Urban heat islands in the Arctic cities: an updated compilation of in situ and remote-sensing estimations
Nansen Environmental and Remote Sensing Centre/Bjerknes Centre for
Climate Research, Thormohlensgt. 47, Bergen, 5006, Norway
Victoria Miles
Nansen Environmental and Remote Sensing Centre/Bjerknes Centre for
Climate Research, Thormohlensgt. 47, Bergen, 5006, Norway
Andrey Soromotin
Institute of Ecology and Natural Resources Management, Tyumen State University, 625000, Tyumen, Russia
Oleg Sizov
Oil and Gas Research Institute RAS, Moscow, Russia
Mikhail Varentsov
Lomonosov Moscow State University, Faculty of Geography/Research Computing Center, Leninskie Gory 1, Moscow, 119991, Russia
Pavel Konstantinov
Lomonosov Moscow State University, Faculty of Geography/Research Computing Center, Leninskie Gory 1, Moscow, 119991, Russia
Related authors
Petra Bauerová, Josef Keder, Adriana Šindelářová, Ondřej Vlček, William Patiño, Pavel Krč, Jan Geletič, Hynek Řezníček, Martin Bureš, Kryštof Eben, Michal Belda, Jelena Radović, Vladimír Fuka, Radek Jareš, Igor Esau, and Jaroslav Resler
Atmos. Chem. Phys., 25, 4477–4504, https://doi.org/10.5194/acp-25-4477-2025, https://doi.org/10.5194/acp-25-4477-2025, 2025
Short summary
Short summary
The study explored urban air quality in Prague using low-cost sensors and highlighted the multivariate adaptive regression splines (MARS) correction method's effectiveness in enhancing accuracy. Results showed traffic's impact on nitrogen dioxide levels and atmospheric dynamics on particulate matter. The research confirmed MARS-corrected sensors as cost-effective for monitoring, despite challenges like sensor ageing and data quality control.
Lihong Zhou and Igor Esau
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-25, https://doi.org/10.5194/wes-2025-25, 2025
Revised manuscript under review for WES
Short summary
Short summary
This study tackles a key wind energy challenge: how much hourly wind data is needed for accurate resource assessment. One year of data recommended by guidelines is unable to capture year-to-year variations. The study finds basic stats stabilize quickly, but complex patterns need up to 88 years. Randomly sampled data can match continuous records, offering cost-effective solutions. These insights optimize data collection, balancing accuracy and costs, advancing renewable energy planning.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Tobias Wolf, Lasse H. Pettersson, and Igor Esau
Atmos. Chem. Phys., 21, 12463–12477, https://doi.org/10.5194/acp-21-12463-2021, https://doi.org/10.5194/acp-21-12463-2021, 2021
Short summary
Short summary
House heating by wood-burning stoves is cozy and needed in boreal cities, e.g., Bergen, Norway. But smoke (aerosols) from stoves may reduce urban air quality. It can be transported over long distance excessively polluting some neighborhoods. Who will suffer the most? Our modelling study looks at urban pollution in unprecedented meter-sized details tracing smoke pathways and turbulent dispersion in a typical city. We prototype effective policy scenarios to mitigate urban air quality problems.
Anna C. Talucci, Michael M. Loranty, Jean E. Holloway, Brendan M. Rogers, Heather D. Alexander, Natalie Baillargeon, Jennifer L. Baltzer, Logan T. Berner, Amy Breen, Leya Brodt, Brian Buma, Jacqueline Dean, Clement J. F. Delcourt, Lucas R. Diaz, Catherine M. Dieleman, Thomas A. Douglas, Gerald V. Frost, Benjamin V. Gaglioti, Rebecca E. Hewitt, Teresa Hollingsworth, M. Torre Jorgenson, Mark J. Lara, Rachel A. Loehman, Michelle C. Mack, Kristen L. Manies, Christina Minions, Susan M. Natali, Jonathan A. O'Donnell, David Olefeldt, Alison K. Paulson, Adrian V. Rocha, Lisa B. Saperstein, Tatiana A. Shestakova, Seeta Sistla, Oleg Sizov, Andrey Soromotin, Merritt R. Turetsky, Sander Veraverbeke, and Michelle A. Walvoord
Earth Syst. Sci. Data, 17, 2887–2909, https://doi.org/10.5194/essd-17-2887-2025, https://doi.org/10.5194/essd-17-2887-2025, 2025
Short summary
Short summary
Wildfires have the potential to accelerate permafrost thaw and the associated feedbacks to climate change. We assembled a dataset of permafrost thaw depth measurements from burned and unburned sites contributed by researchers from across the northern high-latitude region. We estimated maximum thaw depth for each measurement, which addresses a key challenge: the ability to assess impacts of wildfire on maximum thaw depth when measurement timing varies.
Petra Bauerová, Josef Keder, Adriana Šindelářová, Ondřej Vlček, William Patiño, Pavel Krč, Jan Geletič, Hynek Řezníček, Martin Bureš, Kryštof Eben, Michal Belda, Jelena Radović, Vladimír Fuka, Radek Jareš, Igor Esau, and Jaroslav Resler
Atmos. Chem. Phys., 25, 4477–4504, https://doi.org/10.5194/acp-25-4477-2025, https://doi.org/10.5194/acp-25-4477-2025, 2025
Short summary
Short summary
The study explored urban air quality in Prague using low-cost sensors and highlighted the multivariate adaptive regression splines (MARS) correction method's effectiveness in enhancing accuracy. Results showed traffic's impact on nitrogen dioxide levels and atmospheric dynamics on particulate matter. The research confirmed MARS-corrected sensors as cost-effective for monitoring, despite challenges like sensor ageing and data quality control.
Lihong Zhou and Igor Esau
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2025-25, https://doi.org/10.5194/wes-2025-25, 2025
Revised manuscript under review for WES
Short summary
Short summary
This study tackles a key wind energy challenge: how much hourly wind data is needed for accurate resource assessment. One year of data recommended by guidelines is unable to capture year-to-year variations. The study finds basic stats stabilize quickly, but complex patterns need up to 88 years. Randomly sampled data can match continuous records, offering cost-effective solutions. These insights optimize data collection, balancing accuracy and costs, advancing renewable energy planning.
Timofey Samsonov, Anastasia Shurygina, Mikhail Varentsov, Pavel Kargashin, Yulia Yarynich, and Pavel Konstantinov
Abstr. Int. Cartogr. Assoc., 6, 219, https://doi.org/10.5194/ica-abs-6-219-2023, https://doi.org/10.5194/ica-abs-6-219-2023, 2023
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Tobias Wolf, Lasse H. Pettersson, and Igor Esau
Atmos. Chem. Phys., 21, 12463–12477, https://doi.org/10.5194/acp-21-12463-2021, https://doi.org/10.5194/acp-21-12463-2021, 2021
Short summary
Short summary
House heating by wood-burning stoves is cozy and needed in boreal cities, e.g., Bergen, Norway. But smoke (aerosols) from stoves may reduce urban air quality. It can be transported over long distance excessively polluting some neighborhoods. Who will suffer the most? Our modelling study looks at urban pollution in unprecedented meter-sized details tracing smoke pathways and turbulent dispersion in a typical city. We prototype effective policy scenarios to mitigate urban air quality problems.
Oleg Sizov, Ekaterina Ezhova, Petr Tsymbarovich, Andrey Soromotin, Nikolay Prihod'ko, Tuukka Petäjä, Sergej Zilitinkevich, Markku Kulmala, Jaana Bäck, and Kajar Köster
Biogeosciences, 18, 207–228, https://doi.org/10.5194/bg-18-207-2021, https://doi.org/10.5194/bg-18-207-2021, 2021
Short summary
Short summary
In changing climate, tundra is expected to turn into shrubs and trees, diminishing reindeer pasture and increasing risks of tick-borne diseases. However, this transition may require a disturbance. Fires in Siberia are increasingly widespread. We studied wildfire dynamics and tundra–forest transition over 60 years in northwest Siberia near the Arctic Circle. Based on satellite data analysis, we found that transition occurs in 40 %–85 % of burned tundra compared to 5 %–15 % in non-disturbed areas.
Cited articles
Brozovsky, J., Gaitani, N., and Gustavsen, A.: A systematic review of urban
climate research in cold and polar climate regions, Renew. Sustain. Energ. Rev., 138, 110551, https://doi.org/10.1016/j.rser.2020.110551, 2020.
Chakraborty, T. and Lee, X.: A simplified urban-extent algorithm to
characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability, Int. J. Appl. Earth Obs. Geoinform., 74, 269–280, https://doi.org/10.1016/j.jag.2018.09.015, 2019.
Davy, R. and Esau, I.: Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth, Nat. Commun., 7, 11690, https://doi.org/10.1038/ncomms11690, 2016.
Esau, I. and Miles, V.: Exogenous drivers of surface urban heat islands in
northern West Siberia, Geogr. Environ. Sust., 11, 83–99, https://doi.org/10.24057/2071-9388-2018-11-3-83-99, 2018.
Esau, I., Miles, V., Varentsov, M., Konstantinov, P., and Melnikov, V.: Spatial structure and temporal variability of a surface urban heat island in cold continental climate, Theor. Appl. Climatol., 137, 2513–2528, https://doi.org/10.1007/s00704-018-02754-z, 2019.
Esau, I., Varentsov, M., Laruelle, M., Miles, M. W., Konstantinov, P., Soromotin, A., Baklanov, A. A., and Miles, V. V.: Warmer Climate of Arctic Cities, in: The Arctic: Current Issues and Challenges, edited by: Pokrovsky, O., Kirpotin, S., and Malov, A., NOVA Publishers, New York, NY, USA, 2020.
Fan, Y., Li, Y., Bejan, A., Wang, Y., and Yang, X.: Horizontal extent of the urban heat dome flow, Sci. Rep., 7, 11681, https://doi.org/10.1038/s41598-017-09917-4, 2017.
Hidalgo, J., Masson, V., and Gimeno, L.: Scaling the Daytime Urban Heat Island and Urban-Breeze Circulation, J. Appl. Meteorol. Clim., 49, 889–901, https://doi.org/10.1175/2009jamc2195.1, 2010.
Hjort, J., Karjalainen, O., Aalto, J., Westermann, S., Romanovsky, V. E.,
Nelson, F. E., Etzelmüller, B., and Luoto, M.: Degrading permafrost puts Arctic infrastructure at risk by mid-century, Nat. Commun., 9, 5147, https://doi.org/10.1038/s41467-018-07557-4, 2018.
Khrustalyov, L. N. and Davidova I. V.: Forecast of climate warming and account of it at estimation of foundation reliability for buildings in permafrost zone, Earth Cryosphere, 11, 68–75, 2007.
Konstantinov, P., Varentsov, M., and Esau, I.: A high density urban temperature network deployed in several cities of Eurasian Arctic, Environ. Res. Lett., 13, 075007, https://doi.org/10.1088/1748-9326/aacb84, 2018.
Li, X., Zhou, Y., Asrar, G. R., and Zhu, Z.: The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States, Sci. Total Environ., 605–606, 426–435, https://doi.org/10.1016/j.scitotenv.2017.06.229, 2017.
Magee, N., Curtis, J., and Wendler, G.: The Urban Heat Island Effect at Fairbanks, Alaska, Theor. Appl. Climatol., 64, 39–47, 1999.
Manoli, G., Fatichi, S., Schläpfer, M., Yu, K., Crowther, T. W., Meili, N., Burlando, P., Katul, G. G., and Bou-Zeid, E.: Magnitude of urban heat islands largely explained by climate and population, Nature, 573, 55–60, https://doi.org/10.1038/s41586-019-1512-9, 2019.
Miles, V.: Arctic surface Urban Heat Island (UHI), MODIS Land Surface Temperature (LST) data, 2000–2016, Arctic Data Center, https://doi.org/10.18739/A2TB0XW4T, 2020.
Miles, V. and Esau, I.: Seasonal and Spatial Characteristics of Urban Heat
Islands (UHIs) in Northern West Siberian Cities, Remote Sens., 9, 989, https://doi.org/10.3390/rs9100989, 2017.
Miles, V. and Esau, I.: Urban Climate Surface urban heat islands in 57 cities across different climates in northern Fennoscandia, Urban Clim., 31, 100575, https://doi.org/10.1016/j.uclim.2019.100575, 2020.
Nordli, Ø.: The Svalbard Airport, Bull. Geogr.-Phys. Geogr. Ser., 3, 5–25, 2010.
Smoliak, B. V., Snyder, P. K., Twine, T. E., Mykleby, P. M., and Hertel, W. F.: Dense Network Observations of the Twin Cities Canopy-Layer Urban Heat Island, J. Appl. Meteorol. Clim., 54, 1899–1917, https://doi.org/10.1175/jamc-d-14-0239.1, 2015.
Streletskiy, D. A., Shiklomanov, N. I., and Nelson, F. E.: Permafrost,
Infrastructure, and Climate Change: A GIS-Based Landscape Approach to
Geotechnical Modeling, Arct. Antarct. Alp. Res., 44, 368–380, https://doi.org/10.1657/1938-4246-44.3.368, 2012.
Streletskiy, D. A., Suter, L. J., Shiklomanov, N. I., Porfiriev, B. N., and Eliseev, D. O.: Assessment of climate change impacts on buildings, structures and infrastructure in the Russian regions on permafrost, Environ. Res. Lett., 14, 025003, https://doi.org/10.1088/1748-9326/aaf5e6, 2019.
Suomi, J.: Extreme temperature differences in the city of Lahti, southern
Finland: Intensity, seasonality and environmental drivers, Weather Clim. Extrem., 19, 20–28, https://doi.org/10.1016/j.wace.2017.12.001, 2018.
Tan, M. and Li, X.: Quantifying the effects of settlement size on urban
heat islands in fairly uniform geographic areas, Habitat Int., 49, 100–106, https://doi.org/10.1016/j.habitatint.2015.05.013, 2015.
Urban, M., Eberle, J., Hüttich, C., Schmullius, C., and Herold, M.: Comparison of Satellite-Derived Land Surface Temperature and Air Temperature from Meteorological Stations on the Pan-Arctic Scale, Remote Sens., 5, 2348–2367, https://doi.org/10.3390/rs5052348, 2013.
Varentsov, M., Konstantinov, P., Baklanov, A., Esau, I., Miles, V., and Davy, R.: Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city, Atmos. Chem. Phys., 18, 17573–17587, https://doi.org/10.5194/acp-18-17573-2018, 2018.
Yakovlev, B. A.: The climate of Murmansk, Gidrometeoizdat, Leningrad, 108 pp., 1972.
Zhao, L., Lee, X., Smith, R. B., and Oleson, K.: Strong contributions of local background climate to urban heat islands, Nature, 511, 216–219, https://doi.org/10.1038/nature13462, 2014.
Zhou, B., Rybski, D., and Kropp, J. P.: On the statistics of urban heat
island intensity, Geophys. Res. Lett., 40, 5486–5491, https://doi.org/10.1002/2013GL057320, 2013.
Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., Frolking, S., Yao, R., Qiao, Z., and Sobrino, J.: Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives, Remote Sens., 11, 48, https://doi.org/10.3390/rs11010048, 2018.
Short summary
Persistent warm urban temperature anomalies – urban heat islands – significantly enhance already amplified climate warming in the Arctic. This study presents the surface urban heat islands in all circum-Arctic settlements with more than 3000 inhabitants. It reveals strong and persistent urban temperature anomalies during both summer and winter seasons that vary in different cities from 0.5 °C to more than 6.0 °C.
Persistent warm urban temperature anomalies – urban heat islands – significantly enhance already...