh-
old R∗ = f Rmax, whereRmax denotes the maximum precipita-
tion amount found in the domain. Starting from a local pre-
cipitation maximum (provided it is larger thanR∗), all sur-
rounding grid points with valuesRi j >R∗ are considered to
be part of the actual precipitation object. Following Wernli
et al. (2008) the empirical factorf is set to 1/15. According
to their sensitivity analysis, theS andL results are not par-
ticularly sensitive to the exact value of this factor. In cases
where the thresholdR∗ happens to be close to the minimum
value at the “saddle” between two maxima, the object def-
inition becomes sensitive tof , but as these cases comprise
only a small fraction of the sample their effect on the overall
statistics will be small.
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4.1 Amplitude A

The amplitude componentA is defined as the normalized dif-
ference of the forecasted and observed domain average pre-
cipitation (D(Rmod) andD(Robs)). Thus,A measures the qual-
ity of the total precipitation amount simulated by the model.
This normalized difference is computed according to:

A=
D(Rmod)−D(Robs)

0.5(D(Rmod)+D(Robs))
. (3)

Values ofA range from−2 to+2. Positive values indicate an
overestimation of the domain-averaged precipitation coming
from the model, negative values an underestimation, and 0
stands for a perfect forecast.

4.2 Location L

The location componentL is the sum of two components,
namedL1 andL2. The first partL1 measures the normalized
distance between the centers of mass of the modeled and the
observed precipitation field (x(Rmod) andx(Robs))

L1=
|x(Rmod)− x(Robs)|

d
, (4)

whered stands for the maximum distance found in the given
domain between two boundary points. Values forL1 range
from 0 to 1, where forL1 = 0 the centers of mass for model
and observed precipitation fields are equal.

The second partL2, ranging from 0 to 1, can be described
as the weighted mean distance between the centers of mass
and the individual precipitation objects (r(Rmod) andr(Robs)
and is computed according to

L2=2
|r(Rmod)− r(Robs)|

d
. (5)

The total location componentL= L1+L2 can assume values
between 0 to 2, where 0 would only be obtained when the
total mass centersand the averaged distance between indi-
vidual objects and the total mass center are identical in the
observed and in the model field.

4.3 Structure S

The structure componentS is defined in such a way as to give
information about the quality of the forecast with respect to
size and shape of the precipitation objects. This is done by
calculating a scaled volumeVn for every objectRn. Finally a
weighted average VolumeV is calculated separately for the
forecast and observational fields (V(Rmod) andV(Robs)). The
final score for structure is then calculated through

S=2
V(Rmod)−V(Robs)
V(Rmod)+V(Robs)

. (6)

S again takes a continuum of values from−2 to+2. Positive
values mean that the predicted forecast objects are too large
or widespread with respect to the observed objects. Negative
values forS stand for predicted objects being too small or
peaked.

Figure 2. Verification domains numbered 00 through 06, and to-
pography. Height in meters with color scale on the right.

4.4 Verification domains

The SAL verification is performed for several rectangular do-
mains over Austria covering either Alpine areas or flatland
areas. Figure 2 shows the different domains together with the
topography. In order to make the various forecasts compara-
ble and usable for the SAL software package, the precipita-
tion fields are interpolated to the same grid, which is the 1 km
INCA grid in this case. To discuss the results in Sect. 5 two
representative verification domains have been chosen: do-
main 00, representing an Alpine area in the western part of
Austria, and domain 04, an area consisting of mainly rather
flat terrain.

5 Results

The SAL verification has been performed for the period
20090601–20090731 based on 00:00 UTC model runs (and
06:00 UTC runs for INCA) up to a forecast time of+30 h,
considering 3-h accumulations. In the following subsections
the results are discussed with regard to each of the individual
SAL components. In Sect. 5.4 some verification results us-
ing more classical grid-point based scores instead of the SAL
components are briefly discussed.

Following the WMO recommendations (WMO, 2009) re-
garding statistical significance tests for verification results, a
bootstrap method is used because the presented scores (and
the underlying precipitation fields) do not allow any assump-
tions concerning theoretical distributions. Further, since we
are dealing with fields which are autocorrelated in time, a
blocked bootstrap method was chosen. Whenever “signifi-
cant” or “not significant” is mentioned in the following sub-
sections it is meant in its statistical sense based on a blocked
bootstrap and hypothesis test as described in Wilks (1997)
using the following test parameters: significance level 0.95;
block lengthl = 7; bootstrap sample sizenb = 5000. In ad-
dition to the bootstrap test a Wilcoxon-Mann-Whitney rank-
sum test was performed (Wilks, 2006).

www.adv-sci-res.net/4/89/2010/ Adv. Sci. Res., 4, 89–98, 2010



94 C. Wittmann et al.: Evaluating multi-scale precipitation forecasts using high resolution analysis

5.1 Area mean precipitation

The top panel in Fig. 3 shows the mean amplitude scoreA
for each model for the entire period for an Alpine area in
the western part of Austria as a function of lead time, so
for e.g. lead time+6 h the values in the plot represent the
mean amplitude score averaged over 61 forecasts of the 3-
hourly precipitation between+3 and+6 h. It is worth noting
that all models, including the one with explicit deep convec-
tion (AROME), tend to overestimate convective activity in
the afternoon. The amplitude score reaches maximum val-
ues (the strongest overestimation of area mean precipitation)
between 12:00–15:00 UTC. Thus, even if the higher resolu-
tion models turn out to have better structural scores, this does
not by itself solve the problem of overestimation of alpine
afternoon convection. This corresponds to the subjective im-
pression gained from visual inspection of the precipitation
forecast fields. All models tend to produce an “envelope” of
precipitation over the entire alpine area, whereas in the real
atmosphere the precipitation is more selective and clustered
into specific regions. The higher resolution models generate
more fine-scale structure but still exhibit the envelope char-
acteristics.

Comparing the different models we must keep in mind that
the INCA forecast has the advantage of starting by design
with values near 0, since in the nowcasting range (up to 4 h)
it is an extrapolation of the analysis which is used for verifi-
cation. For higher lead times the INCA curve is sometimes
further from the zero-line than one of its constituent models
ECMWF and ALA-AUT. As INCA should represent an opti-
mal combination of ECMWF and ALA-AUT it is concluded
that the weights for the combination of these two models are
“out-of-date”. Several changes have been made to the op-
erational ALA-AUT model and also in the ECMWF model,
changing the characteristics of the precipitation forecasts sig-
nificantly. At the time of writing the weights for the com-
bination have already been updated. It is interesting to see
the ECMWF model in Fig. 3 (top panel, yellow curve) as
the one showing the fastest decrease of overestimation dur-
ing late afternoon and evening, whereas the values even be-
come slightly negative (underestimation) in the evening and
during night. In contrast to ECMWF, AROME is the model
showing the strongest overestimation during the afternoon
and evening.

Figure 4 shows the scores for an area in the north eastern
part of Austria, representing a predominately flat terrain. The
scores exhibit a similar diurnal cycle to the case of the Alpine
area, but there are noticeable differences. Most of the models
start with an underestimation of the area mean precipitation,
which is turning into an overestimation before midday. It is
obvious that compared to the results for the Alpine area the
phase of the diurnal cycle in terms of the amplitude score
is shifted towards shorter lead times. Furthermore it seems
that this shift depends on the resolution of the model, that is
to say the ECMWF error characteristic is the first to change

Figure 3. Mean values for SAL amplitude componentA as a func-
tion of lead time for various models for different domain average
thresholds: (from top to bottom) all events with an observed do-
main average greater than 0 mm, 0.5 mm, 1.0 mm, 2.5 mm (verifi-
cation period 20090601–20090731).
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Figure 4. Mean values for SAL amplitude componentA as
a function of lead time for different models (verification period
20090601–20090731).

from underestimation to overestimation and to reach a max-
imum before midday. For AROME this is occurring later in
the day. As we are dealing mainly with convective precip-
itation events, the interpretation can be as follows. As the
models with higher resolution generally are better capable
of simulating the evolution of convective cells, they show
higher skills in predicting the spread of convective activity
from the mountainous areas to the flatland areas in Austria.
But this positive aspect is reduced by the significant negative
amplitude scores in the morning, which should be a topic for
further investigation.

Two points should be further mentioned. First, from com-
paring the hydrostatic ALA5 with its non-hydrostatic coun-
terpart ALA5-NH it is evident that in terms of mean scores
over a two month period the differences between the two
versions are not significant. It is hardly possible to distin-
guish the curves for ALA5 and ALA5-NH in Figs. 3 and
4. This does not necessarily mean that two versions always
produce the same forecasts, but it would need some case
studies to point out the more significant differences. The
second point is that the INCA precipitation forecast shows
consistently higher skill than each of its constituents ALA-
AUT and ECMWF from+18 h onwards, and partly also at
shorter lead times. Hence, in contrast to the Alpine area the
weights for the combination of ALA-AUT and ECMWF over
the lowlands still seem to work reasonably well. Forecasting
experience has shown that the change of precipitation charac-
teristics of ALA-AUT due to the use of new physics packages
was most pronounced in mountainous areas.

Summarizing the results seen from Figs. 3 and 4 one may
not see great benefit in running a high resolution model like
AROME or ALA5/ALA5-NH. But it is important to point
out that the scores shown in the top panel of Fig. 3 repre-
sent mean values over a 2 month period without taking into
account the intensity of the events. According to Eq. (2)

Figure 5. Mean values for SAL structure componentS as a
function of lead time for different models (verification period
20090601–20090731).

the amplitude score reaches values of 2 for all cases with
D(Rmod)>D(Robs)= 0, i.e. when there is precipitation in the
model but not in reality. So even when the model domain
average is very small, the score is 2 if the observed domain
average is 0.

In order to take this important fact into account the scores
were recomputed for different domain average thresholds,
i.e. different precipitation intensities. Figure 3 also shows the
scores separated for events with observed domain averages
greater than 0.0 mm, 0.5 mm, 1.0 mm and 2.5 mm respec-
tively (top to bottom). Comparing the curves it can be seen
that the higher the intensity of the event gets, the closer the
curves for high resolution models (like AROME, ALA5 and
ALA5-NH) get to 0 (closer to the observed domain average).
This indicates that the benefit of the high resolution models
reveals itself for strong precipitation events, i.e. for high im-
pact weather. For events with domain averages greater than
2.5 mm (bottom panel in Fig. 3) it can be seen that the models
generally underestimate the amplitude, with AROME show-
ing the best overall A score. During the convectively most ac-
tive period (12–18 Z) AROME differs from the other models
in that it slightly overestimates the amplitude. One needs to
keep in mind, however, that the number of considered cases
decreases with increasing intensities. With respect to the to-
tal number of 61 days the proportions of days with domain
averages greater than 0.0 mm, 0.5 mm, 1.0 mm and 2.5 mm
are 88%, 37%, 32% and 15%, respectively. This naturally
has an effect on the statistical significance of the results, but
we expect that the main characteristics of the results do not
change when extending the verification period.

5.2 Structure and location of precipitation fields

The interpretation of the results addressing the structure of
the precipitation forecasts is more straightforward. Figure 5
shows the scores for the structure component for the differ-
ent models, again as a function of lead time. It can be clearly
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seen that the higher the resolution of the model, the better
the structure of the precipitation forecasts gets in terms of
the S component. The structure component is largest for
the model with the lowest resolution (ECMWF), implying
that predicted precipitation patterns are too big or flat com-
pared to the observed fields. The higher-resolution models
ALA-EUR, ALA5, and ALA5-NH show generally signifi-
cant smallerS values during daytime but apparently under-
estimate the up-scale development of convective systems in
the evening and night hours, asS values become signifi-
cantly negative there. Averaged over the day, AROME has
the smallestS values. Comparing the non-hydrostatic and
the hydrostatic 5 km ALADIN version it turns out that the
non-hydrostatic version tends to produce smaller or more in-
tense features, as the mean structure scores are noticeable
smaller. This is valid for Alpine areas, while the difference is
much smaller for areas located in flat terrain (not shown). So
in general the benefit of using a high resolution model can be
clearly shown with the structure component of SAL.

The results for the location componentL do not yield
much information when computing mean values for a 2
month verification period, as the values for the various mod-
els do not differ significantly. The meanL values (over all
lead times) for the different models range from 0.29 to 0.36
for domain 00 and from 0.29 to 0.33 for domain 04. An
evolution ofL with respect to the lead time is hardly notice-
able. Two aspects are worth mentioning. First, the advan-
tage of INCA in the nowcasting range is also visible in the
L component. Second, if one had to choose, without consid-
ering statistical significance, one model showing the overall
lowest L scores it would be ECMWF, in particular for the
mountainous domain 00. Taking a look at some case studies
while keeping in mind that theL component is constructed as
the sum of two components, one gets the impression that the
mass centers for the different models are often rather similar.
This means that the differences in terms of theL value arise
mainly because of the second component ofL.

5.3 Sensitivity of results to grid resolution

Up to now the results were discussed for verification domains
with 1 km horizontal resolution. To obtain information about
the sensitivity of the SAL results to the resolution of the un-
derlying verification grid, the scores were re-computed for
horizontal resolutions of 5 km and 10 km. The up-scaling of
the analysis and model fields was performed by thinning the
initially created 1 km fields using median values for the final
5 km and 10 km resolution grid, respectively. The median
was chosen as it is less sensitive to extreme values than the
mean.

Comparing theA scores for the different resolutions for
domain 00 (not shown) indicates that the curves for the
high-resolution models (AROME, ALA5-NH and ALA5) are
slightly shifted towards lowerA values for all lead times (0.1
in terms of the meanA value over all lead times) when going

to 5 km, and further to 10 km resolution, respectively. For
ALA-EUR, ALA-AUT, ECMWF and INCA the differences
are smaller, in general even a slight shift towards higherA
values may be observed. So it seems that the high resolu-
tion model fields lose at least a part of their overestimation
characteristics when upscaled to lower resolutions. For do-
main 04 there is a noticeable shift towards higher values of
A, this time for all models. The magnitude of this shift is
larger (up to 0.3 for ECMWF) for the lowlands than for the
mountain areas. The sign of the change is opposite for the
high resolution models for the mountainous and the lowland
domain. So for the lowlands the upscaling appears to be less
beneficial.

The results for the structure componentS change in the
way that the curves for the different models tend to be located
closer together when moving to lower grid resolution. In gen-
eral theS values decrease for ALA-AUT and ECMWF and
increase for the other models. This implies that ALA-AUT
and ECMWF precipitation fields gain structural skill with
respect to the verifying analysis, while the high resolution
model forecasts indeed loose structure in their fields but still
retain a better correspondence to the observed field in terms
of volume and shape of the precipitation objects. For exam-
ple, the difference of the meanS value between AROME and
ECMWF over all lead times reduces by 0.35 when moving
to 10 km grid resolution. But even at 10 km resolution, the
S values are significantly lower (and closer to 0) for the high
resolution models with respect to ALA-AUT and ECMWF.
It may be interesting to extend the verification to even lower
resolutions (e.g. the one of ECMWF), but for that it would be
necessary to increase the size of the verification domains as
the remaining number of grid points within domain 00 and 04
gets too low so that the object identification algorithm within
SAL might not work properly anymore.

Finally, when comparing theL component for the different
verification grid resolutions, it can be seen that again a shift
of the curves is noticeable. The slight but noticeable shift
happens towards lowerL values. This in turn implies that
there is a tendency of the location of the center of mass and
the mean distance of individual objects with respect to the
center of mass to coincide better when upscaling the analysis
and model fields. But as mentioned in the previous section,
the differences in terms ofL values do not differ greatly be-
tween the models.

5.4 Grid point verification

In order to evaluate the precipitation forecasts in a more clas-
sical way, various grid point scores were computed in ad-
dition to the SAL scores: Probability of Detection (POD),
False Alarm Ratio (FAR) and Equitable Threat Score (ETS).
Definitions and properties of these scores are given in Wilks
(2006). For the computation of ETS random chance was cho-
sen as reference forecasts.
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Figure 6. FAR, POD and ETS for different models (verification
period 20090601–2009731).

Figure 6 shows POD (top), FAR (middle) and ETS (bot-
tom) for the different models as a function of lead time for
the mountainous domain 00, again for verification period
20090601-20090731 on a common grid with 1 km horizon-
tal resolution. POD and FAR presented in Fig. 6 just include
grid points with precipitation intensities over 0.2 mm, the
ETS scores are shown for the intensity interval 3.0–10.0 mm.
The diurnal cycle which could be observed in the SAL scores
in Figs. 3 and 4 is also visible for the three scores presented
in Fig. 6, whereas in contrast to FAR and ETS, POD shows
higher values during the period with strongest convective
activity. This is consistent with the result for theA com-
ponent in Fig. 3, as a stronger overestimation (in terms of
areal means) implies an increase of POD but at the same
time also an increase of FAR. Taking a closer look on the
curve for POD, one can notice that there is a tendency to-
wards lower POD values for the high resolution models. The

difference in terms of POD is around 0.2 during afternoon.
This is even better visible in the scores for the lowland do-
main 04 (not shown), where the difference in terms of POD
increases to 0.3. For both domains it is the model running on
highest resolution (AROME) showing the lowest POD val-
ues for the period 06:00–18:00 UTC, but at the same time
the lowest FAR values. This statement is true when taking
ALA-EUR and INCA aside for a moment. As the model
physics used inside ALA-EUR is the same as it is the case
for ALA-AUT and ALA5, the significant difference in the
first 12 forecast hours should be related to the initial condi-
tions (ECMWF vs. ARPEGE). This will be a topic for fur-
ther investigation, as in general the creation of initial condi-
tions for ALADIN/ALARO/AROME models from ECMWF
model output is not straightforward, in particular for surface
fields like temperature and humidity. Difficulties arise from
the differences in the surfaces schemes used in the ECMWF
and the ALADIN/ALARO/AROME/ARPEGE models.

In general INCA shows the best scores for ETS and FAR
during the first 3 h, as would be expected from a nowcast-
ing system. It must be kept in mind, however, that INCA
has the advantage of starting from the analysis which is used
for verification. For FAR and ETS the difference between
lowlands and mountainous areas is less obvious. In terms
of ETS it is ECMWF and INCA showing the highest values
during the period with strongest convective activity. When
using different intensity intervals to compute the ETS score
(e.g. 10–20 mm,> 20 mm) no additional information is ob-
tained, except that in terms of ETS the models show low skill
for the forecast period with strongest convective activity.

6 Summary

Various models used at ZAMG running on different horizon-
tal grid spacings ranging from 2.5 to 25 km are compared ac-
cording to their precipitation forecasts for a 2-month period
in summer 2009 which is dominated by convective activity.
The method used for verification is SAL, a package evalu-
ating the domain average precipitation and also the structure
and the location of the precipitation features in the model.
On observational side the INCA high resolution precipitation
analysis is used, which is a part of the operational analysis
and nowcasting system at ZAMG.

It turns out that SAL is a valuable tool to address more as-
pects than just the quantitative quality of precipitation fore-
casts. In addition to theA component (evaluating the area
mean values), the structure componentS seems to be able
to confirm “human” subjective impressions when there is a
need to choose the model creating the most realistic pre-
cipitation forecast patterns. The location component seems
to yield less valuable information due to its rather small
variation from model to model (in terms of mean values).
L should be more valuable when considering single case
studies.
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The evaluation of the different models shows that the ben-
efit of high resolution models running on grid spacings of
2.5 km or 5 km can be seen when the structure of the model
precipitation fields are considered. This is true even when
verification grids with lower horizontal resolution are used.
In terms of domain average values the benefit is not appar-
ent, unless one concentrates on strong precipitation events.
For high impact weather the advantages of models with grid
spacing finer than 5 km are visible. Using conventional grid
point scores the benefit of high resolution models is not visi-
ble.

Among the models used in the present verification study
two 5 km model versions are compared, one running with a
hydrostatic kernel and one with its non-hydrostatic counter-
part. The results show that noticeable differences between
the two versions are just visible in the structure component
and primarily in mountain areas. In terms of areal mean val-
ues the differences are small, but one can expect to reveal
more details by performing case studies.
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