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Abstract. Since June 2008, 1-h temperature forecasts for the Calabria region (Southern Italy) are issued
at 2.5 km horizontal resolution at CRATI/ISAC-CNR. Forecasts are available online athttp://meteo.crati.it/
previsioni.html(every 6-h). This paper shows the forecast performance out to three days for one climatological
year (from 1 December 2008 to 30 November 2009, 365 run) for minimum, mean and maximum temperature.
The forecast is evaluated against gridded analyses at the same horizontal resolution.

Gridded analysis is based on Optimal Interpolation (OI) and uses a de-trending technique for computing the
background field. Observations from 87 thermometers are used in the analysis system.

In this paper cumulative statistics are shown to quantify forecast errors out to three days.

1 Introduction

This paper investigates the performance of the high-
resolution (2.5 km horizontal resolution) operational fore-
cast of minimum, mean, and maximum temperatures issued
at CRATI/ISAC-CNR for the Calabria peninsula (Southern
Italy, Fig. 1). Temperature forecasts are produced daily by
the Regional Atmospheric Modeling System model (RAMS;
Cotton et al., 2003), and this paper shows the forecast per-
formance from 1 December 2008 to 30 November 2009
(365 runs).

Verification of surface temperature forecast is a compli-
cated task because forecast and observation contain different
information about the same physical quantities, and this is
due to the filtering properties of the numerical weather pre-
diction system in use. In particular, the forecast gives the
average of the meteorological parameter over a grid box, and
it is representative of the conditions inside the grid box, while
surface observations are point measurement.

The difference between the forecast and observation tem-
peratures is particularly important in complex orography and
can be accounted by the observation representativeness (or
representative) error (Lussana et al., 2010). Representative
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errors, which are not Gaussian in their distribution and flow
dependent, are not instrumental errors but are a component of
the observed value due to small scale features that cannot be
resolved by the representation of the real world given by the
model. They are always defined respect to a model, which in
our case is the analyzed field1.

The issues related to complex orography and representa-
tive errors are certainly important for Calabria, where there
is considerable topography variability inside a grid box and
where relatively high mountains peaks (1000 m high) are lo-
cated few kilometres from the shoreline. For example, in
presence of the sea-land contrast a sharp temperature gra-
dient develops across the shoreline and differences of sev-
eral degrees can be reported between two stations located
near the coast and few kilometres inland (Simpson, 1994);
or, when a cold pool develops, differences of several degrees
can be reported by two close stations located, respectively, in
a mountain gap and along an adjacent ridge (Myrick et al.,
2005). Although the horizontal resolution of modern fore-
casting system is of the order of∼1–5 km, these differences
can occur inside the same grid-box, and the forecast is not
able to resolve these small-scale features (Myrick and Horel,
2006, 2008; Mass et al., 2003).

1The analyzed field depends, in turn, on the error covariances,
which determine the scale of the analyzed field.
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Figure 1. (a) Calabria features cited into the text;(b) Calabria
region in the central Mediterranean;(c) Black-filled circles are the
stations of the regional network. Grey shading shows the orographic
height (m).

Because of the filtering properties of the numerical predic-
tion model, representative errors are here treated as an addi-
tional component of the observation error and are filtered out
by comparing the forecast with gridded analyses.

The analysis system, its performance in different condi-
tions, and preliminary statistics on the forecast performance
were already reported in Federico (2011). This paper, how-
ever, presents some new elements, namely: (a) it shows the
model performance for a whole year, using a wider dataset,
and statistics are more robust; (b) the forecast performance
is presented as a function of the season; (c) it uses a different
technique to compute the background field.

The paper is divided as follows: Sect. 2 introduces the ob-
jective analysis and datasets involved; Sect. 3 presents the
forecast statistics, and; Sect. 4 provides conclusions.

2 The objective analysis and datasets involved

The observation dataset consists of minimum, mean, and
maximum temperature from 87 thermometers (Fig. 1) pro-
vided by the Regional Agency for Environmental Protection
of Calabria (ARPACAL). The average of the minimum dis-
tance between two thermometers is 10 km. The spatial dis-
tribution of the 87 thermometers is rather homogeneous and
covers both mountains and lowlands2.

Data are quality controlled by ARPACAL and it is here
assumed that they are not affected by gross measurements
errors.

The forecast is issued by the RAMS model (non-
hydrostatic). A detailed description of the RAMS model is

2More information about the automated weather stations of the
regional network can be found atwww.cfcalabria.it.

given in Cotton et al. (2003) while the model settings in the
operational context are described in Federico (2011).

Three two-way nested domains with horizontal resolutions
of 30 km, 7.5 km and 2.5 km are used. First domain covers
the central part of the Mediterranean basin; the second do-
main extends over southern Italy; the third domain covers
Calabria. For all domains we use thirty vertical levels, up to
16 300 m in the terrain following coordinate system. Levels
are not equally spaced: layers within the Planetary Boundary
Layer (PBL) are between 50 and 200 m thick, whereas layers
in the middle and upper troposphere are 1000 m thick.

Atmospheric initial and dynamic boundary conditions,
available every 6 h at 1× 1 degree horizontal resolution,
are derived from the 12:00 UTC Global Forecasting System
(GFS) run of the National Centres for Environmental Predic-
tion (NCEP; Sela, 1982). A four-dimensional data assimi-
lation technique is used to define the forcing at the lateral
boundaries of the five outermost grid cells of the largest do-
main.

To consider a completely independent dataset for veri-
fying the forecast, the background field is obtained by de-
trending the observations in the vertical direction, similarly
to the methodology of Uboldi et al. (2008). In particular, the
vertical temperature gradient is computed for each day and
meteorological parameter by performing a least-square min-
imization of the observations. For example, in the case of
mean temperature for the dayi-th we compute:

Ti,mean(z)=Ti,0 mean+γi,meanz (1)

whereγi,meanandTi,0 meanare the parameters computed from
the linear fitting andz is the height.

The background field is then reconstructed for each day
and meteorological parameter by using the same 2.5 km dig-
ital elevation model (DEM) used by the RAMS, and applying
to this DEM the result of the linear fitting. Again, consider-
ing the mean temperature for the dayi-th we have:

Ti,mean(x,y)=Ti,0 mean+γi,meanzR(x,y) (2)

whereTi,mean(x,y) is the background field,zR(x,y) is the DEM
used by the RAMS grid at 2.5 km horizontal resolution, and
γi,meanandTi,0 meanare those of Eq. (1).

The objective analysis implemented, which relies on OI,
is described in Federico (2011). In this section we give some
details for the paper readability.

The analyzed field, that is the two-dimensional field of
minimum, mean or maximum temperature, is given by the
equation:

xa= xb+W[yo−H(xb)] (3)

wherexa is the analyzed vector (i.e., the best estimate of the
unknown “truth”),xb is the background (or first guess) field,
yo is the observation vector, whose elements are the mea-
surements of the 87 thermometers,H is the observation op-
erator that transforms the background field into first guesses

Adv. Sci. Res., 6, 211–217, 2011 www.adv-sci-res.net/6/211/2011/

www.cfcalabria.it


S. Federico et al.: Surface high-resolution temperature forecast in southern Italy 213

Table 1. Matrices dimensions in the OI algorithm:n (7810) is the
grid-points number of the third RAMS domain andp (87) is the
number of thermometers.

Matrix/vector rows× columns

x n×1
y p×1
H p×n
W n× p
P n×n
B n×n

of the observations, andW is the optimal weight (or gain)
matrix. Matrices dimensions are given in Table 1, wheren is
the number of grid points of the third RAMS domain (7810)
andp is the thermometers number (87).

The gain matrixW is given by:

W =BHT(R+HBHT)−1 (4)

whereB andR are the background and observational error
covariance matrices, respectively, andHT is the transpose
of the Jacobian of the forward observation operator (which
transforms observation points back to grid points).H is a bi-
linear interpolation operator, which accounts for the altitude
differences between grid points and stations, through the ver-
tical gradient of the minimum, mean, and maximum temper-
ature. Its formulation is reported in Federico (2011).

TheR andB matrices depend on the observation (σ2
o) and

background (σ2
b) error covariances, respectively, whose mag-

nitudes are estimated by fitting, as a function of the distance
r, the covariance between observational innovations com-
puted from all background field-observation pairs (Lönnberg
and Hollingsworth, 1986; Myrick and Horel, 2006). Assum-
ing that: (a) the observational errors are uncorrelated with
one another; and (b) the background and the observational
errors are uncorrelated, we obtain the following two equa-
tions for the innovations’ covariance:

cov (r=0)=σ2
o+σ

2
b (5a)

and:

cov (r ,0)=σ2
b ρ(r) (5b)

where ρ(r) is the background error correlation function,
which is assumed as an isotropic function of the distance
From the data fitting we obtain:σ2

o = 0.7, 0.4, 1.2◦C2 for
minimum, mean, and maximum temperature, respectively;
σ2

b = 1.0, 0.6, 1.2◦C2 for minimum, mean, and maximum
temperature, respectively. The background error correlation
function,ρ(r), is a sixth-order polynomial, which minimizes
theχ2 among interpolating polynomials3.

3Polynomials from first to eighth order were tried. Different
coefficients of the sixth-order polynomial are used for minimum,
mean, and maximum temperature.

Once observation and background error covariances are
determined, the matricesR andB are easily formed for each
parameter.R is a p× p diagonal matrix whose elements are
all equal toσ2

o. B is ann×n matrix whose elementi j is the
value of the background error correlation function computed
for the distance between grid pointsi and j multiplied by the
valueσ2

b.
The analysis error, which by definition quantifies the dif-

ference between the analysis and the unknown truth (Kalnay,
2003), is given by the square root of the diagonal elements
of the precision matrixPa. The precision matrix is an×n
matrix given by:

Pa= (In−WH )B (6)

WhereIn is then-dimension identity matrix. It is worth not-
ing that the estimate of the analysis precision is dependent on
the statistical estimates/assumptions of the errors being accu-
rate. If the observations and/or background error covariances
are poorly known, if there are biases, or if the observations
and background errors are correlated, the analysis precision
can be considerably worse than implied by Eq. (6).

Before concluding this section it is useful to remark that
the grid resolution (2.5 km) does not correspond to the scale
resolution of the analyses, which depends on several factors
as the station density and distribution, the parameter consid-
ered, and the choices made in specifying the error covari-
ance matrices. In this paper, the distance of the background
correlation error is much larger than 2.5 km4, which spreads
the observational innovations at distances larger than the grid
resolution, smearing small scale features.

While the scale resolution of the analysis is not easy to
quantify, it is here stressed that, given the initial assumption
on error covariance matrix, the precision matrix returns the
bulk estimate of the analysis error to the unknown truth for
each grid point, taking into account for the different factors
determining the analysis resolution scale.

3 Results

Cumulative statistics are reported in Table 2 and show the
bias, the Mean Absolute Error (MAE) and the RMSE for the
whole period averaged for the land grid points of the third
model domain5. For example the RMSE reported in Table 2
for each parameter and forecast day is given by:

RMSE=
1
N

N∑
i=1

√√√
1
Nd

Nd∑
k=1

(Tk−Ak)2 (7)

4In this paper we do not show the detail of the Lönnberg
and Hollingsworth method, and the reader is referred to Federico
(2011). However, the data show that innovations are correlated for
distances of the order of 30 km.

5We consider land grid-points only because measurements are
available over the land.
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Table 2. Bias (◦C), MAE (◦C), and RMSE (◦C) averaged for land grid points respect to the analyses. Values for each grid point are
computed for the whole period. The rows show the results of each forecast day. Min, med, and max refers to minimum, mean and maximum
temperature, respectively. The analysis error is shown only for the first-day and is equal for all days. The values in parentheses are the
statistics for the analyses grid-points nearest to the observations. Shaded rows: statistics computed respect to ROI-analyses. The first-day
ROI row (in italic) is not intended for verification purposes but shows the performance of the OI scheme using the RAMS first-day forecast
as background field.

Bias
min

Bias
med

Bias
max

MAE
min

MAE
med

MAE
max

RMSE
min

RMSE
med

RMSE
max

1D −1.0±0.8
(−0.8)

−0.6±0.6
(−0.5)

0.0±0.9
(−0.1)

1.6±0.8
(1.5)

1.2±0.6
(1.2)

1.6±0.9
(1.7)

1.9±0.8
(1.9)

1.5±0.6
(1.6)

2.1±0.9
(2.2)

2D −1.0
(−0.8)

−0.7
(−0.7)

−0.2
(−0.3)

1.6
(1.6)

1.4
(1.4)

1.8
(1.8)

2.0
(2.0)

1.7
(1.7)

2.3
(2.4)

3D −1.0
(−0.8)

−0.7
(−0.7)

−0.2
(−0.3)

1.7
(1.6)

1.4
(1.4)

1.8
(1.9)

2.1
(2.1)

1.8
(1.7)

2.4
(2.4)

1D-ROI −0.6±0.9
(−0.5)

−0.4±0.8
(−0.4)

−0.1±1.1
(−0.1)

1.0±0.9
(1.0)

0.8±0.8
(0.8)

1.0±1.1
(1.0)

1.2±0.9
(1.3)

1.0±0.8
(1.1)

1.3±1.1
(1.4)

2D-ROI −0.6
(−0.5)

−0.5
(−0.5)

−0.3
(−0.4)

1.2
(1.2)

1.0
(1.0)

1.4
(1.3)

1.6
(1.6)

1.3
(1.4)

1.9
(1.8)

3D-ROI −0.6
(−0.6)

−0.5
(−0.5)

−0.3
(−0.3)

1.4
(1.3)

1.1
(1.1)

1.6
(1.4)

1.8
(1.8)

1.5
(1.5)

2.1
(2.0)

whereTk is the temperature forecast for the dayk-th, Ak is the
corresponding analysis,Nd is the number of days (365),N is
the number of land grid points of the third RAMS domain.

The bias is negative for all parameters and forecast days
showing that the forecast is colder than analysis on average.
The MAE shows a good performance because the error it is
below 2◦C for all parameters and forecast days. The RMSE
shows also good performance being about 2◦C for minimum
and mean temperature for the third forecast day, which scores
the worst. For maximum temperature, RMSE varies from 2.1
to 2.4◦C from the first to the third day.

As noticed in the introduction, the use of gridded analy-
ses is motivated by the filtering of small scales features that
cannot be represented by the numerical weather prediction
system in use. The filtering properties of the OI scheme are
determined by the error covariances, which were computed
using an observation-based field as background (hereafter we
will refer to these analyses as OI-analyses). These filtering
properties may not match those of the numerical model and it
is interesting to show the cumulative statistics respect to OI
analyses using the RAMS first day forecast as background
field (hereafter ROI-analyses)6. These statistics cannot quan-
tify the forecast error for the first-day forecast because anal-
yses and forecasts are statistically dependent.

6The parameters of the OI scheme were determined by the
Lönnberg and Hollingsworth method giving:σ2

o = 1.1, 0.5, 1.2◦C2

for minimum, mean, and maximum temperature, respectively; and
σ2

b = 1.5, 1.5, 2.7◦C2 for minimum, mean, and maximum tempera-
ture, respectively.

Table 2 shows that forecast errors decrease when com-
pared to ROI-analyses. This is expected because: (a) the
filtering properties of the ROI-analyses match better those of
the numerical model; (b) as we didn’t attempt to remove the
forecast bias, the ROI-analyses have a small bias respect to
OI-analyses (absolute value less than 0.5◦C for all parame-
ters when averaged over the entire domain), which improves
the forecast error.

It is also interesting to note that the ROI-analysis error is
larger than OI-analysis using de-trended fields because the
innovations, i.e. the differences between the background at
the observation locations and the observations, are larger for
ROI-analyses. So, the better forecast skill respect to ROI-
analyses is partially compensated by the larger error of the
ROI-analyses respect to the unknown truth, given the initial
assumption on error covariances.

The statistics of Table 2 refer to all land grid points of the
third domain. Because the grid cells containing at least one
station correspond to less than 3 % of the land grid points,
it is interesting to consider the verification over the small
fraction of the grid-points adjacent to observation locations.
These statistics are reported in Table 2 and show small differ-
ences compared to the statistics over the whole domain. This
result is not surprising because local features are smoothed
by the OI scheme and stations are rather homogeneously dis-
tributed over the country.

Adv. Sci. Res., 6, 211–217, 2011 www.adv-sci-res.net/6/211/2011/
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Figure 2. RMSE (◦C) seasonal distribution for minimum (min),
mean (avg), and maximum (max) temperature.

Thereafter, we will consider the statistics for the second-
day forecast and for the whole (land) domain because: (a)
the second day scores between the first and third day and it is
representative of the whole forecast behaviour; (b) the results
for the subset of grid points nearest to the observations and
for the whole domain are similar, as shown by the results
of Table 2. Statistics are shown against OI-analyses because
they give a conservative estimate of the forecast error.

To analyze the model performance with season, Fig. 2
shows the land averaged RMSE for minimum, mean, and
maximum temperature, for different seasons and for the
second-day forecast. Spring contains statistics for MAM,
summer for JJA, fall for SON and winter for DJF. The De-
cember month is taken from 2008.

Summer has the best performance while winter scores the
worst. For example, mean temperature RMSE is 1.1◦C for
summer and 2.3◦C for winter. Spring and fall errors are be-
tween those of summer and winter. Comparing spring and
fall it follows that the former scores better for maximum tem-
perature while the latter has a lower error for mean tempera-
ture.

Previous result is expected considering the Mediterranean
characteristics of the Calabria climate (Colacino, 1990; Fed-
erico et al., 2009). In summer the weather is stable and fair
and its predictability is expected longer; in winter the inci-
dence of synoptic scale cyclones is the highest and forecast
errors are larger in these conditions.

The spatial distribution of the RMSE is shown in Fig. 3a
for mean temperature and for the second day forecast. First
we remark the rather good performance of the forecast be-
cause RMSE is less than 1.5◦C for more than half of the do-
main area. The largest error occurs in the Crati valley and in

(a)

(b)

Figure 3. (a) Mean temperature RMSE (◦C) for the second-day
forecast;(b) averaged precision (◦C2) for mean temperature.

the Sibari Plain where RMSE is larger than 2.0–2.5◦C with
a maximum of more than 3.0◦C in the plain centre. Errors
are lower than 1.5◦C in southern Calabria (roughly south of
39◦ N), over the Sila plateau, and for northwest Calabria.

It is interesting to note that areas with larger RMSE are co-
located with well-defined topographical features: the Crati
valley and Sibari Plain, the Lamezia Terme Plain, and the
deep small valley in northwest Calabria (Lao river valley).

www.adv-sci-res.net/6/211/2011/ Adv. Sci. Res., 6, 211–217, 2011
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The reason for this issue is that the forecast smears the me-
teorological features in these valleys, and the 2.5 km hori-
zontal resolution is still not enough to represent several local
phenomena induced by the physiographical features of Cal-
abria, as the sharp temperature gradient across the shoreline
or along the slopes of the ridges surrounding the plains. It is
also interesting to point out the two local error maxima over
the Sila plateau. They correspond to the two main lakes of
Calabria (Cecita and Arvo) and are likely caused by an over-
estimation of the water surface temperature in the initial field
used by the meteorological model. Work is in progress to
assess this point.

To gain a complete knowledge of the RMSE spatial pat-
terns, Fig. 3b shows the precision of the analysis for mean
temperature averaged for the whole period. The square root
of Fig. 3b gives the analysis error.

The analysis error is larger in data void areas, namely
northern Calabria and the eastern flank of the Sila, and its
value is modulated by the gain matrix and the background
error by Eq. (6). Comparing Fig. 3a and b we note that the
model performance is particularly good for southern Calabria
and for the western Sila plateau because they are data rich re-
gions and the analysis and forecast RMSE are low.

Root mean square error patterns for other days and for
other parameters are similar to Fig. 3a (not shown) and er-
rors are lower/larger than Fig. 3a depending on the forecast
day and on the parameter considered, according to the results
of Table 2.

4 Conclusions

This paper shows the verification of a high-resolution surface
temperature forecast for one climatological year (1 Decem-
ber 2008–30 November 2009) in Calabria.

There is a main issue in verifying the forecast in complex
terrain because forecast and observation contain different in-
formation about the same physical quantities and this is due
to the filtering properties of the numerical weather predic-
tion system in use. To cope with this issue, we compare the
forecast with analyses of surface temperature, which are rep-
resentative of the average conditions inside the grid box and
are ideally equal to the average of an infinite number of unbi-
ased observations inside the grid box. Analyses are generated
by optimal interpolation. The background field is obtained
by de-trending the observations in the vertical direction, and
reconstructing the field by the digital elevation model of the
numerical weather prediction model.

The analysis algorithm and some example of analysis were
already reported in the bibliography (Federico, 2011), and
the aim of this paper is to quantify model errors using a wider
and different dataset, which is more relevant for statistical
and climatic considerations, as well as to present new statis-
tics.

Verification of surface temperature forecast is a high di-
mensional problem and cumulative statistics are used to
quantify the forecast performance. Mean absolute error and
RMSE show good results. The largest error is for maximum
temperature, whose RMSE varies from 2.1◦C to 2.4◦C from
the first- to the third-day forecast.

The seasonal dependence of the error is modulated by the
Mediterranean characteristics of the Calabria climate. Errors
are the smallest in summer, when the weather is fair and sta-
ble, while they are the largest in winter, which has the maxi-
mum incidence of synoptic-scale cyclones.

The RMSE spatial pattern highlights areas with larger
(lower) errors. Southern Calabria has the smallest errors,
while the largest errors are co-located with three main to-
pographical features: the Crati valley and Sibari Plain, the
Lamezia Terme Plain, and Lao river valley. The forecast
inspection shows that errors are caused by the smearing of
the meteorological features induced by local physiographi-
cal features of Calabria and that the 2.5 km horizontal res-
olution is still not enough to represent the sharp tempera-
ture gradients generated by those features. Errors patterns
are similar for all forecast days and were also found in Fed-
erico (2011) for a different dataset, thus revealing areas in
which the model forecast need to be improved the more.

The analysis error, which quantifies the difference between
the analyzed field and the unknown truth, given the initial as-
sumption on error covariance matrix, increases in data void
areas and takes into account for the several factors determin-
ing the analysis scale.
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