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I. Zalachori 1, M.-H. Ramos1, R. Garçon2, T. Mathevet2, and J. Gailhard2

1IRSTEA, Hydrology Group, UR HBAN, 1 rue Pierre-Gilles de Gennes CS 10030, 92761 Antony, France
2EDF-DTG, Electricit́e de France, Direction Technique de Grenoble, France

Correspondence to:I. Zalachori (ioanna.zalachori@irstea.fr)

Received: 15 January 2012 – Revised: 16 May 2012 – Accepted: 7 July 2012 – Published: 25 July 2012

Abstract. The aim of this paper is to investigate the use of statistical correction techniques in hydrological
ensemble prediction. Ensemble weather forecasts (precipitation and temperature) are used as forcing variables
to a hydrologic forecasting model for the production of ensemble streamflow forecasts. The impact of dif-
ferent bias correction strategies on the quality of the forecasts is examined. The performance of the system is
evaluated when statistical processing is applied: to precipitation and temperature forecasts only (pre-processing
from the hydrological model point of view), to flow forecasts (post-processing) and to both. The pre-processing
technique combines precipitation ensemble predictions with an analog forecasting approach, while the post-
processing is based on past errors of the hydrological model when simulating streamflows. Forecasts from
11 catchments in France are evaluated. Results illustrate the importance of taking into account hydrological
uncertainties to improve the quality of operational streamflow forecasts.

1 Introduction

Probabilistic information is of special importance for users
vulnerable to climatic and hydrological hazards at different
scales (agriculture and irrigation, navigation, public safety,
energy companies, etc.). In hydrology, a common approach
to produce probabilistic information is the use of ensemble-
based streamflow forecasting systems (see review by Cloke
and Pappenberger, 2009). The key advantage of these sys-
tems is that they can provide future scenarios of streamflow
evolution in time, with information on the uncertainty of the
predictions, which can be potentially more useful at longer
forecast lead times, notably in terms of increasing prepared-
ness for severe flood events and reducing losses (Bartholmes
et al., 2009; Boucher et al., 2012; Verkade and Werner, 2011).
However, model output predictions may lack precision and
reliability due to several reasons like imperfect numerical
representation of physical process or insufficiency account
of all sources of uncertainty involved in the system being
modelled (e.g. Thirel et al., 2008; Jaun and Ahrens, 2009;
Randrianasolo et al., 2010; Velazquez et al., 2011). To im-

prove the quality of probabilistic forecasts and provide reli-
able estimates of uncertainty, statistical processing of fore-
casts is recommended (Schaake et al., 2010). The aim is to
remove forecast biases and to improve ensemble dispersion.
Several techniques have been proposed in meteorology and
hydrology, mainly based on empirical dressing techniques,
Bayesian methods or regression analysis (e.g. Krzysztofow-
icz, 1999; Raftery et al., 2005; Fortin et al., 2006; Hashino
et al., 2007; Olsson and Lindström, 2008; Brown and Seo,
2010; Zhao et al., 2011).

In hydrologic forecasting systems, statistical correction
techniques can be applied to the forecast input of the hy-
drological model (meteorological variables like precipitation
and temperature), to the forecast output of the hydrologi-
cal model (streamflows) or to both. As shown in Fig. 1,
from the hydrological model point of view, a forecasting
system can comprisepre-processingapproaches (statistical
correction applied previously to the hydrologic modelling)
and post-processingapproaches (statistical correction ap-
plied to flow predictions). In all cases, calibration against
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Fig. 1: Schematic of a hydro-meteorological forecast chain. 23 
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Fig. 2 : Location of the studied catchments in France.  26 

Figure 1. Schematic of a hydro-meteorological forecast chain.

observations and extensive testing over different hydrologic
conditions are usually required to develop an operationally
robust system. In order to optimize the implementation of
post-processing techniques in real-time operational forecast-
ing systems, a better understanding of the propagation of un-
certainty from weather forecasts through hydrologic models
and on the impact of non-linear hydrological transformations
and hydrological updating on the ensemble streamflow fore-
casts is needed.

The aim of this paper is to investigate the use of statistical
correction techniques in hydrological ensemble forecasting.
We focus on the evaluation of different correction strategies
(pre-processing, post-processingor both) and on their im-
pact on the quality of operational streamflow forecasts. The
context of the study and the modelling framework, including
data and model used, are presented in Sect. 2; methodology
and verification measures are described in Sect. 3; Sect. 4
presents the results, and in Sect. 5, conclusions are drawn.

2 Study context and modelling framework

The study is based on a modelling framework set up at the
French electricity company (EDF) for the forecast of stream-
flows in France. EDF has produced hydrological forecasts
for the past 60 yr (Lugiez and Guillot, 1960). Their opera-
tional interest includes flood forecasting (for human safety
and dam security), short-term forecasting of water inflows to
reservoirs, long-term prediction and reservoir management.
For the last decade, EDF has invested into ensemble-based
hydrological forecasting, comprising the acquisition of real-
time meteorological forecast data and the set up of an appro-
priate hydrological modelling framework. Moreover, special
attention has been paid to the performance of experiments
on the use and communication of uncertainty in decision-
making (Ramos et al., 2010). EDF forecasting chain follows
the schematic description in Fig. 1. In this study, meteoro-
logical forecasts come from the 50 perturbed members of the
ensemble prediction system produced by the European centre
of medium-range weather forecasts (ECMWF-EPS). Opera-
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Fig. 2 : Location of the studied catchments in France.  26 Figure 2. Location of the studied catchments in France.

tionally, EDF also uses the ECMWF-EPS control forecast,
as well as deterministic forecasts produced by Mét́eo-France.
Forcing data (temperature and precipitation) are spatially ag-
gregated at the catchment scale and evaluated by forecasters
before being used as input to the hydrological model. The hy-
drological model is the MORDOR model. It is a lumped soil-
moisture-accounting type rainfall-runoff model developed at
EDF (Garçon, 1999). MORDOR has four reservoirs repre-
senting the physical processes in a river basin and a snow
module that accounts for snow storage and melting in the
catchment. The model version used in this study has 11 free
parameters that were calibrated against observed data.

This study focuses on 11 catchments located in France,
with areas ranging from 220 to 3600 km2 (Fig. 2). Meteoro-
logical input fields are available at a horizontal resolution of
0.5×0.5 degree in latitude/longitude, ca. 50 km over France.
The number of grid points falling within each catchment (at
different percentages of coverage) varies from 2 to 42, with a
median value of 15 grid points inside a catchment. Although
some catchments are much smaller than the available me-
teorological grid scale, they were kept in the study and the
sensitivity of the results to the catchment size was evalu-
ated. At each catchment, forecasts are run at the daily time
step and for a maximum forecast horizon of 7 days. Verifica-
tion is performed over a 48-month forecast evaluation period
(2005–2008). Forecasts are evaluated against observed daily
areal precipitation and daily discharge data available at the
outlet of the catchments.
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3 Methodology and performance measures

3.1 Statistical correction strategies

Four main scenarios corresponding to different strategies for
the processing of forecasts within the hydrologic modelling
framework are tested:

– Scenario 1 –Raw forecasts: no pre- or post-processing
of forecasts is performed and raw model outputs are
evaluated;

– Scenario 2 –Pre-processing of meteorological ensemble
forecasts: meteorological forecasts of temperature and
precipitation are corrected using a technique developed
at EDF, which is based on the search for analog situa-
tions previously archived in a database. At a given fore-
cast day, for each perturbed member of the ECMWF-
EPS system, the 50 most analog situations (according
to the forecast fields of geopotential height at 700 and
1000 hPa) are retrieved from the database (for details on
the use of analog techniques, see Zorita and von Storch,
1999 or Obled et al., 2002). A total of 2500 scenarios
(50 ECMWF-EPS×50 analogs) is obtained. Each sce-
nario consists of a pair of an analog situation (precipi-
tation and temperature) and its corresponding ECMWF-
EPS forecast. A corrected forecast scenario is calculated
for each lead timet as indicated in Eq. (1):

V′t = k ·VECMWF
t (VANALOG

t /V̄ANALOG
t )α (1)

V′t : corrected forecast scenario for lead timet;
VECMWF

t : ECMWF-EPS raw forecast for lead timet;
VANALOG

t : analog forecast for lead timet;

V̄ANALOG
t : mean value of the 50 selected analog forecasts for

lead timet;
α, k: parameters to be calibrated.

This combination of ECMWF-EPS and analog-based
forecasts aims at perform an ensemble dressing of ECMWF
forecasts (to improve reliability and to remove biases). The
values of the parametersα andk can vary according to the
studied catchment and lead time. In this study, they were
considered constant and equal to 0.3 and 1.2, respectively.
The 2500 scenarios obtained were sorted in ascending order
and 50 scenarios (equidistant quantiles) were selected to be
used as input to the hydrological model.

– Scenario 3 –Post-processing of hydrological ensemble
forecasts only: the statistical correction technique used
here takes into account only the errors from the hy-
drological model. It is thus independent of the meteo-
rological forecasts (raw or pre-processed) used during
the forecast evaluation period. Based on the past per-
formance of the model, empirical errors are evaluated
by taking the logarithm of the ratio between the ob-
served and the simulated streamflows. Simulations are

obtained using observed precipitation and temperature
available in the period 1970–2000 as input to the hy-
drological model. Subsamples of the errors are defined
according to 20 classes of streamflow values (corre-
sponding to a discretization of the cumulative distribu-
tion function at steps of 8 % between the 10 % and 90 %
quantiles and 2 % for the tails of the distribution) and for
each lead time (Mathevet, 2010). During forecasting, to
“dress” each hydrological ensemble member, error val-
ues are drawn from the subsamples, according to the
category to which the forecast discharge belongs, and
added to the raw forecast value.

– Scenario 4 –Pre-processing of meteorological fore-
casts and post-processing of hydrological ensemble
forecasts: the last scenario tested is the combination
of the two correction approaches described above: the
pre-processing of meteorological forecasts (scenario 2)
and the post-processing of hydrological forecasts (sce-
nario 3).

3.2 Forecast evaluation methods

Forecasts were evaluated against observations for a 48-month
period from 2005 to 2008. Various measures are available
in the literature to evaluate probabilistic forecasts and some
have already been applied for the evaluation of hydrological
forecasts (Wilks, 2011; Casati et al., 2008; Laio and Tamea,
2007). The scores used here are briefly presented below (see
the references for details):

– Normalized RMSE: the root-mean-square error of the
ensemble mean is normalized by the mean value of the
observations during the forecast evaluation period to al-
low comparison among catchments of different sizes.
Although the RMSE is not a score adapted to ensem-
ble or probabilistic forecasts, we included it here as it is
a score commonly used in hydrology.

– Brier Score (BS): one of the most common accuracy
measure for forecast verification, the BS is essentially
the mean squared error between the predicted probabil-
ities for a set of events and their outcomes (=1, if the
event occurs and= 0 if it does not occur). The score
takes values between 0 and 1; the lower the score, the
higher the accuracy. In this study, we focus on the eval-
uation of severe events given by predictions exceeding
the 80 % quantile of the empirical distribution of ob-
served values.

– Rank Probability Score (RPS): the RPS is an exten-
sion of the BS to the many-event situation, computed,
however, with respect to the cumulative probabilities in
the forecast and observations vectors. The score takes
values between 0 and 1; a “perfect forecast” receives
RPS=0. Here, we used 10 forecast categories to define
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Figure 4. Boxplots of BSS (with reference to raw forecasts) for forecast streamflows exceeding the 80 % percentile of observed flows for
lead times of 3 days (left), 5 days (centre) and 7 days (right) using: (1) raw forecasts, (2) pre-processed meteorological forecasts, (3) post-
processed hydrological forecasts, (4) pre-processed meteorological forecasts and post-processed hydrological forecasts. Forecast evaluation
over 48 months (2005–2008) and 11 catchments.

the events, determined by the values of the 10 % to the
90 % quantiles of the empirical distribution of the ob-
served values during the forecast evaluation period.

– Skill Scores (BSS or RPSS): the BS and the RPS are
compared to a reference, which in this study corre-
sponds to the raw forecasts (scenario 1). A skill score
of 0 indicates a forecast with skill similar to the refer-
ence, while a forecast which is less (more) skilful than
the reference will result in negative (positive) skill score
values.

– Probability Integral Transform (PIT) histogram: the PIT
histogram is a continuous analog of the rank histogram
(Gneiting et al., 2005; Wilks, 2011), frequently used
to verify the consistency of the forecasts, i.e. if the
ensemble members of a forecast and the correspond-
ing observations are samples from the same popula-
tion (Wilks, 2011). If the ensemble consistency condi-
tion is satisfied, the relative frequencies given by the
ensembles should estimate the actual (observed) prob-

ability. In this case, the PIT histogram shows as a uni-
form histogram, giving an indication of reliable fore-
casts. Under-dispersed forecasts will give U-shaped PIT
histograms, while over-dispersed forecasts show rela-
tive frequencies concentrated in the middle ranks (arch-
shaped). Asymmetrical histograms are an indication of
over- or under-forecasting bias.

4 Results

The main results obtained from the comparative study of
different bias correction strategies applied to meteorological
and hydrological forecasts are illustrated in Figs. 3 to 6. For
each studied catchment, mean values of the scores RMSE,
BSS and RPSS are obtained by averaging the daily scores
over the entire evaluation period (2005–2008). In Figs. 3 to 5,
results from all catchments are displayed using the boxplot
representation: the 75th and the 25th percentiles are repre-
sented at the top and the bottom of the box, respectively,
while the top and the bottom of the tail indicate the 95th and
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meteorological forecasts and post-processed hydrological forecasts. Forecast evaluation over 48 5 
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7 days (right) using: (1) raw forecasts, (2) pre-processed meteorological forecasts, (3) post-processed hydrological forecasts, and (4) pre-
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catchments.
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Fig. 1 : PIT histograms of forecast streamflows for lead time 7 days and the catchments (a) Tarn river 
at Milau (2138 km²) and (b) Durance river at Serre Ponçon (3580 km²)  using: (1) raw forecasts, (2) 
pre-processed meteorological forecasts, (3) post-processed hydrological forecasts, and (4) pre-
processed meteorological forecasts and post-processed hydrological forecasts. Forecast evaluation 
over 48 months (2005-2008). 

 

Figure 6. PIT histograms of forecast streamflows for lead time 7 days and the catchments(a) Tarn river at Milau (2138 km2) and(b) Du-
rance river at Serre Ponçon (3580 km2) using: (1) raw forecasts, (2) pre-processed meteorological forecasts, (3) post-processed hydrological
forecasts, and (4) pre-processed meteorological forecasts and post-processed hydrological forecasts. Forecast evaluation over 48 months
(2005–2008).

the 5th percentile, respectively. PIT histograms are evaluated
for each catchment. While Fig. 3 illustrates the results for
precipitation (main meteorological input to the hydrological
model), the other figures focus on the evaluation of stream-
flows.

Figure 3 shows the normalized RMSE values obtained
from the evaluation of daily areal precipitation forecasts
against observed precipitation data. The quality of raw fore-
casts (scenario 1) is compared to the quality of statistically
processed forecasts (according to scenario 2), for leadtimes
of 3, 5 and 7 days. The statistical correction applied reduces

significantly the forecast errors and improves forecast pre-
cision, especially for short lead times. The results from the
other scores (not shown here) indicate the same tendency,
confirming the efficiency of the applied statistical correction
technique to improve the precision and the reliability of the
meteorological input to the hydrological model.

Concerning the impact of statistical correction on the qual-
ity of streamflow forecasts, Figs. 4 and 5 show, respectively,
the Brier Skill Scores for flow forecasts exceeding the 80 %
percentile of observed flows and the Rank Probability Skill
Scores for the four scenarios of correction strategies studied.

www.adv-sci-res.net/8/135/2012/ Adv. Sci. Res., 8, 135–141, 2012
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Both scores show that the use of a pre-processing tech-
nique (scenario 2) generally improves the quality of ensem-
ble streamflow forecasts in the studied catchments: BSS and
RPSS values are higher than 0, showing an improvement in
forecast skill with respect to the raw forecasts (scenario 1).
This positive impact of pre-processing meteorological fore-
casts on the quality of hydrological forecasts is greater at
shorter lead times.

Furthermore, results for the scenarios 3 and 4 illustrate
the added value of implementing also a post-processing cor-
rection approach of the hydrological model outputs. For the
prediction of events of high flows (Fig. 4), the implemen-
tation of pre- and post-processing techniques together (sce-
nario 4) conducts to the highest score values (better forecast
quality). When considering the RPSS values (Fig. 5), differ-
ences between scenario 3 and scenario 4 are more signifi-
cant for shorter lead times. For longer lead times, skill scores
achieved for scenario 3, where raw meteorological forecasts
are used and only hydrological outputs are post-processed,
are basically equivalent to those achieved when using sce-
nario 4, where both pre-processing and post-processing are
performed. The analysis of BSS and RPSS as a function of
catchment size (not shown) did not indicate a clear sensitivity
of the results to the catchment area. Only at longer lead times,
hydrological forecasts based only on pre-processed meteoro-
logical forecasts showed negative values of skill scores for
the largest catchments, i.e. less skilful forecasts compara-
tively to the reference (raw forecasts). Further analysis, with
a larger sample of catchments, would be necessary to better
detect any general tendency.

The PIT histograms in Fig. 6 illustrate the impact of sta-
tistical correction strategies on the reliability of streamflow
forecasts for two catchments representative of the studied
sample and for forecast lead time of 7 days. For both catch-
ments, scenario 1 with no bias correction strategy (raw fore-
casts) displays biased under-dispersive streamflow ensem-
ble forecasts. The use of scenario 2 (statistical correction
applied only to meteorological forecasts) does not improve
the PIT histograms of streamflow forecasts. Since the PIT
histograms of statistical corrected precipitations (not shown
here) do not display significant under-dispersion problems,
the examples shown in Fig. 6 illustrate the impact of the
rainfall-runoff transformation on the spread of the ensemble
streamflow forecasts. It is possible that the added value of
pre-processing meteorological input forcings in these cases
has been obscured by the mixed evaluation of high and low
(more frequent) streamflow periods. Biases in the modelling
of the recession part of hydrographs can be of different nature
from biases in the modelling of high flows. It would be inter-
esting to separate the evaluation of hydrological forecasts by
considering separately flood and recession periods. This is
part of an ongoing study and is beyond the scope of this pa-
per. Furthermore Fig. 6 presents also the impact of applying
the post-processing approaches described in scenarios 3 and

4. For these scenarios a significant improvement of forecast
reliability is observed for both catchments studied.

5 Conclusions

This paper investigates the use of statistical bias correction
techniques in hydrological ensemble forecasting. Our main
focus is on evaluating of the impact of different strategies
of statistical bias correction on the quality of operational
streamflow forecasts. From the hydrological model point of
view, forecasters can usepre-processingapproaches (statisti-
cal corrections applied prior to the hydrologic modelling, i.e.
on the meteorological forcing),post-processingapproaches
(statistical corrections applied only to the output of the hy-
drological model, i.e. streamflow predictions) or both. We
compared performance measures obtained for 11 catchments
in France during a 48-month evaluation period (2005–2008)
according to four scenarios of statistical bias correction:
raw forecasts, only pre-processed meteorological forecasts,
only post-processed hydrological forecasts and with statisti-
cal processing applied to both meteorological and hydrolog-
ical forecasts.

Results show that even though correcting the meteorolog-
ical uncertainties is of high importance to obtain precise and
reliable inputs to the hydrological model, the errors linked
to hydrological modelling remain a key-component of the
total predictive uncertainty of hydrological ensemble fore-
casts. Statistical corrections made to precipitation forecasts
can lose their effect when propagated through the hydro-
logical model. As a result efforts to also implement a post-
hydrological model correction may be necessary. In this pa-
per we showed that even a relatively simple empirical post-
processing approach can be useful to achieve reliable hydro-
logical forecasts for operational needs. Future work should
include the application of other statistical correction tech-
niques and the use of other hydrological models and perfor-
mance measures on a larger set of catchments.
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