Articles | Volume 11, issue 1
Adv. Sci. Res., 11, 63–67, 2014
https://doi.org/10.5194/asr-11-63-2014
Adv. Sci. Res., 11, 63–67, 2014
https://doi.org/10.5194/asr-11-63-2014

  05 Jun 2014

05 Jun 2014

Modelling static 3-D spatial background error covariances – the effect of vertical and horizontal transform order

M. A. Wlasak and M. J. P. Cullen

Related authors

Verification against perturbed analyses and observations
N. E. Bowler, M. J. P. Cullen, and C. Piccolo
Nonlin. Processes Geophys., 22, 403–411, https://doi.org/10.5194/npg-22-403-2015,https://doi.org/10.5194/npg-22-403-2015, 2015
Short summary

Cited articles

Clayton, A. M., Lorenc, A. C., and Barker, D. M.: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office, Q. J. Roy. Meteor. Soc., 139, 1445–1461, https://doi.org/10.1002/qj.2054, 2013.
Courtier, P., Andersson, E., Heckley, W., Vasiljevic, D., Hamrud, M., Hollingsworth, A., Rabier, F., Fisher, M., and Pailleux, J.: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation, Q. J. Roy. Meteor. Soc., 124, 1783–1807, https://doi.org/10.1002/qj.49712455002, 1998.
Ingleby, N. B.: The statistical structure of forecast errors and its representation in The Met. Office Global 3-D Variational Data Assimilation Scheme. Q.J.R. Meteorol. Soc., 127: 209–231. https://doi.org/10.1002/qj.49712757112, 2001.
Lorenc, A. C., Ballard, S. P., Bell, R. S., Ingleby, N. B., Andrews, P. L. F., Barker, D. M., Bray, J. R., Clayton, A. M., Dalby, T., Li, D., Payne, T. J. and Saunders, F. W.: The Met. Office global three-dimensional variational data assimilation scheme. Q.J.R. Meteorol. Soc., 126: 2991–3012. https://doi.org/10.1002/qj.49712657002, 2000.
Rawlins, F., Ballard, S. P., Bovis, K. J., Clayton, A. M., Li, D., Inverarity, G. W., Lorenc, A. C., and Payne, T. J.: The Met Ofiice Global 4-Dimensional Data Assimilation System, Q. J. Roy. Meteor. Soc., 133, 347–362,https://doi.org/10.1002/qj.32, 2007.