
Adv. Sci. Res., 6, 129–135, 2011
www.adv-sci-res.net/6/129/2011/
doi:10.5194/asr-6-129-2011
© Author(s) 2011. CC Attribution 3.0 License.

History of 
Geo- and Space 

SciencesO
p
en

 A
cc

es
s

Advances in 
Science & Research
Open Access Proceedings

Drinking Water 
Engineering 
and ScienceO

pe
n
 A

cc
es

s
O

pe
n
 A

cc
es

s  Earth System 

 Science 

Data

10th
E

M
S

A
nnualM

eeting
and

8th
E

uropean
C

onference
on

A
pplied

C
lim

atology
(E

C
A

C
)

2010

Data-driven exploration of orographic
enhancement of precipitation

L. Foresti1, M. Kanevski1, and A. Pozdnoukhov2

1Institute of Geomatics and Analysis of Risk, University of Lausanne, Switzerland
2National Centre for Geocomputation, National University of Ireland Maynooth, Ireland

Received: 20 December 2010 – Revised: 4 April 2011 – Accepted: 13 April 2011 – Published: 17 May 2011

Abstract. This study presents a methodology to analyse orographic enhancement of precipitation using se-
quences of radar images and a digital elevation model. Image processing techniques are applied to extract
precipitation cells from radar imagery. DEM is used to derive the topographic indices potentially relevant
to orographic precipitation enhancement at different spatial scales, e.g. terrain convexity and slope exposure
to mesoscale flows. Two recently developed machine learning algorithms are then used to analyse the rela-
tionship between the repeatability of precipitation patterns and the underlying topography. Spectral clustering
is first used to characterize stratification of the precipitation cells according to different mesoscale flows and
exposure to the crest of the Alps. At a second step, support vector machine classifiers are applied to build
a computational model which discriminates persistent precipitation cells from all the others (not showing a
relationship to topography) in the space of topographic conditioning factors. Upwind slopes and hill tops were
found to be the topographic features leading to precipitation repeatability and persistence. Maps of orographic
enhancement susceptibility can be computed for a given flow, topography and forecasted smooth precipitation
fields and used to improve nowcasting models or correct windward and leeward biases in numerical weather
prediction models.

1 Introduction

The orographic precipitation enhancement is a complex at-
mospheric phenomenon which is the subject of many numer-
ical (Rotunno and Houze, 2007) and observational studies
(Gray and Seed, 2000; Panziera and Germann, 2010). High-
resolution numerical weather prediction (NWP) models are
computationally demanding to provide fast forecasts with ap-
propriate data assimilation systems. Expert-based statistical
approaches are developed to avoid these flaws. Such alter-
natives are successfully applied for thunderstorm nowcast-
ing (Wilson and Gallant, 2000; Williams et al., 2008), and
are also appearing in the context of orographic precipitation
nowcasting (Panziera et al., 2010).

This study introduces an efficient computational alterna-
tive to analyse and to model orographic enhancement of pre-
cipitation from a sequence of radar images and a digital
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elevation model (DEM). The study considers how the ter-
rain features such as terrain convexity and slope exposure
to mesoscale flows help in explaining persistent patterns of
orographic precipitation. Precipitation cells and the corre-
sponding flow directions are extracted from radar images and
attributed to the pre-computed underlying topographic vari-
ables. The orographic enhancement is defined as the ability
of topography to enforce repeatability to particular precipi-
tation patterns such as stationary cells, stable upslope ascent
and localized thunderstorms. Evidences of high counts of
cells repeatability reveal the topographic conditions and lo-
cations where the phenomenon is accentuated. This formu-
lation allows characterizing precipitation enhancement using
data-driven classification models. The system can be applied
to simulate the localized enhancement under given flow and
large scale precipitation patterns derived from nowcasting or
NWP models.
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The paper is organized as follows. Section2 explains the
methodology. Section3 describes the data preparation. Its
exploration is shown in Sect.4. The computational model of
orographic enhancement is explained in Sect.5.

2 Methodology

The methodology is illustrated in the work-flow diagram in
Fig. 1. It can be summarized in four main steps:

1. Compute terrain indices such as convexity and gradients
at different spatial scales from the DEM.

2. Estimate the motion vector field and extract the geo-
graphical location of precipitation cells from a represen-
tative sequence of radar images of orographic precipita-
tion events. Compute indices for slope exposure to wind
direction (flow derivative) using the motion vector field
and terrain gradients.

3. Explore the dataset using methods of clustering to find
natural partitions (classes) of mesoscale flows and ex-
posure of cells with respect to the main Alpine ridge.
Select the clusters presenting potential orographic con-
ditions (windward clusters). Within these clusters, anal-
yse the cells’ repeatability to detect the places prone to
precipitation persistence and those which are not.

4. Build a statistical classification algorithm separating
orographic precipitation cells from non-orographic ones
in the space of features. Based on new nowcasted pre-
cipitation fields, mesoscale flows and the underlying to-
pography, compute the susceptibility of orographic en-
hancement.

More details on step 1, 2 and 3 can be found inForesti and
Pozdnoukhov(2010). Preliminary results of step 4 are pre-
sented in this paper.

3 Data preparation

Radar images used for testing the methodology concern
the Swiss Alps in the period from 18 to 23 August 2005.
This orographic precipitation event touched in particular the
northern side of the Alps (Rotach et al., 2006). Precipitation
amounts exceeded 200 mm in three days with return periods
above 100 yr at several weather stations (Frei, 2006). The
available radar imagery has a temporal resolution of 5 min
and a spatial resolution of 1×1 km2 (Fig. 1, step 2a). It has
been pre-processed to correct the vertical profiles in shel-
tered regions, to eliminate radar-rain gauge biases due to
reduced visibility, to remove ground clutter and to account
for the bright-band effect (Germann et al., 2006). The DEM
used to derive the topographic information has a resolution
of 250×250 m2. The topographic features are computed at
the 1×1 km2 grid of the radar.

Data preparation passes through three main steps: the pro-
cessing of the DEM, the estimation of motion vector field
from subsequent radar images and the extraction of precipi-
tation cells.

Feature extraction from DEM (Fig.1, step 1a) was per-
formed with Gaussian convolution filters to compute terrain
convexity and terrain gradient (Fig.1, step 1b). Features
were derived at different spatial scales (degrees of smooth-
ness) by applying convolution kernels with different band-
widthsσ. More details about the extraction and the use of
these features for meteorological applications can be found
in Pozdnoukhov et al.(2009) andForesti et al.(2011).

The motion vector field (Fig.1, step 2b) is estimated from
two consecutive radar images using the optical flow algo-
rithm explained inSun et al.(2008). Other studies consider
variational techniques to the robust estimation of flow (Ger-
mann and Zawadzki, 2002). Common parameters of these
algorithms allow controlling the trade-off between the pre-
cision and the spatial smoothness of the estimated field. In
our approach we set the regularization parameters to have a
smooth estimation of flow direction by minimizing the per-
turbations due to cell dissipation and growth particularly in
convective situations. The flow derivative (FD) highlighting
upwind slopes is computed from the terrain gradient and the
motion vector field as follows:

FD(x,t)=∇z(x) ·u(x,t) (1)

where∇z(x) is the gradient vector of elevation evaluated at
the (X, Y) spatial coordinatesx, u(x,t) is the flow vector with
(u,v) components estimated atx at timet.

Several algorithms are available to detect precipitation
cells from radar imagery (Lakshmanan et al., 2003; Wilson
et al., 2004). In this study cells were identified by a simple
method that finds the points of maxima of a smoothed pre-
cipitation field. It was done by subtracting two precipitation
fields smoothed with different bandwidthsσ. The resulting
images describe precipitation anomalies and enable a robust
selection of cells while filtering out most of clutter effects
(Fig. 1, step 2b).

This processing is done on the dataset of radar images ev-
ery 5 min within 6 days of precipitation (1728 images). The
final dataset is composed of 28758 cells (observations) em-
bedded in a space of 18 dimensions: [elevation| 7 convexities
| 7 flow derivatives| precipitation| u,v flow components]. All
input variables computed on the whole grid are stored in or-
der to test the models under different weather situations. All
data processing steps were implemented in Matlab.

4 Exploration of precipitation cells

The exploration of precipitation cells is done in two steps.
First, the different flow situations (direction and strength) and
the exposure of precipitation cells relative to the main Alpine
ridge, described by a very large scale flow derivative, are
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Figure 1. General scheme for data-driven modelling of orographic precipitation enhancement. External nowcasted precipitation and flow
fields can be used as inputs for models of orographic precipitation enhancement, i.e. describing the likelihood of precipitation repeatability
and persistence due to topography.

www.adv-sci-res.net/6/129/2011/ Adv. Sci. Res., 6, 129–135, 2011



132 L. Foresti et al.: Data-driven exploration of orographic enhancement

Table 1. Comparison of different models. AUROC and correspond-
ing standard deviations are evaluated on 20 random splits.

Model AUROC (st. dev.)

One-class SVM Linear 0.733 (0.008)
One-class SVM Gaussian 0.807 (0.011)
Two-class SVM Linear 0.694 (0.049)
Two-class SVM Gaussian 0.932 (0.007)

discriminated using a clustering algorithm such ask-means
(Steinhaus, 1956; Hartigan and Wong, 1979) or spectral clus-
tering (Ng et al., 2001). K-means can be used for delineat-
ing convex-shaped clusters and is nowadays used as a bench-
mark for weather types classification (Philipp et al., 2010).
Spectral clustering (Ng et al., 2001) was used in this study
because of the non spherical shape of clusters. This step is
done to provide meteorological interpretability to the cells
detected according to the direction of flow and their spatial
location. Figure1 step 3a plots the cells in polar coordinates
according to flow direction. The different colours depict the
cluster membership computed using spectral clustering in the
3-D space of (u,v) flow components an the largest scale flow
derivative. Every cluster is homogeneous in terms of flow
direction and relative location of cells (windward, leeward).

A detailed analysis is carried out within each cluster to
recognize places which are prone to repeatability of precipi-
tation cells. A number of counts measuring how many times
a pixel is touched by a cell under similar flow conditions
(same cluster) reveals a clear relationship with topography.
A threshold on the counter of precipitation repeatability can
be used to formulate a binary classification problem. The lo-
cations exceeding the threshold are given to theorographic
class and the other ones are given to thenon-orographic
class. Figure1 (step 3b) plots the geographical distribution
of the two classes corresponding to the threshold value of
4. This value was empirically selected to have a sufficient
number of cells representing the orographic class while keep-
ing low the number of potential non-orographic cells falling
in the orographic class. Persistent precipitation cells (oro-
graphic class) tend to concentrate in particular regions in
geographical space (mainly Prealps, see Fig.1, step 1a and
step 3b) having specific topographic conditions, typically at
the top of hills and on upwind slopes.

5 Computational model of orographic precipitation
enhancement

The computational model of enhancement susceptibility is
based on a classifier operating in the 16 dimensional space of
the conditioning factors (u,v components were used only for
clustering). Support vector machine (SVM,Vapnik, 1995)
was selected as the classification method due to its robustness
and explicit control over model’s complexity. LibSVM tool-
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Figure 2. (a) Radar image with the detected cells and(b) the corre-
sponding orographic enhancement characterized by the linear one-
class SVM decision function.

box was used for the computations (Chang and Lin, 2001).
It can be applied in a two-class and in a one-class settings
(Scḧolkopf et al., 2001). The one-class setting considers the
estimation of the support of the probability density function
of the target class, the orographic cells, while discriminat-
ing the other. Both linear and non-linear class separation can
be achieved by changing the kernel function encoding data
similarities (dot product for a linear or Gaussian radial basis
function for a non-linear separation boundary). SVM’s toler-
ance to misclassification errors reduces the influence of the
threshold value used to define the classes on the final results
and allows to capture general tendencies of enhancement fac-
tors from the data.

Data were randomly split into training (50% of the data),
validation (25%) and testing (25%) datasets respectively for
training, model selection and assessment purposes. Table1
shows the areas under ROC curves (AUROC,Wilks, 2005)
of the test dataset after parameters selection on the validation
dataset. Maximum separability is obtained with an AUROC
of 1, no separability between patterns with an AUROC of 0.5.
The high AUROC values for all models considered point out
that orographic and non-orographic classes are separable in
the high-dimensional space of topographic features. Hence,
the decision function of the classifiers can be interpreted as
an indicator of orographic enhancement, i.e. the ability of
producing repeatability effects and persistence on precipita-
tion.
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Figure 3. (a) Scatterplot of the orographic class (black crosses) in the space of features medium scale terrain convexity and large scale flow
derivative. The SVM decision function is computed on the whole grid of Fig.2b and is here displayed with the same colour scale. Orographic
enhancement increases from the bottom right corner (valley bottom, leeward side of Alps) to the top left corner (hill top, windward side of
Alps). (b) Same as (a) but with features smallest scale terrain convexity and smallest scale flow derivative. No patterns can be seen in this
combination of features which is also neglected by the model.

Once the model is trained on a representative dataset it can
be used for spatial predictions of precipitation enhancement
under different flow and smooth precipitation patterns. Fig-
ure 2 shows an example of the system applied to character-
ize the orographic enhancement (Fig.2b) with north-easterly
flows and precipitation blocking in the north flank of the Alps
(Fig. 2a). High enhancement values are found on the upwind
northern side of Alps which is consistent with the blocking
situation. Moreover, features due to the integration of eleva-
tion and terrain exposure can be noticed.

A key property of SVM is the ability of eliminating the
irrelevant input information by weighting the different topo-
graphic and flow-related features. Thus, prediction maps are
an optimal mixture of input features where the relevant ones
dominate the spatial patterns and the irrelavant ones are sim-
ply filtered out. A close look to Fig.2b indicates that patterns
are likely to be produced only by a subset of the 16 features
used. It suggests that terrain variables such as hills, ridges
and upwind slopes need having a certain spatial scale (ex-
tension and size) to affect and be explanatory variables of
precipitation persistence.

The study of features’ relevance is better approached by
plotting the orographic enhancement susceptibility indicator
in the space of features. Figure3 shows the same predictions
of Fig. 2b but visualised respectively in a space composed
of explanatory features (Fig.3a) and in a space of irrelevant
features (Fig.3b). The SVM decision function in Fig.3a de-
picts very well the membership to the orographic class con-
structed from the available persistent cells as a function of
terrain convexity and flow exposure. On the other hand, no
clear patterns can be seen in Fig.3b.

6 Conclusions

This study introduced a generic data-driven methodology to
study the orographic enhancement of precipitation. It aimed
at discovering the persistent topography-related patterns of
precipitation repeatability from high resolution radar images
without using computationally demanding numerical mod-
els.

The extraction of precipitation cells, the estimation of
mesoscale flows from radar images and the understanding
of their connection to the underlying topography was the key
point of the work. It allowed to reveal relevant variables for
explaining patterns of orographic precipitation at different
spatial scales. The exploratory analysis of the dataset with
a clustering algorithm highlighted similarweather typesin
terms of mesoscale flows and exposure to the main Alpine
crest (windward or leeward). Additional analyses whithin
these clusters were performed to detect geographical loca-
tions prone to precipitation persistence, i.e. the places which
were repeatedly touched by precipitation cells. Such places
were found to be located at the top of hills and on upwind
slopes. The patterns of precipitation repeatability and per-
sistence were observed in the range of spatial scales repre-
sented by terrain features, i.e. between the micro- and the
meso-gamma scales. However, only a subset of the consid-
ered scales were found to be relevant to orographic precipi-
tation.

The evidence of separability of precipitation cells patterns
motivated the construction of data-driven classification mod-
els in the high-dimensional space of conditioning variables
such as topographic and flow features. The classification
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of cells into orographic and non-orographic, defined using a
threshold on precipitation repeatability, was approached us-
ing support vector machines and provided remarkable empir-
ical performances. The SVM decision function, which can
be interpreted as a susceptibility indicator of orographic en-
hancement, represents how likely topographic, flow and large
scale precipitation conditions produce repeatability effects on
small scale precipitation patterns.

The data-driven modelling of small scale precipita-
tion enhancement patterns in complex topography pro-
vides observational support to operational NWP including
the convection-permitting models (Migliorini et al., 2011).
Radar-based susceptibility maps of orographic precipitation
could be used to correct the windward and leeward quanti-
tative precipitation estimation biases present in many NWP
models (Bauer et al., 2011). An important issue for the future
work is to analyse larger datasets of precipitation persistence
and to construct more robust predictive data-driven models
which are representative of a broader set of flow and atmo-
spheric conditions.
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