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Abstract. In this paper we propose a finite element method approach for modelling the air quality in a local
scale over complex terrain. The area of interest is up to tens of kilometres and it includes pollutant sources. The
proposed methodology involves the generation of an adaptive tetrahedral mesh, the computation of an ambient
wind field, the inclusion of the plume rise effect in the wind field, and the simulation of transport and reaction
of pollutants. We apply our methodology to simulate a fictitious pollution episode in La Palma island (Canary
Island, Spain).

1 Introduction

In this paper, we present a new methodology for local scale
air quality simulations, summarized in Algorithm1, by us-
ing a non-steady finite element method with unstructured and
adaptive tetrahedral meshes. The aim of this proposal is to in-
troduce an alternative to the standard implementation of cur-
rent models, improving the computational cost of methods
that use structured meshes (Hanjalíc and Kenjerěs, 2005).

Three remarkable uses of unstructured meshes in atmo-
spheric pollution problems are the two-dimensional regional-
global examples presented inLagzi et al. (2004); Ahmad
et al. (2006), the three-dimensional regional examples, in-
cluding local refinement with element sizes of 2 km, pre-
sented inTomlin et al. (2000), and the three-dimensional
tetrahedral meshes for local wind field analysis with ele-
ment sizes ranging from two meters up to two kilometres, see
Montenegro et al.(2004); Montero et al.(2004). The ideas of
this last approach are considered to include the plume rise ef-
fect in the wind field that is used in the air quality problem.

The wind field is crucial for the pollutant transport, spe-
cially in complex terrain areas. In order to simulate it, we
have used a mass-consistent model. Several two-dimensional
(Winter et al., 1995) and three-dimensional (Montero et al.,

1998, 2005; Ferragut et al., 2010) adaptive finite element so-
lutions have been developed by the authors.

The convection, diffusion and reaction problem is usually
solved using splitting schemes (Mart́ın et al., 2003; Chock
et al., 2005) and specific numerical solvers for time integra-
tion of photochemical reaction terms (Saylor and Ford, 1995;
Sandu et al., 1997; Ahmad et al., 2006). In this paper a stabi-
lized finite element formulation with a Crank-Nicolson tem-
poral integration is proposed to solve the problem (Donea
and Huerta, 2003; Rodŕıguez-Ferran and Sandoval, 2007).
The chemistry is simulated with the RIVAD chemical model
(Scire et al., 2000). The transport and chemical terms are
treated separately with Strang splitting operators (Ropp et al.,
2004), and the non-linear chemical part is solved with a sec-
ond order Rosenbrock method (Verwer et al., 1999).

The paper is organised as follows. In Sect. 2 we describe
the main steps of the proposed methodology. Results are
shown in Sect. 3, and finally the conclusions and future work
are presented in Sect. 4.

2 Algorithm description

In this section a brief description of the different steps of Al-
gorithm1 is presented.

Published by Copernicus Publications.



106 A. Oliver et al.: FEM simulation of local scale air quality model

Algorithm 1 Wind and air pollution modeling algorithm

1: Construct an adaptive tetrahedral mesh of the 3-D domain
2: Wind field simulation from experimental data
3: Wind field modification including the plume rise effect

3.1: Compute plume rise trajectory
3.2: Mesh refinement along plume rise trajectory
3.3: Apply step 2 on the refined mesh
3.4: Modify the vertical wind field along the plume rise

4: Air pollution simulation from stack emission data

2.1 Adaptive tetrahedral mesh

The studied domain is limited at the bottom by the terrain and
at the top by a horizontal plane. The lateral walls are formed
by four vertical planes. A uniform distribution of nodes is
defined on the upper boundary. A refinement/derefinement
algorithm (Ferragut et al., 1994) is applied on this uniform
mesh to construct a node distribution adapted to the terrain
surface and stacks. Once the node distribution is defined
both on the terrain and the upper boundary, we distribute
the nodes located between both layers by using a vertical
spacing function. Next, a three-dimensional mesh generator
based on Delaunay triangulation (Escobar and Montenegro,
1996) is applied. Finally, the untangling and smoothing pro-
cedure described in (Escobar et al., 2003) is used to get a
valid mesh and to improve its quality. A detailed description
of the mesh generation procedure can be seen inMontenegro
et al.(2002).

2.2 Wind field simulation

A mass-consistent model (Montero et al., 1998, 2005; Fer-
ragut et al., 2010) is used to compute a wind fieldu in the
three-dimensional domainΩ, with a boundaryΓ = Γa∪Γb,
that satisfies the continuity equation and the impermeability
condition on the terrainΓa,

∇ ·u = 0 inΩ

n ·u = 0 onΓa
(1)

wheren is the outward-pointing normal unit vector.
The model formulates a Least-Squares problem in the do-

mainΩ to find a wind fieldu = (u,v,w), such that it is ad-
justed as much as possible to an interpolated wind fieldu0 =

(u0,v0,w0). The adjusting functional for a fieldv= (̃u, ṽ, w̃) is
defined as

E(v) =
1
2

∫
Ω

(v−u0)t P(v−u0)dΩ (2)

where P is a 3×3 diagonal matrix withP1,1 = P2,2 = 2α2
1

andP3,3 = 2α2
2. The Lagrange multiplier technique is used to

minimise the functional (Eq.2), with the restrictions (Eq.1).
Considering the Lagrange multiplierλ, the Lagrangian is de-

fined as

L (v,λ) = E (v)+
∫
Ω

λ∇ · v dΩ (3)

and the solutionu is obtained by finding the saddle point
(u,φ) of the Lagrangian Eq. (3). This resulting wind field sat-
isfies the Euler-Lagrange equation,

u = u0+P−1
∇φ (4)

whereφ is the Lagrange multiplier. Asα1 andα2 are constant
in Ω, the variational approach results in an elliptic problem
in φ, by substituting Eq. (4) in Eq. (1), that is solved by using
the finite element method.

−∇ ·
(
P−1
∇φ

)
= ∇ ·u0 in Ω (5)

−n ·P−1
∇φ = n ·u0 onΓa (6)

φ = 0 onΓb (7)

The interpolated wind fieldu0 can be constructed from ex-
perimental data or meteorological forecasting models. In this
paper we consider the first case. Therefore, we consider an
horizontal interpolation and a vertical extrapolation of the
available measurements to constructu0 in the whole com-
putational domain.

2.2.1 Horizontal interpolation

The most common technique of interpolation at a given
point, placed at a heightzm over the terrain, is formulated
as a function of the inverse of the squared distance between
that point and the measurement stations, and the inverse of
their height differences (Montero et al., 1998)

u0(zm) = ξ

N∑
n=1

un

d2
n

N∑
n=1

1
d2

n

+ (1− ξ)

N∑
n=1

un

|∆hn|

N∑
n=1

1
|∆hn|

(8)

where the value ofun is the velocity measured at stationn,
N is the number of stations considered in the interpolation,
dn is the horizontal distance from stationn to the point of the
domain where we are computing the wind velocity,|∆hn| is
the height difference between stationn and the studied point,
andξ is a weighting parameter (0≤ ξ ≤ 1), that allows to give
more importance to one of these interpolation criteria.

2.2.2 Vertical extrapolation

In this work, a log-linear wind profile is considered (Lalas
and Ratto, 1996) in the surface layer, which takes into ac-
count the horizontal interpolation (Montero and Sańın, 2001)
and the effect of roughness on the wind intensity and the di-
rection. These values also depend on the air stability (neutral,
stable or unstable atmosphere) according to the Pasquill sta-
bility class. Above the surface layer, a linear interpolation is
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A. Oliver et al.: FEM simulation of local scale air quality model 107

carried out using the geostrophic wind. The logarithmic pro-
file is given by,

u0(z) =
u∗

k
(log

z
z0
−Φm) z0 < z≤ zsl (9)

whereu∗ is the friction velocity,k is von Karman’s constant,
z0 is the roughness length (McRae et al., 1982) andzsl is the
height of the surface layer. The values ofΦm depend on the
Pasquill stability class (Zannetti, 1990), and the friction ve-
locity is obtained from Eq. (9) at any point (x,y) by using the
horizontal interpolated velocityu0(zm).

The linear interpolation is given by,

u0(z) = ρ(z)u0(zsl)+ [1− ρ(z)]ug zsl < z≤ zpbl (10)

whereug is the geostrophic wind,zpbl is the height of the
planetary boundary layer, andρ(z) is defined as

ρ(z) = 1−

(
z− zsl

zpbl− zsl

)2 (
3−2

z− zsl

zpbl− zsl

)
(11)

Finally, this model assumesu0(z) = ug if z> zpbl and
u0(z) = 0 if z≤ z0.

2.3 Plume rise

The plume rise phenomenon is mainly due to the difference
of temperature between the released substance and the en-
vironment air, and the initial momentum. The trajectory of
the plume rise has been widely studied in the past (Briggs,
1969a,b; Moore, 1974). These works differentiate between
two kinds of cases:predominant buoyancy riseandpredom-
inant momentum rise. The characterization of these types es-
sentially depends on the ratio between the intensities of the
pollutant emission velocity and the wind velocity at the top
of the stack.

Gaussian plume models (Olcese and Toselli, 2005) ap-
proximate the effective height of a plumezH and the horizon-
tal distancedf from the stack to the point where the plume
height reacheszH, depending on the emission characteristics,
the ambient wind and the atmospheric stability. The gas ele-
vation mainly depends on the density difference between the
emitted gas and the atmospheric air (buoyancy rise) and the
emission velocity (momentum rise).

2.3.1 Predominant buoyancy rise

In all cases withdf different from zero, the driving force is
buoyancy, except for stable conditions and calm wind. In or-
der to know the plume rise trajectory, we propose to combine
an horizontal and a vertical motion, satisfying certain known
conditions.

The vertical motion along the mean trajectory of the plume
is defined by an accelerationa0(t), a velocityw0(t) andz(t),
from the initial time t = 0 to the final timet = tf when the

plume reaches the effective height, satisfying the following
conditions

z(0)= z′c z(tf ) = zH (12)

w0(0)= wc w0(tf ) = 0 (13)

Since there are four conditions on the vertical motion,
we propose a cubic approximation ofz(t), and therefore a
quadratic approximation ofw0(t), and a linear approximation
of a0(t).

The horizontal motion is defined by a uniformly accel-
erated motion, with a constant positive acceleration vector
ad = (adx,ady), a velocity ud(t) = (ud(t),vd(t)), and an hori-
zontal relative position vectord(t) = (x(t)− xc,y(t)− xc) with
respect to the centre of the stack, satisfying the following
conditions

|d(tf )| = df (14)

ud(0)= u(xc,yc,zc) (15)

In order to define the mean trajectory of bent curved
plumes considering the influence of complex terrains, we
approximate it by a three-dimensional polygonal line taking
into account the ambient wind directions, such that the lon-
gitude of its projection on the horizontal plane approximates
the longitudedf . In addition, the final height coincides with
the effective heightzH. Therefore, this approximation tries to
satisfy the main values of the end of the plume considering
Briggs’ equations.

2.3.2 Predominant momentum rise

In all cases wheredf is equal to zero, that is when the driv-
ing force is momentum or when the driving force is buoy-
ancy with calm wind, the horizontal motion of the plume un-
til reaching the effective height can be considered negligible.
Thus the trajectory of the gases is nearly vertical.

In this case, we propose a vertical motion along the tra-
jectory of the plume with a constant negative acceleration
a0, a linear velocityw0(t) and a quadratic trajectoryz(t). Im-
posing the conditions (12) and (13), this vertical motion is
completely defined.

tf =
2
(
zH − z′c

)
wc

(16)

a0 =
−wc

t f
(17)

w0(z) = wc

√
1−

2
(
z− z′c

)
wctf

(18)

In order to modify the ambient vertical wind velocity (w)
along the region of the plume rise, we need to have a suffi-
cient mesh resolution in this area. For this reason, we propose
to refine locally the mesh (Gonźalez-Yuste et al., 2004) along
the Gaussian plume (Green et al., 1980) until all the tetrahe-
dra inside that region fulfill a size criterion.
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108 A. Oliver et al.: FEM simulation of local scale air quality model

Finally, a new ambient wind fieldu is obtained on the
refined mesh with the mass-consistent model described in
Sect.2.2. The effect of the gas emission is introduced in this
field by modifying its vertical component along the plume.

2.4 Air pollution simulation

The air pollution simulation consists of solving the unsteady
convection-diffusion-reaction formulation with an stabilized
finite element method, specifically Least-Squares method,
with a Crank-Nicolson temporal discretization. The equation
system governing the problem can be expressed with the fol-
lowing vectorial equation:

∂c
∂t
+u · ∇c= ∇ · (K∇c)+e+ s(c) (19)

for the spatial coordinatesx and timet, (x, t) ∈Ω× (0, tend],
with initial condition c(x,0)= cini(x) on x ∈Ω, and the fol-
lowing boundary conditions:
c(x, t) = cemi(x) in ΓS: Top of the stack

n ·K∇c= −Vdc in ΓR: Terrain

n · ∇c= 0 in ΓWout: Outlet wind boundaries

c(x, t) = cout(x) in ΓWin : Inlet wind boundaries

(20)

where∇ is the gradient with respect tox, andc, u, eands(c)
are respectively the concentration, the perturbed wind veloc-
ity, the emission and the chemical vectors with a dimension
nc (the number of pollutant species).K is the diffusion ma-
trix of dimension 3×nc, Vd is the deposition diagonal matrix
with dimensionnc, andn is the outward-pointing normal unit
vector,cemi is the concentration of the emission in the top of
the stack, andcout the outside concentration at the inlet wind
boundaries. Scalar product “·” is appliednc times: the first
argument is multiplied by each one of thenc components of
the second argument.

The complete description of photochemical reaction of at-
mospheric species is highly complex (Finlayson-Pitts and
Pitts, 1997; Kley, 1997; Andreae and Crutzen, 1997; Rav-
ishankara, 1997). For instance, detailed Volatile Organic
Components decomposition involves hundreds of thousand
reactions (Atkinson and Arey, 2003; Szopa et al., 2005)
that needs special methodologies to reduce the number of
the modelled reactions and species. Reference models for
gaseous phase reactions involve some tens of compounds
(Jimenez et al., 2003; Kirchner, 2005). The most simplified
models just involve about ten reactive species (Zlatev, 1995).
On the other side, depending on the application, it can be nec-
essary to take into account aqueous phase reactions, that in-
volve several other reactions and species. The RIVAD model
is one of the most simplified models that permit to simulate
both processes, aqueous and gaseous, involving transport and
reaction of four species (Scire et al., 2000). In this paper,
we have considered the RIVAD model for the chemical term
s(c).

This model is a pseudo first-order chemical scheme for
acid rain simulation, specially calibrated for being used in
non-urban areas. The concentrationc involves four species,
c1 = [SO2], c2 = [SO4], c3 = [NO2] and c4 = [NO3], and the
components of the reaction vectors(c) are:

s1(c) = −s2(c) = −α1(c)c1 (21)

s3(c) = −s4(c) = −α3(c)c3 (22)

whereα1(c) = γ1/(c1+δ1c3) andα3(c) = γ3/(c3+δ3c1). Note
that for values close to zero of the concentration of the pri-
mary speciesc1 andc3, bothα1(c) andα3(c) requires a proper
numerical treatment in order to avoid excessively high reac-
tion rates.

Next we will treat the linear and the non-linear problem
separately. The development of the linear chemical prob-
lem focuses on the temporal and spatial discretization of the
corresponding linear convection-diffusion-reaction Eq. (19).
The non-linear case focuses on the development of an split-
ting method that combines the solution of Eq. (19) in a linear
case, considering a null chemical term, and the solution of
an ordinary differential equation system that approximates
the evolution of the chemical reaction separately.

2.4.1 Linear chemical problem

In this case the chemical term is linear, that is,s(c) = Ac
whereA is constant matrix. The resulting Eq. (19) is solved
with a Crank-Nicolson time integration scheme, and an spa-
tial discretization with a stabilized finite element method,
Least-Squares. Concentrationscn and cn+1 at timestn and
tn+1 = tn+∆t are related using a Crank-Nicolson scheme as
cn+1 = cn+ ∆t

2

[
∂cn+1

∂t +
∂cn

∂t

]
. We define the differential operator

L as

L = u · ∇ −∇ · (K∇)−A (23)

and a functionF in Ω from the knowncn

F = cn−
∆t
2
Lcn+

∆t
2

[
en+1+en

]
(24)

Applying the Crank-Nicolson scheme, we can rewrite
Eq. ((19)) as[
I+
∆t
2
L

]
cn+1 = F (25)

whereI is the identity operator.
Using Least-Squares we obtain a symmetric problem such

that the weak form of the Eq. (25) is([
I+
∆t
2
L
]
ν,

[
I+
∆t
2
L
]
cn+1

)
=

([
I+
∆t
2
L
]
ν,F

)
(26)

whereν is the test function, and (µ,ν) =
∫
Ω
µν dΩ is the inner

product
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We define the next bilinear forms

a(ν, c) =(ν,u · ∇c−Ac)+ (∇ν,K∇c)+∫
ΓR

Vdc ν dΓR
(27)

b(ν, c) =
∑

e

(u · · ·∇ν−Aν, c)e (28)

g(ν, c) =
∑

e

(u · ∇ν−Aν,u · ∇c−Ac)e (29)

where (µ,ν)e =
∫
Ωe
µν dΩ, and

∑
e represents the sum over all

the mesh elements. Applying the operatorsL andF in the
weak form (Eq.26), we obtain

(ν, cn+1)+
∆t
2

[
a(ν, cn+1)+b(ν, cn+1)+

∆t
2

g(ν, cn+1)

]
=

(ν, cn)−
∆t
2

[
a(ν, cn)−b(ν, cn)+

∆t
2

g(ν, cn)

]
+

∆t

[
(ν,en+ 1

2 )+
∆t
2

b(ν,en+ 1
2 )

]
(30)

whereen+ 1
2 = en+1+en

2 .
Equation (30) can be written as an equation system

Bcccn+1 = f (31)

wherecccn+1 is the concentration vector approximation attn+1

in the degrees of freedom of the finite element discretization,
f = [2F−B]cccn+ ∆t

2 F[eeen+1+eeen], andB andF are square ma-
trices with dimension (nc×ndof), beingndof the number of
degrees of freedom.

In order to solve this linear system it is necessary to find
an efficient solver, using a sparse matrix storage. SinceB is
a symmetric positive definite matrix, we have considered a
solver based on a conjugate gradient method preconditioned
with an incomplete Cholesky factorisation density type (Lin
and Moŕe, 1999). The left-preconditioning is used to im-
prove the convergence of the conjugate gradient method. The
original linear system is transformed intoT−1Bcccn+1 = T−1 f ,
whereT is the symmetric positive definite preconditioner ob-
tained with the incomplete Cholesky factorisation. The large
fill-in of the complete (i.e. standard) Cholesky factorisation
is completely or partially avoided by discarding coefficients
along the factorisation process. We have considered an in-
complete Cholesky factorisation with no fill-in, such that the
incomplete factorL has the same sparsity pattern as the lower
triangle of matrixB. The main advantage of the Cholesky
method is that the incomplete factorisation of matrixB can
be amortized over many time-steps. More details about the
implementation of this system equation solver can be found
in Donea and Huerta(2003) andRodŕıguez-Ferran and San-
doval(2007).

2.4.2 Non-linear chemical problem

To deal with the non-linearity of the reactive term in
the convection-diffusion-reaction Eq. (19), we have consid-
ered a splitting method that separates this equation into a
convection-diffusion equation and a reaction equation. We
will make use of the second order splitting operator (Strang
splitting) proposed byRopp et al.(2004):

dc∗

dt
= s(c∗)

for t ∈

[
0,
∆t
2

]
andc∗(x,0)= cn(x)

(32)

∂c∗∗

∂t
+u · ∇c∗∗ = ∇ · (K∇c∗∗)+e

for t ∈ [0,∆t] andc∗∗(x,0)= c∗(x,
∆t
2

)
(33)

dc∗∗∗

dt
= s(c∗∗∗)

for t ∈

[
∆t
2
,∆t

]
andc∗∗∗(x,

∆t
2

) = c∗∗(x,∆t)
(34)

Once we have split the Eq. (19), we solve three equations
in different time steps; the reaction Eq. (32), the convection-
diffusion Eq. (33), and the reaction Eq. (34), being finally
cn+1(x) = c∗∗∗(x,∆t).

The convection-diffusion Eq. (33) is solved using the same
method proposed in the previous Section, withA = 0. The
non-linear chemical Eqs. (32) and (34) are solved node by
node with a second order Rosenbrock method (ROS2) (Ver-
wer et al., 1999). To use the ROS2 method, the Jacobian
square matrix ofs(c) of dimensionnc has to be computed.

3 Results

The approach has been used to simulate the transport and re-
action of pollutants from a fictitious stack in La Palma island.

The studied domain taken under consideration is a rect-
angular area with dimensions 15600×22803 m. The topog-
raphy of the terrain is highly complex ranging from the sea
level up to a maximum height of 2279 m with several deep
valleys. The upper boundary of the domain has been placed
at h= 9000 m. The digital elevation model of the area is de-
fined over a uniform grid with a spacing step of 200 m in
directionsx andy. We add the stack geometry to the topo-
graphical data, a stack with a height of 150 m over the terrain
and the diameter at its top of 15 m.

The wind field is obtained from four meteorological sta-
tions placed in the studied region. Figure1 represents the in-
terpolated and resulting wind field at a height of 20 m above
the terrain. While the interpolated wind field is almost uni-
form and crosses the terrain surface, the resulting wind field
has higher velocities in the peaks of the mountains and fol-
lows the terrain and valleys, verifying the wind incompress-
ibility and terrain impermeability conditions.

www.adv-sci-res.net/8/105/2012/ Adv. Sci. Res., 8, 105–113, 2012



110 A. Oliver et al.: FEM simulation of local scale air quality model

Figure 1: Interpolated(a) and resulting(b) wind field (m s−1)
at 20 m over the terrain.

Figure 2 shows the plume rise region where a local
mesh refinement has been performed. Figure3 represents
the streamlines of the modified wind field from the top of
the stack. Note that streamlines follow the trajectory of the
plume rise, so the vertical component of the wind field has
been successfully modified.

The plume rise has been calculated using the following
values. The stack exit velocity is 5 m s−1 and the gas temper-
ature is 573 K. The velocity of the wind field at the top of
the stack isVo = 7.13 m s−1. With these values, it results that
the effective height of the plume iszH = 2347.52 m and its
horizontal distance isdf = 3700.04 m.

Figure 2: Refined region along the plume rise.

Figure 3: Modified wind field streamlines from the top of
stack.

Finally the transport and reaction of the pollutants has
been simulated. The concentration of the primary pollutant at
the top of the stack has been fixed to 6 g m−3. We have con-
sidered a horizontal diffusion of 8×10−6 m2 s−1, and a vertical
diffusion of 4×10−6 m2 s−1. The time-dependent problem has
been simulated with a time step of 10 s.

Figure4 shows the immission concentration distributions
at 30 min for SO2 and SO4, respectively. These Figures
are interesting since they give information about the pol-
lutant concentration at the ground-level. Note that primary
pollutant tends to have the highest concentrations near the

Adv. Sci. Res., 8, 105–113, 2012 www.adv-sci-res.net/8/105/2012/
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Figure 4: Immission concentration distribution (g m−3) on the terrain of the primary(a) and secondary(b) pollutants at 30 min.

emission source, while the highest concentrations of the sec-
ondary pollutant are located further. This is consistent with
the chemical reaction effect.

A final comment about the computational complexity of
the evolution process should be done. For each time step we
have to solve a finite element problem with a number of de-
grees of freedom about the number of nodes multiplied by
the number of species, i.e. 455953×4= 1823812. The num-
ber of time steps in the simulation period (about 30 min) is
30×60/10= 180. Therefore, in the whole evolution process
about 180 linear equation systems with 1 823 812 unknowns
must be solved. The computational cost corresponding to the
mesh generation, wind simulation, and the resolution of the
ordinary differential equations in the splitting method are
insignificant with respect to the resolution of the unsteady
convection-diffusion equation. In a computer with 128 GB
of RAM memory and 2.34 GHz, the total computing time
is about 40 min. In a future work, the present computational
complexity will be significantly reduced by using a refine-
ment/derefinement strategy that follows the front of the pol-
lutant plume, minimising the number of degrees of freedom
in each time step.

4 Conclusions

The presented methodology promises to be useful to sim-
ulate air quality over complex terrains. The modified wind
field has more reasonable trajectories and magnitudes than a
simple interpolation of the wind data. The local mesh refine-
ment along the Gaussian plume, allows to perturb the am-
bient wind field to introduce the effect of the pollutant emis-

sions. The convection-diffusion-reaction equation obtains the
values of concentration for all the pollutants in the whole
three-dimensional domain. To really prove the usefulness of
the proposed methodology, it will be validated against mea-
sured data in the near future.

Supplementary material related to this article is
available online at:http: //www.adv-sci-res.net/8/105/
2012/asr-8-105-2012-supplement.zip.
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