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Abstract. Ramp events are large rapid variations within wind power time series. Ramp forecasting can benefit
from specific strategies so as to particularly take into account these shifts in the wind power output dynamic. In
the short-term context (characterized by prediction horizons from minutes to a few days), a Regime-Switching
(RS) model based on Artificial Neural Nets (ANN) is proposed. The objective is to identify three regimes
in the wind power time series: Ramp-up, Ramp-down and No-ramp regime. An on-line regime assessment
methodology is also proposed, based on a local gradient criterion. The RS-ANN model is compared to a single-
ANN model (without regime discrimination), concluding that the regime-switching strategy leads to significant
improvements for one-hour ahead forecasts, mainly due to the improvements obtained during ramp-up events.
Including other explanatory variables (NWP outputs, local measurements) during the regime assessment could
eventually improve forecasts for further horizons.

1 Introduction

Since wind energy cannot be neither scheduled nor large-
scale stored, wind power forecasting is required in order to
minimize the impact of the variability of the wind. In partic-
ular, short-term forecasting is currently required by energy
producers (in a daily electricity market context) and the trans-
mission system operators (TSOs) in order to keep the balance
of an electrical system. Within the short-term context, time-
series based models (i.e. statistical models) have shown a bet-
ter performance than Numerical Weather Prediction (NWP)
models for horizons up to few hours (Giebel, 2003; Costa,
2005). These models try to learn and replicate the dynamic
shown by a certain time series, for instance the power output
time series of a wind farm.

Wind power ramp events are characterized by large gra-
dients in the time series during relatively short time peri-
ods (few hours). Ramp events occur not very often, but
they may have a real impact on an electrical system due to
the unexpected variation in the generation side. Addition-
ally, energy traders incur penalties in energy markets due
to deviations from the scheduled energy (seeGreaves et al.,
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2009, and references therein). These impacts could be re-
duced with forecasting models focused on ramp events (Pot-
ter et al., 2009). Ramp events are usually motivated by spe-
cific meteorological processes (crossing fronts, fast changes
in the local wind direction) involving several scales (synop-
tic, mesoscale, microscale). In other cases, wind power gen-
eration may experience drops related to other causes, such
as voltage dips. A ramp event can be then considered as an
“unexpected/atypical” dynamic due to a change in the un-
derlying causes of the wind power conversion process. Con-
sequently, traditional statistical models considering only one
dynamic for the whole wind power time series may be in-
adequate. Section2 describes the implementation of statisti-
cal models based on Artificial Neural Networks (ANNs) for
the case of wind power short-term forecasting. In particu-
lar, Sects.2.1 and2.2 deal with a non-regime and a regime-
switching strategy respectively. Main results of the study are
gathered and discussed in Sect.3.
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2 Methodology

Let {yt}, t = 1,...,N be a discrete time series withN obser-
vations of hourly averaged wind power. Time series based
models traditionally states that{yt} follows a stochastic pro-
cess like (Pẽna, 1987; Madsen, 2007):

yt+k= f (yt−d+1,...,yt,Θ)+εt+k (1)

wherek is the prediction horizon.f represents the determin-
istic component ofyt+k as a function of a set ofd previous
values [yt−d+1,...,yt] and a certain set of parametersΘ. {εt} is
the noise of the stochastic process, assumed to follow a white
noise process{εt} ∼N(0,σ2).

The purpose of time series models is to estimate the un-
known functionf (·,Θ) in order to provide accurate forecasts.
In this way, an appropriate window sized and an optimized
set of parametersΘ have to be found from historical obser-
vations. A criterion based on the minimization of the Root
Mean Squared Error (RMSE) is usually employed.

2.1 The single-ANN model

Non-linear models are usually required in order to estimate
the unknown functionf (·,Θ) introduced in Eq. (1). It is
mainly due to the fact that there are many non-linear ef-
fects involved in the wind power conversion process, such
as the behaviour of the atmosphere and the power curve of
wind turbines. Multilayer Feedforward Networks, a kind of
ANNs, represent a powerful tool to approximate any function
(Hornik et al., 1989). In particular, we employ Multilayer
Perceptrons to estimatef (·,Θ) based on the backpropagation
learning algorithm (Lippmann, 1987).

The implementation of an optimal ANN requires an ap-
propriate choice of:

– The ANN architecture, which comprises the number of
layers and the number of neurons per layer. The set of
parametersΘ gathers weights and bias of the connec-
tions between neurons from one layer to the next one.

– The window sized (Kil et al., 1997).

In this work, the selection of the optimal ANN is based on
a cross-validation criterion. First, several ANNs with differ-
ent architectures (from 1 to 3 layers) and window size (from
1 to 10 lags) are trained over a historic dataset (training-
set). The mentioned range of values are based on empiri-
cal experience. Then, the ANN with the lowest RMSE over
the validation dataset is considered to provide the best ap-
proach of f (·,Θ), being the validation dataset different from
that dataset used for training the ANN. The performance of
the selected ANN is evaluated over a third dataset (test-set),
different from the previous ones.
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h were also considered, varying from0.2 to 2 in 0.2 steps.
Figure 2 illustrates the proposed RS-ANN model.

The performance of the models have been obtained based
on the Improvement over Persistence (IoP%). Persistence is
the most common reference framework for time series fore-
casting models (Giebel, 2003), which states that the forecast-
ing at timet+k is the last observation at timet. TheIoP%
of a certain model is defined as follows:

IoP%= 100 ·
RMSEpersistence−RMSEmodel

RMSEpersistence

(5)

Figure 3 illustrates the results obtained for different pre-
diction horizons. The improvement over Persistence tend to
be modest since Persistence is difficult to improve on for
few-hours ahead (Madsen et al., 2005). It can be seen that
RS-ANN improved the single-ANN only for the case of 1-
hour ahead. It may be due to the fact that the on-line regime
assessment was based on previous observations of the wind
power time series. Hence, the ramp regime is triggered when
the observed local gradient is already significant enough. We
speculate that off-site measurements and NWP outputs could
lead to relevant improvements also for further horizons. An-
other open question is how different time series resolution
(for example, 10-min averaged data) may modify the conclu-
sion here attained.

The case of one-hour ahead was analysed in depth. It
was found that the optimal thresholds between regimes were
given by a scalar factorh = 1 (the estimated standard devi-
ation of {gt} during the training-set iŝσg = 10.08% of the
rated powerPN ). However, the performance of the RS-ANN
models did not show a smooth trend with respect toh. This
may be due to the fact that the training process involves a nu-
merical learning algorithm. This algorithm may evolve in a
different manner depending on several factors, for instance,
the initial conditions of the parameters.

Additionally, a locally-weighted evaluation was carried
out to obtain theIoP% during ramp-up and ramp-down
events for both models (see Table 1). It was found that
the improvement during ramp-up events was clearly higher
than during ramp-down events. This fact suggest that ramp-
up patterns are more regular (hence, better captured by the
model) than ramp-down patterns. It could be due to the fact
that ramp-down events may be motivated by a broader num-
ber of causes, including yaw-misalignments and wind tur-
bine shut-down due to high wind speeds. If further research
reinforces this effect, special attention should be paid toun-
derstand the underlying processes during ramp-down events
in order to get more reliable predictive models.
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Table 1. IoP% for the case of one-hour ahead forecasting

Model Globally Ramp-up Ramp-down

Single-ANN 6.16% 17.60% 18.55%

RS-ANN 8.66% 22.25% 19.55%

Fig. 1. Histogram of local gradient time seriesgt (case forh = 1).
PN stands for the rated power of the wind farm. Local gradients
triggering Ramp-up and Ramp-down regimes are in red and green
colour respectively

Figure 1. Histogram of local gradient time seriesgt (case forh=1).
PN stands for the rated power of the wind farm. Local gradients
triggering Ramp-up and Ramp-down regimes are in red and green
colour respectively.

2.2 A Regime-Switching model based on ANNs

Regime-Switching (RS) models consider that a certain time
series evolves shifting between a numberr of different dy-
namics. In this case, the stochastic process can be written as
follows:

yt+k=


f (1)(yt−d(1)+1,...,yt,Θ

(1))+ε(1)
t+k, if st =1;

f (2)(yt−d(2)+1,...,yt,Θ
(2))+ε(2)

t+k, if st =2;
...

f (r)(yt−d(r)+1,...,yt,Θ
(r))+ε(r)t+k, if st = r;

(2)

where{st}, st ∈ {1,2,...,r} provides the current regime at time
t. This approach permits to consider different generating pro-
cessesf (r) with different window sizesd(r) and white noise
processes{ε(r)t } ∼N(0,σ2

r ) , which is consistent with the idea
that the underlying causes of each regime are different. This
work considers three different regimes: Ramp-up, Ramp-
down and No-ramp regime. Each regime is modelled by
means of an ANN.

Additionally, a criterion have to be defined so as to deter-
minest at each time step. Assuming that ramp events are mo-
tivated by specific conditions at certain meteorological scales
(Cutler et al., 2007), meteorological expertise could provide
st as a function of local observations, NWP outputs, etc. This
work proposes an on-line regime assessment based on the ob-
served wind power local gradient. The gradient time series
{gt} can be defined as:

gt = yt−yt−1 (3)

Then, the regime assessment is based on the following pro-
posed criterion:

gt > h· σ̂g =⇒ st =1 (Ramp-up)

|gt | ≤ h· σ̂g =⇒ st =2 (No-Ramp) (4)

gt < −h· σ̂g =⇒ st =3 (Ramp-down)

whereσ̂g is an estimate of the standard deviation of{gt} ob-
tained from historical data.h is a scalar factor related to the
ramp event definition. For example, higher values ofh pro-
vide few but large ramp events (see Fig.1). A suitable value
for h has to be found during the training process.
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Figure 2. RS-ANN model (left). One-hour ahead forecasting (right). The architecture of each ANN was optimized for each prediction
horizon considered.

3 Results and discussion

The case of a wind farm located in the complex terrain of
Alaiz (north of Spain) has been considered. Three years of
available power output data with an hourly resolution have
been divided into three sets, the length of each set being one
year: training-set (2001), validation-set (2002) and test-set
(2003). In this sense, considering that the underlying dy-
namics in the wind power time series is strongly conditioned
by atmospheric processes, it is important to remark that the
one-year period was selected for each set so as to take into ac-
count monthly seasonality in the wind behaviour. Addition-
ally, the three mentioned periods showed a similar relative
frequency of ramp events (around the 5–10% of the time).

For a given prediction horizonk, a single-ANN model was
performed following the methodology described in Sect.2.1.
Then, the RS-ANN (Eq.2) was implemented by combining
three ANNs with the regime assessment criterion given by
Eq. (4). The optimal ANN architecture and the window size
was tracked for each regime. Several values forh were also
considered, varying from 0.2 to 2 in 0.2 steps. Figure2 illus-
trates the proposed RS-ANN model.

The performance of the models have been obtained based
on the Improvement over Persistence (IoP%). Persistence is
the most common reference framework for time series fore-
casting models (Giebel, 2003), which states that the forecast-
ing at timet+k is the last observation at timet. The IoP% of
a certain model is defined as follows:

IoP%= 100·
RMSEpersistence− RMSEmodel

RMSEpersistence
(5)

Figure3 illustrates the results obtained for different pre-
diction horizons. The improvement over Persistence tend
to be modest since Persistence is difficult to improve on for
few-hours ahead (Madsen et al., 2005). It can be seen that
RS-ANN improved the single-ANN only for the case of one-
hour ahead. It may be due to the fact that the on-line regime
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Fig. 2. RS-ANN model (left). One-hour ahead forecasting (right). The architecture of each ANN was optimized for each prediction horizon
considered
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Figure 3. Improvement over Persistence for different prediction
horizons (case forh=1).

assessment was based on previous observations of the wind
power time series. Hence, the ramp regime is triggered when
the observed local gradient is already significant enough. We
speculate that off-site measurements and NWP outputs could
lead to relevant improvements also for further horizons. An-
other open question is how different time series resolution
(for example, 10-min averaged data) may modify the conclu-
sion here attained.

The case of one-hour ahead was analysed in depth. It
was found that the optimal thresholds between regimes were
given by a scalar factorh= 1 (the estimated standard devi-
ation of {gt} during the training-set is ˆσg = 10.08% of the
rated powerPN). However, the performance of the RS-ANN
models did not show a smooth trend with respect toh. This
may be due to the fact that the training process involves a nu-
merical learning algorithm. This algorithm may evolve in a
different manner depending on several factors, for instance,
the initial conditions of the parameters.
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Table 1. IoP% for the case of one-hour ahead forecasting.

Model Globally Ramp-up Ramp-down

Single-ANN 6.16% 17.60% 18.55%
RS-ANN 8.66% 22.25% 19.55%

Additionally, a locally-weighted evaluation was carried
out to obtain the IoP% during ramp-up and ramp-down
events for both models (see Table1). It was found that
the improvement during ramp-up events was clearly higher
than during ramp-down events. This fact suggest that ramp-
up patterns are more regular (hence, better captured by the
model) than ramp-down patterns. It could be due to the fact
that ramp-down events may be motivated by a broader num-
ber of causes, including yaw-misalignments and wind tur-
bine shut-down due to high wind speeds. If further research
reinforces this effect, special attention should be paid to un-
derstand the underlying processes during ramp-down events
in order to get more reliable predictive models.
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