Articles | Volume 10, issue 1
https://doi.org/10.5194/asr-10-21-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/asr-10-21-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
An overview of drought events in the Carpathian Region in 1961–2010
J. Spinoni
JRC-IES, Ispra, Italy
T. Antofie
JRC-IES, Ispra, Italy
P. Barbosa
JRC-IES, Ispra, Italy
Z. Bihari
Hungarian Meteorological Service, Budapest, Hungary
M. Lakatos
Hungarian Meteorological Service, Budapest, Hungary
S. Szalai
Szent Istvan University, Gödöllö, Hungary
T. Szentimrey
Hungarian Meteorological Service, Budapest, Hungary
JRC-IES, Ispra, Italy
Related authors
J. Spinoni, G. Naumann, and J. Vogt
Adv. Sci. Res., 12, 179–186, https://doi.org/10.5194/asr-12-179-2015, https://doi.org/10.5194/asr-12-179-2015, 2015
Short summary
Short summary
This paper investigates meteorological droughts in Europe for the periods 1981-2010, 2041-2070 and 2071-2100 under a moderate emissions scenario. SPI and SPEI are used to analyze drought frequency, duration, severity, and intensity. Results show that southern Europe is likely to be hit by longer, more frequent, severe, and intense droughts in the near future (2041-2070) and even more in the far future (2071-2100), while less severe and fewer drought events are likely to occur in northern Europe.
T. Antofie, G. Naumann, J. Spinoni, and J. Vogt
Hydrol. Earth Syst. Sci., 19, 177–193, https://doi.org/10.5194/hess-19-177-2015, https://doi.org/10.5194/hess-19-177-2015, 2015
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Carmelo Cammalleri, Carolina Arias-Muñoz, Paulo Barbosa, Alfred de Jager, Diego Magni, Dario Masante, Marco Mazzeschi, Niall McCormick, Gustavo Naumann, Jonathan Spinoni, and Jürgen Vogt
Nat. Hazards Earth Syst. Sci., 21, 481–495, https://doi.org/10.5194/nhess-21-481-2021, https://doi.org/10.5194/nhess-21-481-2021, 2021
Short summary
Short summary
Building on almost ten years of expertise and operational application of the Combined Drought Indicator (CDI) for the monitoring of agricultural droughts in Europe within the European Commission's European Drought Observatory (EDO), this paper proposes a revised version of the index. This paper shows that the proposed revised CDI reliably reproduces the evolution of major droughts, outperforming the current version of the indicator, especially for long-lasting events.
Isabel Meza, Stefan Siebert, Petra Döll, Jürgen Kusche, Claudia Herbert, Ehsan Eyshi Rezaei, Hamideh Nouri, Helena Gerdener, Eklavyya Popat, Janna Frischen, Gustavo Naumann, Jürgen V. Vogt, Yvonne Walz, Zita Sebesvari, and Michael Hagenlocher
Nat. Hazards Earth Syst. Sci., 20, 695–712, https://doi.org/10.5194/nhess-20-695-2020, https://doi.org/10.5194/nhess-20-695-2020, 2020
Short summary
Short summary
The paper presents, for the first time, a global-scale drought risk assessment for both irrigated and rainfed agricultural systems while considering drought hazard indicators, exposure and expert-weighted vulnerability indicators. We identify global patterns of drought risk and, by disaggregating risk into its underlying components and factors, provide entry points for risk reduction.
Mónika Lakatos, Tamás Weidinger, Lilla Hoffmann, Zita Bihari, and Ákos Horváth
Adv. Sci. Res., 16, 251–259, https://doi.org/10.5194/asr-16-251-2020, https://doi.org/10.5194/asr-16-251-2020, 2020
Short summary
Short summary
The PannEx is a Regional Hydroclimate Project (RHP) of the GEWEX project. A gridded meteorological dataset is available for the PannEx region as part of the CarpatClim database. The objectives of this study are: (i) to compute (ET0) for the CarpatClim dataset in the period 1961–2010 on the daily scale by using the Penman-Monteith method, and (ii) to compare ET0 with the classical Thornthwaite estimates of PET.
Christophe Lavaysse, Jürgen Vogt, Andrea Toreti, Marco L. Carrera, and Florian Pappenberger
Nat. Hazards Earth Syst. Sci., 18, 3297–3309, https://doi.org/10.5194/nhess-18-3297-2018, https://doi.org/10.5194/nhess-18-3297-2018, 2018
Short summary
Short summary
Forecasting droughts in Europe 1 month in advance would provide valuable information for decision makers. However, these extreme events are still difficult to predict. In this study, we develop forecasts based on predictors using the geopotential anomalies, generally more predictable than precipitation, derived from the ECMWF model. Results show that this approach outperforms the prediction using precipitation, especially in winter and in northern Europe, where 65 % of droughts are predicted.
Christophe Lavaysse, Carmelo Cammalleri, Alessandro Dosio, Gerard van der Schrier, Andrea Toreti, and Jürgen Vogt
Nat. Hazards Earth Syst. Sci., 18, 91–104, https://doi.org/10.5194/nhess-18-91-2018, https://doi.org/10.5194/nhess-18-91-2018, 2018
Short summary
Short summary
Extreme-temperature anomalies such as heat and cold waves may have strong impacts on human activities and health. Providing a robust operational system to monitor extreme-temperature anomalies in Europe, developed and validated in this study, is thus of prime importance. This work exposes the methodology and the climatology of these events. It also discusses the associated uncertainties according to the datasets and the methods used.
Carmelo Cammalleri, Jürgen V. Vogt, Bernard Bisselink, and Ad de Roo
Hydrol. Earth Syst. Sci., 21, 6329–6343, https://doi.org/10.5194/hess-21-6329-2017, https://doi.org/10.5194/hess-21-6329-2017, 2017
Short summary
Short summary
Drought can affect large regions of the world, implying the need for a global monitoring tool. For the JRC Global Drought Observatory (GDO,
http://edo.jrc.ec.europa.eu/gdo/), 3 soil moisture anomaly datasets have been compared, in order to evaluate their consistency. The analysis performed on five macro-regions (North America, Europe, India, southern Africa and Australia) suggests the need to combine these different data sources in order to obtain robust assessments over a variety of conditions.
László Pásztor, Gábor Négyesi, Annamária Laborczi, Tamás Kovács, Elemér László, and Zita Bihari
Nat. Hazards Earth Syst. Sci., 16, 2421–2432, https://doi.org/10.5194/nhess-16-2421-2016, https://doi.org/10.5194/nhess-16-2421-2016, 2016
Short summary
Short summary
In Hungary wind erosion causes serious problems in agricultural production as well as in soil and environmental quality. Our aim was to provide a nationwide spatially detailed assessment of the susceptibility of land in Hungary to wind erosion, integrating different databases. According to the resulting map of wind erosion susceptibility, about 10% of the total area of Hungary can be identified as susceptible to wind erosion.
Veit Blauhut, Kerstin Stahl, James Howard Stagge, Lena M. Tallaksen, Lucia De Stefano, and Jürgen Vogt
Hydrol. Earth Syst. Sci., 20, 2779–2800, https://doi.org/10.5194/hess-20-2779-2016, https://doi.org/10.5194/hess-20-2779-2016, 2016
C. Lavaysse, J. Vogt, and F. Pappenberger
Hydrol. Earth Syst. Sci., 19, 3273–3286, https://doi.org/10.5194/hess-19-3273-2015, https://doi.org/10.5194/hess-19-3273-2015, 2015
Short summary
Short summary
This paper assesses the predictability of meteorological droughts over Europe 1 month in advance using ensemble prediction systems.
It has been shown that, on average and using the most relevant method, 40 % of droughts in Europe are correctly forecasted, with less than 25 % false alarms.
This study is a reference for other studies that are motivated to improving the drought forecasting.
J. Spinoni, G. Naumann, and J. Vogt
Adv. Sci. Res., 12, 179–186, https://doi.org/10.5194/asr-12-179-2015, https://doi.org/10.5194/asr-12-179-2015, 2015
Short summary
Short summary
This paper investigates meteorological droughts in Europe for the periods 1981-2010, 2041-2070 and 2071-2100 under a moderate emissions scenario. SPI and SPEI are used to analyze drought frequency, duration, severity, and intensity. Results show that southern Europe is likely to be hit by longer, more frequent, severe, and intense droughts in the near future (2041-2070) and even more in the far future (2071-2100), while less severe and fewer drought events are likely to occur in northern Europe.
T. Antofie, G. Naumann, J. Spinoni, and J. Vogt
Hydrol. Earth Syst. Sci., 19, 177–193, https://doi.org/10.5194/hess-19-177-2015, https://doi.org/10.5194/hess-19-177-2015, 2015
E. Dutra, F. Wetterhall, F. Di Giuseppe, G. Naumann, P. Barbosa, J. Vogt, W. Pozzi, and F. Pappenberger
Hydrol. Earth Syst. Sci., 18, 2657–2667, https://doi.org/10.5194/hess-18-2657-2014, https://doi.org/10.5194/hess-18-2657-2014, 2014
E. Dutra, W. Pozzi, F. Wetterhall, F. Di Giuseppe, L. Magnusson, G. Naumann, P. Barbosa, J. Vogt, and F. Pappenberger
Hydrol. Earth Syst. Sci., 18, 2669–2678, https://doi.org/10.5194/hess-18-2669-2014, https://doi.org/10.5194/hess-18-2669-2014, 2014
G. Naumann, E. Dutra, P. Barbosa, F. Pappenberger, F. Wetterhall, and J. V. Vogt
Hydrol. Earth Syst. Sci., 18, 1625–1640, https://doi.org/10.5194/hess-18-1625-2014, https://doi.org/10.5194/hess-18-1625-2014, 2014
G. Naumann, P. Barbosa, L. Garrote, A. Iglesias, and J. Vogt
Hydrol. Earth Syst. Sci., 18, 1591–1604, https://doi.org/10.5194/hess-18-1591-2014, https://doi.org/10.5194/hess-18-1591-2014, 2014
Cited articles
Allen, R. A., Pruitt, W. O., Wright, J. L., Howell, T. A., Ventura, F., Snyder, R., Itenfisu, D., Steduto, P., Berengena, J., Baselga Yrisarry, J., Smith, M., Pereira, J. S., Raes, D., Perrier, A., Alves, I., Walter, I., and Elliott, R.: A recommendation on standardized surface resistance for hourly calculation of reference ET0 by the FAO56 Penman-Monteith method, Agr. Water Manage., 81, 1–22, 2006.
Bartholy, J., Pongcraz, R., and Molnar, Z.: Classification and analysis of pat climate information based on historical documentary sources for the Carpathian basin, Int. J. Climate, 24, 1759–1776, 2004.
Benichou, P. and Le Breton, O.: Prise en compte de la topographie pour la cartographie des champs pluviometriques statistiques, La Meteorologie, 19, 23–34, 1987.
Bove, B., Brindisi, P., Glisci, C., Pacifico, G., and Summa, M. L.: Indicatori Climatici di Desertificazione in Basilicata, Forest, 2, 74–84, 2005.
Cressie, N.: Statistics for Spatial Data, Wiley, New York, 900 pp., 1991.
De Martonne, E.: Une nouvelle function climatologique: L'indice d'aridite, La Meteorologie, 2, 449–458, 1926.
EEA: Drought Management Plan Report. Including Agricultural, Drought Indicators and Climate Change Aspects, Technical Report 2008, 023, 132 pp., 2008.
Geiger, R.: Köppen-Geiger/Klima der Erde (Wandkarte 1 : 16 Mill.), Überarbeitete Neuausgabe von Geiger, R., Klett-Perthes, Gotha, 1961.
Guttman, N. B.: Accepting the Standardized Precipitation Index: a calculation algorithm, J. Am. Water Resour. As., 35, 311–322, 1999.
Köppen, W.: Das geographisca System der Klimateologie, edited by: Köppen, W. and Geiger, G., 1. C., Gebr., Borntraeger, 1–44, 1936.
Kosmas, C., Kirkby, M., and Geeson, N.: The MEDALUS Project. Mediterranean Desertification and Land Use, Manual on key indicators of Desertification and mapping environmentally sensitive areas to desertification, Eur. Commission, Brussels, Project Report, 265 pp., 1999.
Kozak, J., Björnsen Gurung, A., and Ostapowicz, K.: Research Agenda for the Carpathians: 2010–2015, 43 pp., http://mri.scnatweb.ch/download-document?gid=1204, Krakow, 2011a.
Kozak, P., Palfai, I., Herceg, A., and Fiala, K.: Palfai Drought Index (PADI) – Expansion of Applicability of Hungarian PAI for South East Europe (SEE) Region, 27th Conference of the Danubian Countries, Budapest (HUN), 2nd Symposium, 16–17 June 2011b.
Krüzselyi, I., Bartholy, J., Horányi, A., Pieczka, I., Pongrácz, R., Szabó, P., Szépszó, G., and Torma, Cs.: The future climate characteristics of the Carpathian Basin based on a regional climate model mini-ensemble, Adv. Sci. Res., 6, 69–73, https://doi.org/10.5194/asr-6-69-2011, 2011.
Lakatos, M., Szentimrey, T., and Bihari, Z.: Application of gridded daily data series for calculation of extreme temperature and precipitation indices in Hungary, Id\H{o}járás, 115, 99–109, 2011.
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought frequency and duration to time scales, Proc. of 8th Conf. on Appl. Climatol., Anaheim, California, Am. Met. Soc., 179–184, 17–22 January 1993.
Palfai, I.: Description and forecasting of droughts in Hungary, Proc. of 14th Congress on Irrigation and Drainage (ICID), Rio de Janeiro, 1, Cap. 1-C, 151–158, 1990.
Paltineanu, C., Mihailescu, F., Seceleanu, I., Dragota, C., and Vasenciuc, F.: Ariditatea, seceta, evapotranspiratia si cerintele de apa ala culturilor agricole in Romania, Ovidius University Press, Constanta, 319 pp., ISBN 978-973-614-412-7, 2007.
Parajka, J., Kohnova, S., Balint, G., Barbuc, M., Borga, M., Claps, P., Dumitrescu, A., Gaume, E., Hlavcova, K., Merz, R., Pfaundler, M., Stancalie, G., Szolgay, J., and Blöschl, G.: Seasonal characteristics of flood regimes across the Alpine-Carpathian range, J. Hydrol., 394, 78–89, 2010.
Rebetez, M., Mayer, H., Dupont, O., Schindler D., Gartner, K., Kropp, J., P., and Menzel, A.: Heat and drought 2003 in Europe: a climate synthesis, Ann. Forest Sci., 63, 569–577, 2006.
Snizell, C., Bussay, A., and Szentimrey, T.: Drought tendencies in Hungary, Int. J. Climatol., 18, 1479–1491, 1998.
Spinoni, J., Antofie, T., Barbosa, P., De Jager, A., Klein Tank, A., Micale, F., Naumann, G., Sepulcre-Canto, G., Singleton, A., van der Schrier, G., and Vogt, J.: 2001–11 high-resolution drought climatologies for Europe, EMS Annual Meeting Abstracts, Vol. 9, Lodz, 10–14 September 2012.
Spinoni, J.: 1951–2011 European Drought and Climate Atlas. Testing a wide set of indicators for the European Drought Observatory, EUR 25235 EN, Luxembourg (LUX), Publications Office of the EU, in press, 2013.
Szalai, S.: EU Projects in the Carpathian Region: CARPATCLIM and CarpathCC, Carpathian Convention Working Group on sustainable Forest Management, Donji Milanovac, Serbia, 23–24 April 2012.
Szalai, S. and Vogt, J.: CARPATCLIM – high resolution gridded database of the Carpathian Region and calculation of drought indices as a contribution to the European Drought Observatory, WRCP Conference, Denver, USA, T185A, 24–28 October 2011.
Szalai, S., Szinell, C., and Zoboki J.: Drought Monitoring in Hungary, Proceedings of an Expert Group Meteeng, Lisbon, Portugal, AGM-2, WMO/TD No. 1037, 5–7 September 2000.
Szentimrey, T.: Multiple Analysis of Series for Homogenization (MASH), Proceedings of the 2nd Seminar for Homogenization of Surface Climatological Data, Budapest, Hungary; WMO, WCDMP-No. 41, 27–46, 1999.
Szentimrey, T.: Development of MASH homogenization procedure for daily data, Proceedings of the Fifth Seminar for Homogenization and Quality Control in Climatological Databases, Budapest, Hungary, 2006; WCDMP-No. 68, WMO-TD NO. 1434, 116–125, 2008.
Szentimrey, T. and Bihari, Z.: Mathematical background of the spatial interpolation methods and the software MISH (Meteorological Interpolation based on Surface Homogenized Data Basis), Proceedings from the Conference on Spatial Interpolation in Climatology and Meteorology, Budapest, Hungary, 2004, COST Action 719, COST Office, 17–27, 2007.
Szentimrey, T., Bihari, Z., Lakatos, M., and Szalai, S.: Mathematical, methodological questions concerning the spatial interpolation of climate elements, Proceedings from the Second Conference on Spatial Interpolation in Climatology and Meteorology, Budapest, Hungary, 2009, Id\H{o}járás 115, 1–11, 2011.
Thom, H. C. S.: Some Methods of Climatological Analysis. WMO Technical note 81, Secretariat of the WMO, Geneva, Switzerland, 53 pp., 1966.
Thornthwaite, C. W.: An Approach toward a Rational Classification of Climate, Geogr. Rev., 38, 55–94, 1948.
Tsakiris, G. and Vangelis, H.: Establishing a Drought Index incorporating Evapotranspiration, Eur. Wat., 9/10, 11–13, 2005.
UNEP: World Atlas of Desertification. Edward Arnold, London, 1992.
UNEP: Carpathians Environment Outlook 2007, Published by the United Nations Environment Program, ISBN 978-92-807-2870-5, J. No: DEW/0999/GE, 2007.
Van der Schrier, G., Jones, P. D., and Briffa, K. R.: The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration, J. Geophys. Res., 116, D03106, https://doi.org/10.1029/2010JD015001, 2011.
Venema, V. K. C., Mestre, O., Aguilar, E., Auer, I., Guijarro, J. A., Domonkos, P., Vertacnik, G., Szentimrey, T., Stepanek, P., Zahradnicek, P., Viarre, J., Müller-Westermeier, G., Lakatos, M., Williams, C. N., Menne, M. J., Lindau, R., Rasol, D., Rustemeier, E., Kolokythas, K., Marinova, T., Andresen, L., Acquaotta, F., Fratianni, S., Cheval, S., Klancar, M., Brunetti, M., Gruber, C., Prohom Duran, M., Likso, T., Esteban, P., and Brandsma, T.: Benchmarking homogenization algorithms for monthly data, Clim. Past, 8, 89–115, https://doi.org/10.5194/cp-8-89-2012, 2012.
Vermes, L. and Mihalyfy, A.: Proceedings of the International Workshop on Drought in the Carpathians' Region. Ed. MTESZ, 352 pp., ISBN 9638012714, 9789638012715, 1995.
Vicente-Serrano, S. M., Begueria, S., and Lopez-Moreno, J. I.: A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index, J. Climate, 23, 1696–1718, 2010.
Webster, R., Holt, S., and Avis, C.: The status of the Carpathians. A report developed as a part of The Carpathian Ecoregion Initiative, 67 pp., 2001.
Willmott, C. J., Rowe, C. M., and Mintz, Y.: Climatology of the terrestrial seasonal water cycle, J. Climatol., 5, 589–606, 1985.