Articles | Volume 13
https://doi.org/10.5194/asr-13-37-2016
https://doi.org/10.5194/asr-13-37-2016
29 Mar 2016
 | 29 Mar 2016

The impact of clouds, land use and snow cover on climate in the Canadian Prairies

Alan K. Betts, Raymond L. Desjardins, and Devon E. Worth

Abstract. This study uses 55 years of hourly observations of air temperature, relative humidity, daily precipitation, snow cover and cloud cover from 15 climate stations across the Canadian Prairies to analyze biosphere-atmosphere interactions. We will provide examples of the coupling between climate, snow cover, clouds, and land use. Snow cover acts as a fast climate switch. With the first snow fall, air temperature falls by 10 °C, and a similar increase in temperature occurs with snow melt. Climatologically, days with snow cover are 10 °C cooler than days with no snow cover in Alberta. However the interannual variability has a larger range, so that for every 10 % decrease in days with snow cover, the mean October to April climate is warmer by 1.4 to 1.5 °C. Snow cover also transforms the coupling between clouds and the diurnal cycle of air temperature from a boundary layer regime dominated by shortwave cloud forcing in the warm season to one dominated by longwave cloud forcing with snow cover. Changing agricultural land use in the past thirty years, specifically the reduction of summer fallowing, has cooled and moistened the growing season climate and increased summer precipitation. These hourly climate data provide a solid observational basis for understanding land surface coupling, which can be used to improve the representation of clouds and land-surface processes in atmospheric models.

Download
Short summary
Since 1953, the 15 climate stations on the Canadian Prairie have made unique hourly observations of opaque reflective cloud, as well as temperature, humidity, wind, precipitation and snow depth. These observations have shown that snow cover cools the local climate by 10 °C, and transforms how clouds drive the daily cycle of temperature and humidity. The replacement of summer fallow by intensive cropping has cooled and moistened the growing season climate and increased summer precipitation.