22 Sep 2021
22 Sep 2021
Sensitivity study of the REMO regional climate model to domain size
Réka Suga et al.
Cited articles
Arakawa, A. and Lamb, V.: Computational design and the basic dynamical
processes of the UCLA general circulation Model, Methods in Computational
Physics, 17, 173–265, 1977.
Asselin, R.: Frequency filter for time integrations, Mon. Weather Rev., 100,
487–490, 1972.
Bán, B., Király, A., Szépszó, G., Somot S., and
Zsebeházi, G.: ALADIN-Climate at the Hungarian Meteorological Service:
from the beginnings to present days, Időjárás, in review, 2021.
Bihari, Z., Lakatos, M., and Szentimrey, T.: Gridded observational datasets
based on surface observations at the Hungarian Meteorological Service, Légkör, 62, 148–151, 2017 (in
Hungarian).
C3S Climate Data Store: E-OBS daily gridded meteorological data for Europe from 1950 to present derived from in-situ observations, C3S Climate Data Store [data set], https://doi.org/10.24381/cds.151d3ec6, 2019.
Cornes, R., van der Schrier, G., van den Besselaar, E. J. M., and Jones, P. D.: An
Ensemble Version of the E-OBS Temperature and Precipitation Datasets, J.
Geophys. Res.-Atmos., 123, 9391–9409, https://doi.org/10.1029/2017JD028200, 2018.
Davies, H. C.: A lateral boundary formulation for multi-level prediction
models, Q. J. Roy. Meteor. Soc., 102, 405–418,
https://doi.org/10.1002/qj.49710243210, 1976.
Illy, T., Sábitz, J., and Szépszó, G.: Validation of the
ALADIN-Climate model experiments, RCMTéR (EEA-C13-10) project report, Hungarian Meteorological Service, Budapest, 19 pp., 2015 (in
Hungarian).
Jacob, D. and Podzun, R.: Sensitivity studies with the regional climate
model REMO, Meteor. Atmos. Phys., 63, 119–129, https://doi.org/10.1007/BF01025368,
1997.
Jacob, D., Bärring, L., Christensen, O. B., Christensen, J. H., Castro,
M. D., Déqué, M., Giorgi, F., Hagemann, S., Hirschi, M., Jones, R.,
Kjellström, E., Lenderink, G., Rockel, B., Sánchez, E., Schär,
C., Seneviratne, S. I., Somo, S., Ulden, A. V., Hurk, B. V. D.: An
inter-comparison of regional climate models for Europe: model performance in
present-day climate, Clim. Change, 81, 31–52, https://doi.org/10.1007/s10584-006-9213-4, 2007.
Jacob, D., Elizalde, A., Haensler, A., Hagemann, S., Kumar, P., Podzun, R.,
Rechid, D., Remedio, A.R., Saeed, F., Sieck, K., Teichmann, C., and Wilhelm, C.:
Assessing the Transferability of the Regional Climate Model REMO to
Different COordinated Regional Climate Downscaling EXperiment (CORDEX)
Regions, Atmosphere, 3, 181–199, https://doi.org/10.3390/atmos3010181, 2012.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer,
L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G.,
Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A.,
Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N.,
Kotlarski, S., Kriegsmann, A., Martin, E., Meijgaard, E. V., Moseley, C.,
Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D.,
Rounsevell, M., Samuelsson, P., Somot, S., Soussanna, J.-F., Teichmann, C.,
Valentini, R., Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new
high-resolution climate change projections for European impact research,
Reg. Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014.
Jacob, D., Teichmann, C., Sobolowski, S., Katragkou, E., Anders, I., Belda,
M., Benestad, R., Boberg, F., Buonomo, E., Cardoso, R. M., Casanueva, A.,
Christensen, O. B., Christensen, J. H., Coppola, E., Cruz, L. D., Davin, E. L.,
Dobler, A., Domínguez, M., Fealy, R., Fernandez, J., Gaertner, M. A.,
García-Díez, M., Giorgi, F., Gobiet, A., Goergen, K.,
Gómez-Navarro, J. J., Alemán, J. J. G., Gutiérrez, C.,
Gutiérrez, J. M., Güttler, I., Haensler, A., Halenka, T., Jerez, S.,
Jiménez-Guerrero, P., Jones, R. G., Keuler, K., Kjellström, E.,
Knist, S., Kotlarski, S., Maraun, D., Meijgaard, E. V., Mercogliano, P.,
Montávez, J. P., Navarra, A., Nikulin, G., Noblet-Ducoudré, N. D.,
Panitz, H.-J., Pfeifer, S., Piazza, M., Pichelli, E., Pietikäinen,
J.-P., Prein, A. F., Preuschmann, S., Rechild, D., Rockel, B., Romera, R.,
Sánchez, E., Sieck, K., Soares, P. M. M., Somot, S., Srnec, L.,
Sørland, S. L., Termonia, P., Truhetz, H., Vautard, R., Wrrach-Sagi, K.,
and Wulfmeyer, V.: Regional climate downscaling over Europe: perspectives from
the EURO-CORDEX community, Reg. Environ. Change, 20, 51,
https://doi.org/10.1007/s10113-020-01606-9, 2020.
Jones, R. G., Murphy, J. M., and Noguer, M.,: Simulation of climate change over
Europe using a nested regional climate model. I: Assessment of control
climate, including sensitivity to location of lateral boundaries, Q. J.
Roy. Meteor. Soc., 121, 1413–1449, https://doi.org/10.1002/qj.49712353802, 1995.
Kotlarski, S., Szabó, P., Herrera, S., Räty, O., Keuler, K., Soares,
P. M., Cardoso, R. M., Bosshard, T., Pagé, C., Boberg, F.,
Gutiérrez, J. M., Isotta, F. A., Jaczewski, A., Kreienkamp, F., Liniger,
M. A., Lussana, C., and Pianko-Kluczyńska, K.: Observational uncertainty and
regional climate model evaluation: A pan-European perspective, Int.
J. Climatol., 39, 3730–3749, https://doi.org/10.1002/joc.5249,
2017.
Laprise, R., Kornic, D., Rapaić, M., Šeparović, L., Leduc, M.,
Nikiema, O., Di Luca, A., Diaconescu, E., Alexandru, A., Lucas-Picher, P.,
de Elía, R., Caya, D., and Biner, S.: Considerations of Domain Size and
Large-Scale Driving for Nested Regional Climate Models: Impact on Internal
Variability and Ability at Developing Small-Scale Details, in: Climate Change, edited by: Berger, A., Mesinger, F., and Sijacki, D., Springer, Vienna, 181–199, https://doi.org/10.1007/978-3-7091-0973-1_14, 2012.
Leduc, M. and Laprise, R.: Regional climate model sensitivity to domain
size, Clim. Dynam., 32, 833–854, https://doi.org/10.1007/s00382-008-0400-z,
2009.
Majewski, D.: The Europa Modell of the Deutscher Wetterdienst, Conference Paper,
ECMWF Seminar of Numerical Methods in Atmospheric Models II, ECMWF, Shinfield Park, Reading, 147–191, 1991.
Pietikäinen, J.-P., Markkanen, T., Sieck, K., Jacob, D., Korhonen, J., Räisänen, P., Gao, Y., Ahola, J., Korhonen, H., Laaksonen, A., and Kaurola, J.: The regional climate model REMO (v2015) coupled with the 1-D freshwater lake model FLake (v1): Fenno-Scandinavian climate and lakes, Geosci. Model Dev., 11, 1321–1342, https://doi.org/10.5194/gmd-11-1321-2018, 2018.
Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen, M.,
Dümenil, L., Esch, M., Giorgetta, M., Schlese, U., and Schulzweida, U.: The
atmospheric general circulation model ECHAM-4: Model description and
simulation of present-day climate, Report No. 18, Max Planck Institute for
Meteorology, Hamburg, Germany, 1996.
Semmler, T., Jacob, D., Schlünzen, K. H., and Podzun, R.: Influence of
sea ice treatment in a regional climate model on boundary layer values in
the Fram Strait region, Mon. Weather Rev., 132, 985–999, 2004.
Seth, A. and Giorgi, F.: The Effects of Domain Choice on Summer
Precipitation Simulation and Sensitivity in a Regional Climate Model,
J. Climate, 11, 2698–2712, 1998.
Szentimrey, T.: Development of MASH homogenization procedure for daily data,
Proceedings of the Fifth Seminar for Homogenization and Quality Control in
Climatological Databases, Budapest, Hungary, 2006 WCDMP-No. 71, WMO/TD-NO.
1493, 123–130, 2008.
Szentimrey, T. and Bihari, Z.: Mathematical background of the spatial
interpolation methods and the software MISH (Meteorological Interpolation
based on Surface Homogenized Data Basis), in: Proceedings of the Conference on
Spatial Interpolation in Climatology and Meteorology, edited by: Szalai, S.,
Bihari, Z., Szentimrey, T., and Lakatos, M., COST Office, Luxemburg, ISBN
92-898-0033-X, 17–28, 2007.
Szépszó, G.: Climate Dynamics investigations for the Carpathian
Basin with REMO regional climate model, PhD thesis,
Eötvös Loránd University, Department of Meteorology, 162 pp.,
2014 (in Hungarian).
Szépszó, G. and Horányi, A.: Transient simulation of the REMO
regional climate model and its evaluation over Hungary,
Időjárás, 112, 203–231, 2008.
Teichmann, C., Eggert, B., Elizalde, A., Haensler, A., Jacob, D., Kumar, P.,
Moseley, C., Pfeifer, S., Rechid, D., Remedio, A.R., Ries, H., Petersen, J.,
Preuschmann, S., Raub, T., Saeed, F., Sieck, K., and Weber, T.: How Does a
Regional Climate Model Modify the Projected Climate Change Signal of the
Driving GCM: A Study over Different CORDEX Regions Using REMO, Atmosphere,
4, 214–236, 2013.
Top, S., Kotova, L., De Cruz, L., Aniskevich, S., Bobylev, L., De Troch, R., Gnatiuk, N., Gobin, A., Hamdi, R., Kriegsmann, A., Remedio, A. R., Sakalli, A., Van De Vyver, H., Van Schaeybroeck, B., Zandersons, V., De Maeyer, P., Termonia, P., and Caluwaerts, S.: Evaluation of regional climate models ALARO-0 and REMO2015 at 0.22∘ resolution over the CORDEX Central Asia domain, Geosci. Model Dev., 14, 1267–1293, https://doi.org/10.5194/gmd-14-1267-2021, 2021.
Vannitsem, S. and Chomé, F.: One-Way Nested Regional Climate Simulations
and Domain Size, J. Climate, 18, 229–233, https://doi.org/10.1175/JCLI3252.1, 2005.
Vautard, R., Kadygrov, N., Iles, C., Boberg, F., Buonomo, E., Bülow, K.,
Coppola, E., Corre, L., van Meijgaard, E., Nogherotto, R., Sandstad, M.,
Schwingshackl, C., Somot, S., Aalbers, E., Christensen, O. B., Ciarlò,
J. M., Demory, M.-E., Giorgi, F., Jacob, D., Jones, R. G., Keuler, K.,
Kjellström, E., Lenderink, G., Levavasseur, G., Nikulin, G., Sillmann,
J., Solidoro, C., Sørland, S. L., Steger, C., Teichmann, C., Warrach-Sagi,
K., and Wulfmeyer, V.: Evaluation of the large EURO-CORDEX regional climate
model ensemble, J. Geophys. Res.-Atmos., 126, e2019JD032344, https://doi.org/10.1029/2019JD032344, 2020.
Zsebeházi, G. and Szépszó, G.: Modeling the urban climate of
Budapest using the SURFEX land surface model driven by the ALADIN-Climate
regional climate model results, Időjárás, 124, 191–207, https://doi.org/10.28974/idojaras.2020.2.3, 2020.
Short summary
10-year long sensitivity study on domain size was perform with REMO regional climate model. We can conclude, that the selection of domain size has larger impact on the simulation of precipitation, and in case of the seasonal mean of the precipitation indices, the differences amongst the results obtained on each model domain exceed 10%. In general, the smallest biases were obtained on the largest domain, therefore further long term simulations are being achieved on this.
10-year long sensitivity study on domain size was perform with REMO regional climate model. We...