Evaluation of wind speed estimates in reanalyses for wind energy applications
Sebastian Brune
CORRESPONDING AUTHOR
Deutscher Wetterdienst, Offenbach, Germany
Jan D. Keller
Deutscher Wetterdienst, Offenbach, Germany
Climate Monitoring and Diagnostics, Hans-Ertel-Centre for Weather Research, Bonn, Germany
Sabrina Wahl
Climate Monitoring and Diagnostics, Hans-Ertel-Centre for Weather Research, Bonn, Germany
Institute for Geosciences, University of Bonn, Bonn, Germany
Related authors
Sebastian Brune and Jan D. Keller
Wind Energ. Sci., 7, 1905–1918, https://doi.org/10.5194/wes-7-1905-2022, https://doi.org/10.5194/wes-7-1905-2022, 2022
Short summary
Short summary
A post-processing of the wind speed of the regional reanalysis COSMO-REA6 in Central Europe is performed based on a combined physical and statistical approach. The physical basis is provided by downscaling wind speeds with the help of a diagnostic wind model, which reduces the horizontal grid point spacing by a factor of 8. The statistical correction using a neural network based on different variables of the reanalysis leads to an improvement of 30 % in RMSE compared to COSMO-REA6.
Sebastian Brune and Jan D. Keller
Wind Energ. Sci., 7, 1905–1918, https://doi.org/10.5194/wes-7-1905-2022, https://doi.org/10.5194/wes-7-1905-2022, 2022
Short summary
Short summary
A post-processing of the wind speed of the regional reanalysis COSMO-REA6 in Central Europe is performed based on a combined physical and statistical approach. The physical basis is provided by downscaling wind speeds with the help of a diagnostic wind model, which reduces the horizontal grid point spacing by a factor of 8. The statistical correction using a neural network based on different variables of the reanalysis leads to an improvement of 30 % in RMSE compared to COSMO-REA6.
Arianna Valmassoi and Jan D. Keller
Adv. Sci. Res., 18, 41–49, https://doi.org/10.5194/asr-18-41-2021, https://doi.org/10.5194/asr-18-41-2021, 2021
Christopher W. Frank, Frank Kaspar, Jan D. Keller, Till Adams, Miriam Felkers, Bernd Fischer, Marcus Handte, Pedro José Marrón, Hinrich Paulsen, Markus Neteler, Jochen Schiewe, Marvin Schuchert, Christian Nickel, Richard Wacker, and Richard Figura
Adv. Sci. Res., 17, 183–190, https://doi.org/10.5194/asr-17-183-2020, https://doi.org/10.5194/asr-17-183-2020, 2020
Short summary
Short summary
Access to high quality weather and climate data is crucial for a wide range of societal and economic issues. It allows optimising industrial processes with respect to efficiency. The goal of the research project FAIR is to simplify the information exchange between the DWD and economical players. This paper summarizes the results of the requirement analysis of three use cases and presents the deduced technical architecture and FAIR services aiming at a user-friendly exchange of weather data.
Frank Kaspar, Deborah Niermann, Michael Borsche, Stephanie Fiedler, Jan Keller, Roland Potthast, Thomas Rösch, Thomas Spangehl, and Birger Tinz
Adv. Sci. Res., 17, 115–128, https://doi.org/10.5194/asr-17-115-2020, https://doi.org/10.5194/asr-17-115-2020, 2020
Short summary
Short summary
Reanalyses are long-term meteorological datasets that are based on numerical weather prediction models and the assimilation of historic observations. The regional model COSMO of Germany’s national meteorological service (Deutscher Wetterdienst) has been used to develop regional reanalyses with spatial resolution of up to 2 km. In this paper, we provide an overview of evaluation results and application examples at the European and national German level with a focus on renewable energy.
J. D. Keller and A. Hense
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npgd-1-1509-2014, https://doi.org/10.5194/npgd-1-1509-2014, 2014
Preprint withdrawn
Cited articles
Bollmeyer, C., Keller, J. D., Ohlwein, C., Wahl, S., Crewell, S., Friederichs, P., Hense, A., Keune, J., Kneifel, S., Pscheidt, I., Redl, S., and Steinke, S.: Towards a high-resolution regional reanalysis for the European CORDEX domain, Q. J. Roy. Meteorol. Soc., 141, 1–15,
https://doi.org/10.1002/qj.2486, 2015. a
Borsche, M., Kaiser-Weiss, A. K., and Kaspar, F.: Wind speed variability
between 10 and 116 m height from the regional reanalysis COSMO-REA6 compared
to wind mast measurements over Northern Germany and the Netherlands, Adv. Sci. Res., 13, 151–161, https://doi.org/10.5194/asr-13-151-2016, 2016. a, b
Brümmer, B., Lange, I., and Konow, H.: Atmospheric boundary layer
measurements at the 280 m high Hamburg weather mast 1995–2011: mean annual
and diurnal cycles, Meteorol. Z., 21, 319–335, https://doi.org/10.1127/0941-2948/2012/0338, 2012. a, b
BSH – Bundesamt für Seeschifffahrt und Hydrographie: FINO-Datenbank, available at: http://fino.bsh.de, last access: 11 January 2021. a
Conradsen, K., Nielsen, L. B., and Prahm, L. P.: Review of Weibull Statistics
for Estimation of Wind Speed Distributions, J. Clim. Appl. Meteorol., 23, 1173–1183, https://doi.org/10.1175/1520-0450(1984)023<1173:ROWSFE>2.0.CO;2, 1984. a
Copernicus Climate Data Store: ERA5 – Fifth generation of ECMWF atmospheric reanalyses of the global climate, available at: https://cds.climate.copernicus.eu, last access: 21 August 2020. a
Drechsel, S., Mayr, G. J., Messner, J. W., and Stauffer, R.: Wind Speeds at
Heights Crucial for Wind Energy: Measurements and Verification of Forecasts,
J. Appl. Meteorol. Clim., 51, 1602–1617, https://doi.org/10.1175/JAMC-D-11-0247.1, 2012. a
DWD/HErZ – Deutscher Wetterdienst – Climate Data Center/Hans-Ertel Centre for Weather Research: COSMO-REA6 regional reanalysis, available at: https://opendata.dwd.de/climate_environment/REA/COSMO_REA6/, last access: 15 January 2020. a
Frank, C. W., Kaspar, F., Keller, J. D., Adams, T., Felkers, M., Fischer, B.,
Handte, M., Marrón, P. J., Paulsen, H., Neteler, M., Schiewe, J.,
Schuchert, M., Nickel, C., Wacker, R., and Figura, R.: FAIR: a project to
realize a user-friendly exchange of open weather data, Adv. Sci. Res., 17, 183–190, https://doi.org/10.5194/asr-17-183-2020, 2020a. a, b
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
GMAO – Global Modeling and Assimilation Office: MERRA-2 reanalysis data available through Goddard Earth Sciences Data and Information Services Center (GES DISC), available at: https://disc.sci.gsfc.nasa.gov/, last access: 3 November 2020. a
Gryning, S.-E. and Floors, R.: Carrier-to-Noise-Threshold Filtering on
Off-Shore Wind Lidar Measurements, Sensors, 19, 592, https://doi.org/10.3390/s19030592, 2019. a
Heppelmann, T., Steiner, A., and Vogt, S.: Application of numerical weather
prediction in wind power forecasting: Assessment of the diurnal cycle,
Meteorol. Z., 26, 319–331, https://doi.org/10.1127/metz/2017/0820, 2017. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global
reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a
Jourdier, B.: Evaluation of ERA5, MERRA-2, COSMO-REA6, NEWA and AROME to
simulate wind power production over France, Adv. Sci. Res., 17, 63–77, https://doi.org/10.5194/asr-17-63-2020, 2020. a, b
Jourdier, B. and Drobinski, P.: Errors in wind resource and energy yield
assessments based on the Weibull distribution, Ann. Geophys., 35, 691–700, https://doi.org/10.5194/angeo-35-691-2017, 2017. a
Jung, C. and Schindler, D.: Wind speed distribution selection – A review of
recent development and progress, Renew. Sustain. Energ. Rev., 114, 109290, https://doi.org/10.1016/j.rser.2019.109290, 2019. a
Justus, C. G. and Mikhail, A.: Height variation of wind speed and wind
distributions statistics, Geophys. Res. Lett., 3, 261–264, https://doi.org/10.1029/GL003i005p00261, 1976. a
Kaiser-Weiss, A. K., Kaspar, F., Heene, V., Borsche, M., Tan, D. G. H., Poli,
P., Obregon, A., and Gregow, H.: Comparison of regional and global reanalysis
near-surface winds with station observations over Germany, Adv. Sci. Res., 12, 187–198, https://doi.org/10.5194/asr-12-187-2015, 2015. a
Kalverla, P. C., Duncan Jr., J. B., Steeneveld, G.-J., and Holtslag, A. A. M.: Low-level jets over the North Sea based on ERA5 and observations: together they do better, Wind Energ. Sci., 4, 193–209,
https://doi.org/10.5194/wes-4-193-2019, 2019. a
Kaspar, F., Niermann, D., Borsche, M., Fiedler, S., Keller, J., Potthast, R.,
Rösch, T., Spangehl, T., and Tinz, B.: Regional atmospheric reanalysis
activities at Deutscher Wetterdienst: review of evaluation results and
application examples with a focus on renewable energy, Adv. Sci. Res., 17, 115–128, https://doi.org/10.5194/asr-17-115-2020, 2020. a
Kohler, M., Metzger, J., and Kalthoff, N.: Trends in temperature and wind speed from 40 years of observations at a 200-m high meteorological tower in
Southwest Germany, Int. J. Climatol., 38, 23–34, https://doi.org/10.1002/joc.5157, 2018. a
Lilliefors, H. W.: On the Kolmogorov-Smirnov Test for Normality with Mean and
Variance Unknown, J. Am. Stat. Assoc., 62, 399–402, https://doi.org/10.1080/01621459.1967.10482916, 1967. a
Lilliefors, H. W.: On the Kolmogorov-Smirnov Test for the Exponential
Distribution with Mean Unknown, J. Am. Stat. Assoc., 64, 387–389, https://doi.org/10.1080/01621459.1969.10500983, 1969. a
Macke, A., Seifert, P., Baars, H., Barthlott, C., Beekmans, C., Behrendt, A.,
Bohn, B., Brueck, M., Bühl, J., Crewell, S., Damian, T., Deneke, H.,
Düsing, S., Foth, A., Di Girolamo, P., Hammann, E., Heinze, R., Hirsikko,
A., Kalisch, J., Kalthoff, N., Kinne, S., Kohler, M., Löhnert, U.,
Madhavan, B. L., Maurer, V., Muppa, S. K., Schween, J., Serikov, I., Siebert,
H., Simmer, C., Späth, F., Steinke, S., Träumner, K., Trömel, S.,
Wehner, B., Wieser, A., Wulfmeyer, V., and Xie, X.: The HD(CP)2
Observational Prototype Experiment (HOPE) – an overview, Atmos. Chem. Phys., 17, 4887–4914, https://doi.org/10.5194/acp-17-4887-2017, 2017. a
Manly, B. F.: Randomization, bootstrap and Monte Carlo methods in biology,
in: vol. 70, CRC Press, New York, 2006. a
Massey, F. J.: The Kolmogorov–Smirnov Test for Goodness of Fit, J. Am. Stat. Assoc., 46, 68–78, https://doi.org/10.1080/01621459.1951.10500769, 1951. a
Novack-Gottshall, P. and Wang, S. C.: KScorrect: Lilliefors-Corrected
Kolmogorov–Smirnov Goodness-of-Fit Tests, r package version 1.2.4, available at: https://CRAN.R-project.org/package=KScorrect (last access: 18 June 2021), 2018. a
Orsted: Offshore wind data, available at: https://orsted.com/en/our-business/offshore-wind/wind-data, last access: 12 January 2021. a
Parsons, F. and Wirsching, P.: A Kolmogorov–Smirnov goodness-of-fit test for
the two-parameter weibull distribution when the parameters are estimated from
the data, Microelect. Reliabil., 22, 163–167, https://doi.org/10.1016/0026-2714(82)90174-3, 1982. a
Ramon, J. and Lledó, L.: The Tall Tower Dataset [data set], available at: https://b2share.eudat.eu/records/136ecdeee31a45a7906a773095656ddb, last access: 22 December 2020. a
Ramon, J., Lledó, L., Torralba, V., Soret, A., and Doblas-Reyes, F. J.: What global reanalysis best represents near-surface winds?, Q. J. Roy. Meteorol. Soc., 145, 3236–3251, https://doi.org/10.1002/qj.3616, 2019. a
Ramon, J., Lledó, L., Pérez-Zanón, N., Soret, A., and Doblas-Reyes, F. J.: The Tall Tower Dataset: a unique initiative to boost wind energy research, Earth Syst. Sci. Data, 12, 429–439,
https://doi.org/10.5194/essd-12-429-2020, 2020. a, b
Rehman, S.: Tower distortion and scatter factors of co-located wind speed
sensors and turbulence intensity behavior, Renew. Sustain. Energ. Rev., 34, 20–29, https://doi.org/10.1016/j.rser.2014.03.007, 2014. a
Simmer, C., Adrian, G., Jones, S., Wirth, V., Göber, M., Hohenegger, C.,
Janjić, T., Keller, J., Ohlwein, C., Seifert, A., Trömel, S., Ulbrich, T., Wapler, K., Weissmann, M., Keller, J., Masbou, M., Meilinger, S., Riß, N., Schomburg, A., Vormann, A., and Weingärtner, C.: HErZ: The German Hans-Ertel Centre for Weather Research, B. Am. Meteorol. Soc., 97, 1057–1068, https://doi.org/10.1175/BAMS-D-13-00227.1, 2016. a
St. Martin, C. M., Lundquist, J. K., Clifton, A., Poulos, G. S., and Schreck,
S. J.: Atmospheric turbulence affects wind turbine nacelle transfer
functions, Wind Energ. Sci., 2, 295–306, https://doi.org/10.5194/wes-2-295-2017, 2017. a
Takle, E. S. and Brown, J. M.: Note on the Use of Weibull Statistics to
Characterize Wind-Speed Data, J. Appl. Meteorol., 17, 556–559,
https://doi.org/10.1175/1520-0450(1978)017<0556:NOTUOW>2.0.CO;2, 1978. a
Van Ulden, A. P. and Wieringa, J.: Atmospheric Boundary Layer Research at
Cabauw, Springer Netherlands, Dordrecht, 39–69,
https://doi.org/10.1007/978-94-017-0944-6_3, 1996. a
Veronesi, F. and Grassi, S.: Comparison of hourly and daily wind speed
observations for the computation of Weibull parameters and power output, in: Proceedings of the IEEE, 2015 3rd International Renewable and Sustainable
Energy Conference (IRSEC), 10–13 December 2015, Marrakech, Morocco, 1–6, https://doi.org/10.1109/IRSEC.2015.7455043, 2015.
a
Wulfmeyer, V., Turner, D. D., Baker, B., Banta, R., Behrendt, A., Bonin, T.,
Brewer, W. A., Buban, M., Choukulkar, A., Dumas, E., Hardesty, R. M., Heus,
T., Ingwersen, J., Lange, D., Lee, T. R., Metzendorf, S., Muppa, S. K.,
Meyers, T., Newsom, R., Osman, M., Raasch, S., Santanello, J., Senff, C.,
Späth, F., Wagner, T., and Weckwerth, T.: A New Research Approach for
Observing and Characterizing Land–Atmosphere Feedback, B. Am. Meteorol. Soc., 99, 1639–1667, https://doi.org/10.1175/BAMS-D-17-0009.1, 2018. a
Short summary
Correct estimates of wind speed between 60 and 200 m above ground are of great interest for the renewable energy sector. Observed wind speeds are compared to three different reanalyses. ERA5 and COSMO-REA6 outperform MERRA-2 at offshore, flat and hilly sites. Over land, ERA5 models nighttime wind speed better than COSMO-REA6 due to better representation of the low level jet through higher vertical resolution, a more comprehensive data assimilation scheme, and/or the more recent model version.
Correct estimates of wind speed between 60 and 200 m above ground are of great interest for the...