Articles | Volume 12, issue 1
https://doi.org/10.5194/asr-12-91-2015
https://doi.org/10.5194/asr-12-91-2015
26 May 2015
 | 26 May 2015

Investigation of balancing effects in long term renewable energy feed-in with respect to the transmission grid

A. Kies, K. Nag, L. von Bremen, E. Lorenz, and D. Heinemann

Abstract. A European power system mainly based on renewable sources will have dominant contributions from wind and solar power. However, wind and solar generation facilities have, due to the weather dependent nature of their resources, highly fluctuating feed-in profiles. To overcome the mismatch between power consumption and generation it is important to study and understand the generation patterns and balancing potentials. High temporally and spatially resolved long term weather data was used to simulate the feed-in from wind and photovoltaics for European countries for the years 2003 to 2012. We investigate storage energy and capacity needs in Europe in dependency of the generation mix from wind onshore, wind offshore and photovoltaics and the share of renewables. Furthermore we compute the storage energy and capacity needs for different transmission scenarios. We show that for unlimited transmission storage needs are reduced mostly by high wind offshore shares. We also show that higher shares above 100% of renewables can decrease the required storage capacity to a higher extent than the required storage energy.