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Abstract. This study presents a methodology to analyse orographic enhancement of precipitation using se-
quences of radar images and a digital elevation model. Image processing techniques are applied to extract
precipitation cells from radar imagery. DEM is used to derive the topographic indices potentially relevant
to orographic precipitation enhancement dfatent spatial scales, e.g. terrain convexity and slope exposure

to mesoscale flows. Two recently developed machine learning algorithms are then used to analyse the rela-
tionship between the repeatability of precipitation patterns and the underlying topography. Spectral clustering
is first used to characterize stratification of the precipitation cells accordingféveatit mesoscale flows and
exposure to the crest of the Alps. At a second step, support vector machine classifiers are appliecl to build
a computational model which discriminates persistent precipitation cells from all the others (not showing a
relationship to topography) in the space of topographic conditioning factors. Upwind slopes and hill tops were
found to be the topographic features leading to precipitation repeatability and persistence. Maps of orographic
enhancement susceptibility can be computed for a given flow, topography and forecasted smooth precipitation
fields and used to improve nowcasting models or correct windward and leeward biases in numerical weather
prediction models.

1 Introduction elevation model (DEM). The study considers how the ter
rain features such as terrain convexity and slope exposuf

The orographic precipitation enhancement is a complex atto mesoscale flows help in explaining persistent patterns g
mospheric phenomenon which is the subject of many numererographic precipitation. Precipitation cells and the corre
ical (Rotunno and Houze2007 and observational studies sponding flow directions are extracted from radar images an
(Gray and See®00Q Panziera and German2010. High- attributed to the pre-computed underlying topographic vari
resolution numerical weather prediction (NWP) models areables. The orographic enhancement is defined as the ability
computationally demanding to provide fast forecasts with ap-of topography to enforce repeatability to particular precipi-
propriate data assimilation systems. Expert-based statistication patterns such as stationary cells, stable upslope ascen
approaches are developed to avoid these flaws. Such alteand localized thunderstorms. Evidences of high counts @
natives are successfully applied for thunderstorm nowcasteells repeatability reveal the topographic conditions and lof
ing (Wilson and Gallant200Q Williams et al, 2008, and  cations where the phenomenon is accentuated. This form
are also appearing in the context of orographic precipitationation allows characterizing precipitation enhancement usin
nowcasting Panziera et a12010. data-driven classification models. The system can be applie
This study introduces anffecient computational alterna- to simulate the localized enhancement under given flow an
tive to analyse and to model orographic enhancement of prelarge scale precipitation patterns derived from nowcasting g
cipitation from a sequence of radar images and a digitaNWP models.
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The paper is organized as follows. Sectiaxplains the Data preparation passes through three main steps: the pro-
methodology. SectioB describes the data preparation. Its cessing of the DEM, the estimation of motion vector field
exploration is shown in Sect. The computational model of from subsequent radar images and the extraction of precipi-
orographic enhancement is explained in SBct. tation cells.

Feature extraction from DEM (FidL, step 1a) was per-
formed with Gaussian convolution filters to compute terrain
convexity and terrain gradient (Fig, step 1b). Features
The methodology is illustrated in the work-flow diagram in Were derived at dierent spatial scales (degrees of smooth-

Fig. 1. It can be summarized in four main steps: ness) by applying convolution kernels withfierent band-
widths o. More details about the extraction and the use of

1. Compute terrain indices such as convexity and gradientshese features for meteorological applications can be found
at different spatial scales from the DEM. in Pozdnoukhov et a(2009 andForesti et al(2011).

The motion vector field (Figl, step 2b) is estimated from
two consecutive radar images using the optical flow algo-
rithm explained inSun et al(2008. Other studies consider
variational techniques to the robust estimation of fl&ex-
mann and Zawadzk2002. Common parameters of these
algorithms allow controlling the tradeffobetween the pre-
cision and the spatial smoothness of the estimated field. In

3. Explore the dataset using methods of clustering to findoU" approach we set the regularization parameters to have a
natural partitions (classes) of mesoscale flows and exSmooth estimation of flow direction by minimizing the per-
posure of cells with respect to the main Alpine ridge. turbations due to cell dissipation and growth particularly in
Select the clusters presenting potential orographic Conponyectlve snuguons. The flow derivative .(FD) h|_gh||ght|ng
ditions (windward clusters). Within these clusters, anal- upwmd slopes IS computed from the terrain gradient and the
yse the cells’ repeatability to detect the places prone toMotion vector field as follows:
precipitation persistence and those which are not. FD(X.t)=Vz(X) - u(x.t) (1)

2 Methodology

2. Estimate the motion vector field and extract the geo-
graphical location of precipitation cells from a represen-
tative sequence of radar images of orographic precipita
tion events. Compute indices for slope exposure to win
direction flow derivativg using the motion vector field
and terrain gradients.

4. Build a statistical classification algorithm separatin . . .
9 P 9 whereVz(x) is the gradient vector of elevation evaluated at

prographlc precipitation cells from non-orographic Onesthe (X, Y) spatial coordinates u(x,t) is the flow vector with
in the space of features. Based on new nowcasted pre-

cipitation fields, mesoscale flows and the underlying to-(u’v) components estimated a@t timet.

- . Several algorithms are available to detect precipitation
raph m h ibility of orographic en- . .
Eggcaepr)nghfo pute the susceptibility of orographic e cells from radar imageryL@kshmanan et gl2003 Wilson

et al, 2009. In this study cells were identified by a simple

More details on step 1, 2 and 3 can be foundraresti and  method that finds the points of maxima of a smoothed pre-

Pozdnoukhoy(2010. Preliminary results of step 4 are pre- Cipitation field. It was done by subtracting two precipitation
sented in this paper. fields smoothed with dierent bandwidths-. The resulting

images describe precipitation anomalies and enable a robust
selection of cells while filtering out most of clutteffects

(Fig. 1, step 2b).

Radar images used for testing the methodology concern |MiS Processing is done on the dataset of radar images ev-
the Swiss Alps in the period from 18 to 23 August 2005, &Y 5Mmin within 6 days of precipitation (1728 images). The
This orographic precipitation event touched in particular thefina! dataset is composed of 28758 cells (observations) em-

northern side of the AlpsRotach et a].200§. Precipitation ~ °€dded inaspace of 18 dimensions: [elevaiboonvexities
amounts exceeded 200 mm in three days with return periodls7 flow dgrlvat|ve3 precipitation u,v flow co.mponents]. A,”
above 100yr at several weather statioRge{, 200§. The input variables computed on the whole grid are st.ored in or-
available radar imagery has a temporal resolution of 5minder (0 test the models underidirent weather situations. Al
and a spatial resolution ofxd1 ki (Fig. 1, step 2a). It has Jata processing steps were implemented in Matlab.

been pre-processed to correct the vertical profiles in shel-

tered regions, to eliminate radar-rain gauge biases due ta Exploration of precipitation cells

reduced visibility, to remove ground clutter and to account

for the bright-band #ect (Germann et al.200§. The DEM The exploration of precipitation cells is done in two steps.
used to derive the topographic information has a resolutiorFirst, the diferent flow situations (direction and strength) and
of 250x 250 . The topographic features are computed atthe exposure of precipitation cells relative to the main Alpine
the 1x 1 kn? grid of the radar. ridge, described by a very large scale flow derivative, are

3 Data preparation
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Figure 1. General scheme for data-driven modelling of orographic precipitation enhancement. External nowcasted precipitation an
fields can be used as inputs for models of orographic precipitation enhancement, i.e. describing the likelihood of precipitation repea
and persistence due to topography.
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Table 1. Comparison of dferent models. AUROC and correspond-
ing standard deviations are evaluated on 20 random splits.

Model AUROC (st. dev.) " E

60 o
One-class SVM Linear 0.733 (0.008) 5 ‘g
One-class SVM Gaussian 0.807 (0.011) w02
Two-class SVM Linear 0.694 (0.049) . 2
Two-class SVM Gaussian ~ 0.932 (0.007) I

20 A

discriminated using a clustering algorithm suchkaseans
(Steinhaus1956 Hartigan and Wongl979 or spectral clus-
tering (Ng et al, 200]). K-means can be used for delineat-
ing convex-shaped clusters and is nowadays used as a bench-
mark for weather types classificatioRH(ilipp et al, 2010.
Spectral clusteringNg et al, 2001) was used in this study
because of the non spherical shape of clusters. This step is
done to provide meteorological interpretability to the cells
detected according to the direction of flow and their spatial
location. Figurel step 3a plots the cells in polar coordinates
according to flow direction. The filerent colours depict the
cluster membership computed using spectral clustering in theb
3-D space of§,v) flow components an the largest scale flow
derivative. Every cluster is homogeneous in terms of flow Figure 2. (&) Radar image with the detected cells ghjithe corre-
direction and relative location of cells (windward, leeward). SPonding orographic enhancement characterized by the linear one-
A detailed analysis is carried out within each cluster to ¢/ass SVM decision function.
recognize places which are prone to repeatability of precipi-

tation cells. A number of counts measuring how many timesyyy \was used for the computatiorBhang and Lin2003).

a pixel is touched by a cell under _similgr flqw conditions | can pe applied in a two-class and in a one-class settings
(same cluster) reveals a clear relationship with topography(scriikopf et al, 2001). The one-class setting considers the
A threshold on the counter of precipitation repeatability canestimation of the support of the probability density function
be _used to form_ulate a binary classmce_ltlon problem. T_he 10-5f the target class, the orographic cells, while discriminat-
cations exceeding the threshold are given todf@graphic  jnq the other. Both linear and non-linear class separation can
classand the other ones are given to then-orographic e achieved by changing the kernel function encoding data
class Figurel (step 3b) plots the geographical distribution gjmilarities (dot product for a linear or Gaussian radial basis
of the two classes corresponding to the threshold value ofynction for a non-linear separation boundary). SVM's toler-
4. This value was empirically selected to have #isient  ance to misclassification errors reduces the influence of the
number of cells representing the orographic class while keepgyreshold value used to define the classes on the final results
ing low the number of potential non-orographic cells falling 4nq allows to capture general tendencies of enhancement fac-
in the orographic class. Persistent precipitation cells (0ro+grs from the data.

graphic c!ass) tend to concentrate in parti_cular regions in  pata were randomly split into training (50% of the data),
geographical space (mainly Prealps, see Eigitep 1a and  yqjigation (25%) and testing (25%) datasets respectively for
step 3b) having specific topographic conditions, typically atyraining, model selection and assessment purposes. Table

SVM decision function / orogr.enhancement

the top of hills and on upwind slopes. shows the areas under ROC curves (AUR®lks, 2005
of the test dataset after parameters selection on the validation
5 Computational model of orographic precipitation dataset. Maximum separability is obtained with an AUROC
enhancement of 1, no separability between patterns with an AUROC of 0.5.

The high AUROC values for all models considered point out
The computational model of enhancement susceptibility isthat orographic and non-orographic classes are separable in
based on a classifier operating in the 16 dimensional space dhe high-dimensional space of topographic features. Hence,
the conditioning factorsu{v components were used only for the decision function of the classifiers can be interpreted as
clustering). Support vector machine (SVMapnik, 1999 an indicator of orographic enhancement, i.e. the ability of
was selected as the classification method due to its robustnegsoducing repeatabilityféects and persistence on precipita-
and explicit control over model's complexity. LibSVM tool- tion.
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Figure 3. (a) Scatterplot of the orographic class (black crosses) in the space of features medium scale terrain convexity and large sca
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Alps). (b) Same as (a) but with features smallest scale terrain convexity and smallest scale flow derivative. No patterns can be seen in this

combination of features which is also neglected by the model.

Once the model is trained on a representative dataset it caB Conclusions
be used for spatial predictions of precipitation enhancement
under diferent flow and smooth precipitation patterns. Fig- This study introduced a generic data-driven methodology t
ure 2 shows an example of the system applied to characterstudy the orographic enhancement of precipitation. It aime
ize the orographic enhancement (R2h) with north-easterly  at discovering the persistent topography-related patterns
flows and precipitation blocking in the north flank of the Alps precipitation repeatability from high resolution radar images
(Fig. 2a). High enhancement values are found on the upwindwithout using computationally demanding numerical mod-
northern side of Alps which is consistent with the blocking els.
situation. Moreover, features due to the integration of eleva- The extraction of precipitation cells, the estimation of
tion and terrain exposure can be noticed. mesoscale flows from radar images and the understandit]
A key property of SVM is the ability of eliminating the of their connection to the underlying topography was the ke
irrelevant input information by weighting theftBrent topo-  point of the work. It allowed to reveal relevant variables for
graphic and flow-related features. Thus, prediction maps arexplaining patterns of orographic precipitation affefient

an optimal mixture of input features where the relevant onesspatial scales. The exploratory analysis of the dataset with

dominate the spatial patterns and the irrelavant ones are sima clustering algorithm highlighted similaveather typesn
ply filtered out. A close look to Figeb indicates that patterns terms of mesoscale flows and exposure to the main Alpin
are likely to be produced only by a subset of the 16 featuresrest (windward or leeward). Additional analyses whithin
used. It suggests that terrain variables such as hills, ridgethese clusters were performed to detect geographical loc
and upwind slopes need having a certain spatial scale (extions prone to precipitation persistence, i.e. the places whig
tension and size) tofect and be explanatory variables of were repeatedly touched by precipitation cells. Such placeg
precipitation persistence. were found to be located at the top of hills and on upwind
The study of features’ relevance is better approached bylopes. The patterns of precipitation repeatability and pef
plotting the orographic enhancement susceptibility indicatorsistence were observed in the range of spatial scales repi
in the space of features. FigBshows the same predictions sented by terrain features, i.e. between the micro- and th
of Fig. 2b but visualised respectively in a space composedmeso-gamma scales. However, only a subset of the consi
of explanatory features (Figa) and in a space of irrelevant ered scales were found to be relevant to orographic precip
features (Fig3b). The SVM decision function in Figga de-  tation.
picts very well the membership to the orographic class con- The evidence of separability of precipitation cells patterns

structed from the available persistent cells as a function ofmotivated the construction of data-driven classification mod
terrain convexity and flow exposure. On the other hand, ncels in the high-dimensional space of conditioning variables

clear patterns can be seen in R3p. such as topographic and flow features. The classificatio
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