Using machine learning to produce a very high resolution land-cover map for Ireland
Eoin Walsh
CORRESPONDING AUTHOR
SFI Center for Research Training in Foundations of Data Science, University of Limerick, Limerick, V94 T9PX, Ireland
Geoffrey Bessardon
Climate Services, Research and Applications Division, Met Éireann, 65/67 Glasnevin Hill, Dublin 9, D09 Y921, Ireland
Emily Gleeson
Climate Services, Research and Applications Division, Met Éireann, 65/67 Glasnevin Hill, Dublin 9, D09 Y921, Ireland
Priit Ulmas
Neurisium OÜ, Kaupmehe 7-A10, 10114 Tallinn, Estonia
Related authors
No articles found.
Eoghan Keany, Geoffrey Bessardon, and Emily Gleeson
Adv. Sci. Res., 19, 13–27, https://doi.org/10.5194/asr-19-13-2022, https://doi.org/10.5194/asr-19-13-2022, 2022
Short summary
Short summary
This work used machine learning to produce the first open source building height map of Ireland. This map is intended to more accurately determine Local Climate Zones for use in the underlying physiography dataset in the HARMONIE AROME numerical weather prediction model.
Emily Gleeson, Stephen Outten, Bjørg Jenny Kokkvoll Engdahl, Eoin Whelan, Ulf Andrae, and Laura Rontu
Adv. Sci. Res., 17, 255–267, https://doi.org/10.5194/asr-17-255-2020, https://doi.org/10.5194/asr-17-255-2020, 2020
Short summary
Short summary
The single-column version of the shared ALADIN-HIRLAM numerical weather prediction system, called MUSC, was developed by Météo-France in the 2000s and has a growing user-base. Tools to derive the required input, to run experiments and to handle outputs have been developed within the HARMONIE-AROME configuration of the ALADIN-HIRLAM system. We also illustrate the usefulness of MUSC for testing and developing physical parametrizations related to cloud microphysics and radiative transfer.
Emily Gleeson, Colm Clancy, Laura Zubiate, Jelena Janjić, Sarah Gallagher, and Frédéric Dias
Adv. Sci. Res., 16, 11–29, https://doi.org/10.5194/asr-16-11-2019, https://doi.org/10.5194/asr-16-11-2019, 2019
Short summary
Short summary
The Northeast Atlantic possesses an energetic and variable wind and wave climate which has a large potential for renewable energy extraction. The role of surface winds in the generation of ocean waves means that global atmospheric circulation patterns and wave climate characteristics are inherently connected. In this study we investigated the influence of large scale atmospheric oscillations on waves in the Northeast Atlantic using a high resolution wave projection dataset.
Geoffrey Elie Quentin Bessardon, Kwabena Fosu-Amankwah, Anders Petersson, and Barbara Jane Brooks
Atmos. Meas. Tech., 12, 1311–1324, https://doi.org/10.5194/amt-12-1311-2019, https://doi.org/10.5194/amt-12-1311-2019, 2019
Short summary
Short summary
This paper presents the first performance assessment during a field campaign of a new reusable radiosonde: the Windsond S1H2. The reuse feature of the S1H2 requires evaluation of the data alteration due to sonde reuse in addition to performance and reproducibility assessments. A comparison with the Vaisala RS41-SG, a well-proven system, shows the potential of the S1H2, with no major performance degradation arising from S1H2 sonde reuse but shows the need for improving the S1H2 GPS system.
Norbert Kalthoff, Fabienne Lohou, Barbara Brooks, Gbenga Jegede, Bianca Adler, Karmen Babić, Cheikh Dione, Adewale Ajao, Leonard K. Amekudzi, Jeffrey N. A. Aryee, Muritala Ayoola, Geoffrey Bessardon, Sylvester K. Danuor, Jan Handwerker, Martin Kohler, Marie Lothon, Xabier Pedruzo-Bagazgoitia, Victoria Smith, Lukman Sunmonu, Andreas Wieser, Andreas H. Fink, and Peter Knippertz
Atmos. Chem. Phys., 18, 2913–2928, https://doi.org/10.5194/acp-18-2913-2018, https://doi.org/10.5194/acp-18-2913-2018, 2018
Short summary
Short summary
Extended low-level stratus clouds (LLC) form frequently in southern West Africa during the night-time and persist long into the next day. They affect the radiation budget, atmospheric boundary-layer (BL) evolution and regional climate. The relevant processes governing their formation and dissolution are not fully understood. Thus, a field campaign was conducted in summer 2016, which provided a comprehensive data set for process studies, specifically of interactions between LLC and BL conditions.
Ruth Mottram, Kristian Pagh Nielsen, Emily Gleeson, and Xiaohua Yang
Adv. Sci. Res., 14, 323–334, https://doi.org/10.5194/asr-14-323-2017, https://doi.org/10.5194/asr-14-323-2017, 2017
Short summary
Short summary
The HARMONIE weather forecasting model is used successfully in Greenland, but there are some problems over the ice sheet due to the lack of realistic glacier surface characteristics. By introducing a correction to the model, preventing glacier surface temperatures over 0 °C, we improve both 2 m air temperature and the surface winds (both strength and direction) forecast by the model.
We also identify other corrections needed before HARMONIE can be used for climate and ice sheet modelling.
Laura Rontu, Emily Gleeson, Petri Räisänen, Kristian Pagh Nielsen, Hannu Savijärvi, and Bent Hansen Sass
Adv. Sci. Res., 14, 195–215, https://doi.org/10.5194/asr-14-195-2017, https://doi.org/10.5194/asr-14-195-2017, 2017
Short summary
Short summary
This paper provides an overview of the HLRADIA shortwave (SW) and longwave (LW) broadband radiation schemes used in the HIRLAM numerical weather prediction (NWP) model and available in the HARMONIE-AROME mesoscale NWP model. The advantage of broadband, over spectral, schemes is that they can be called more frequently within the NWP model, without compromising on computational efficiency. Fast physically based radiation parametrizations are also valuable for high-resolution ensemble forecasting.
Emily Gleeson, Eoin Whelan, and John Hanley
Adv. Sci. Res., 14, 49–61, https://doi.org/10.5194/asr-14-49-2017, https://doi.org/10.5194/asr-14-49-2017, 2017
Short summary
Short summary
This paper is a summary of a very high resolution climate reanalysis carried out for a domain covering Ireland, using the HARMONIE-AROME numerical weather prediction model. Details of the simulations and set-up as well as a preliminary analysis of the main output variables are included in the study.
Emily Gleeson, Sarah Gallagher, Colm Clancy, and Frédéric Dias
Adv. Sci. Res., 14, 23–33, https://doi.org/10.5194/asr-14-23-2017, https://doi.org/10.5194/asr-14-23-2017, 2017
Short summary
Short summary
Large scale atmospheric oscillations, such as the North Atlantic Oscillation are known to have an influence on waves in the North Atlantic. This study investigated the influence of the NAO on the present and future wind and wave climate in the Northeast Atlantic near Ireland.
Emily Gleeson, Velle Toll, Kristian Pagh Nielsen, Laura Rontu, and Ján Mašek
Atmos. Chem. Phys., 16, 5933–5948, https://doi.org/10.5194/acp-16-5933-2016, https://doi.org/10.5194/acp-16-5933-2016, 2016
Short summary
Short summary
The direct shortwave (SW) radiative effect of aerosols under clear-sky conditions in the ALADIN-HIRLAM numerical weather prediction system was investigated using three SW radiation schemes in diagnostic single-column experiments. Each scheme accurately simulates the direct SW effect when observed aerosols are used, particularly for heavy pollution scenarios.
Sarah Gallagher, Emily Gleeson, Roxana Tiron, Ray McGrath, and Frédéric Dias
Adv. Sci. Res., 13, 75–80, https://doi.org/10.5194/asr-13-75-2016, https://doi.org/10.5194/asr-13-75-2016, 2016
Short summary
Short summary
As an island located in the North Atlantic Ocean with a highly energetic wave and wind climate, Ireland is uniquely placed in terms of its ocean renewable energy resource. The socio-economic importance of this resource makes it a priority to quantify how the wave and wind climate may change in the future. We examine how surface winds in the North Atlantic Ocean may change towards the end of this century due to global climate change, and how these changes may affect Ireland's wave climate.
K. P. Nielsen, E. Gleeson, and L. Rontu
Geosci. Model Dev., 7, 1433–1449, https://doi.org/10.5194/gmd-7-1433-2014, https://doi.org/10.5194/gmd-7-1433-2014, 2014
Cited articles
Ballabio, C., Panagos, P., and Monatanarella, L.: Mapping topsoil physical
properties at European scale using the LUCAS database, Geoderma, 261, 110–123, https://doi.org/10.1016/j.geoderma.2015.07.006, 2016. a
Bari, D. and Ouagabi, A.: Machine-learning regression applied to diagnose
horizontal visibility from mesoscale NWP model forecasts, SN Appl. Sci., 2, 1–13, https://doi.org/10.1007/s42452-020-2327-x, 2020. a
Bartholomé, E. and Belward, A. S.: GLC2000: a new approach to global land cover mapping from Earth observation data, Int. J. Remote Sens., 26, 1959–1977, https://doi.org/10.1080/01431160412331291297, 2005. a
Båserud, L., Lussana, C., Nipen, T. N., Seierstad, I. A., Oram, L., and
Aspelien, T.: TITAN automatic spatial quality control of meteorological
in-situ observations, Adv. Sci. Res., 17, 153–163,
https://doi.org/10.5194/asr-17-153-2020, 2020. a
Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W.,
Gleeson, E., Hansen-Sass, B., Homleid, M., Hortal, M., Ivarsson, K.-I.,
Lenderink, G., Niemelä, S., Nielsen, K. P., Onvlee, J., Rontu, L.,
Samuelsson, P., Muñoz, D. S., Subias, A., Tijm, S., Toll, V., Yang, X.,
and Køltzow, M. Ø.: The HARMONIE–AROME Model Configuration in the
ALADIN–HIRLAM NWP System, Mon. Weather Rev., 145, 1919–1935,
https://doi.org/10.1175/mwr-d-16-0417.1, 2017. a, b, c
Bertini, F., Brand, O., Carlier, S., Del Bello, U., Drusch, M., Duca, R.,
Fernandez, V., Ferrario, C., Ferreira, M., Isola, C., Kirschner, V.,
Laberinti, P., Lambert, M., Mandorlo, G., Marcos, P., Martimort, P., Moon,
S., Oldeman, P., Palomba, M., and Pineiro, J.: Sentinel-2 ESA's Optical
High-Resolution Mission for GMES Operational Services, Remote Sens. Environ., 120, 25–36, 2012. a, b
Bessardon, G. and Gleeson, E.: Using the best available physiography to
improve weather forecasts for Ireland, in: Challenges in High Resolution
Short Range NWP at European level including forecaster-developer cooperation,
European Meteorological Society, Lyngby, available at:
https://presentations.copernicus.org/EMS2019/EMS2019-702_presentation.pdf (last access: 30 Apirl 2021), 2019. a
BigEarthNet: About BigEarthNet, available at: http://bigearth.net/, last access: 30 April 2021. a
Cawkwell, F., Raab, C., Barrett, B., Green, S., and Finn, J.: TaLAM: Mapping
Land Cover in Lowlands and Uplands with Satellite Imagery, Tech. rep.,
Environmental Protection Agency, available at: http://www.epa.ie/pubs/reports/research/land/Research_Report_254.pdf
(last access: 30 Apirl 2021), 2018. a, b
Chevallier, F., Morcrette, J. J., Chéruy, F., and Scott, N. A.: Use of a
neural-network-based long-wave radiative-transfer scheme in the ECMWF
atmospheric model, Q. J. Roy. Meteorol. Soc., 126, 761–776, https://doi.org/10.1002/qj.49712656318, 2000. a
Connolly, J.: Mapping land use on Irish peatlands using medium resolution
satellite imagery, Irish Geogr., 51, 187–204, 2018. a
Copernicus: CORINE Land Cover, available at: https://land.copernicus.eu/pan-european/corine-land-cover (last access: 30 April 2021), 2021a. a
Copernicus: Copernicus Open Access Hub, available at: https://scihub.copernicus.eu/ (last access: 30 April 2021), 2021b. a
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.: ImageNet:
A Large-Scale Hierarchical Image Database, in: CVPR09, 20–25 June 2009, Miami, Florida, 2009. a
de Vos, L. W., Leijnse, H., Overeem, A., and Uijlenhoet, R.: Quality Control
for Crowdsourced Personal Weather Stations to Enable Operational Rainfall
Monitoring, Geophys. Res. Lett., 46, 8820–8829, https://doi.org/10.1029/2019GL083731, 2019. a
Doms, G., Förstner, J., Heise, E., Herzog, H.-J., Mironov, D.,
Raschendorfer, M., Reinhardt, T., Ritter, B., Schrodin, R., Schulz, J.-P.,
and Vogel, G.: Part II: Physical Parameterization, in: A Description of
the Nonhydrostatic Regional COSMO Model, November, COSMO (Consortium for Small-Scale Modelling), Deutscher Wetterdienst, p. 152, 2013. a
Dueben, P. D. and Bauer, P.: Challenges and design choices for global weather and climate models based on machine learning, Geosci. Model Dev., 11, 3999–4009, https://doi.org/10.5194/gmd-11-3999-2018, 2018. a
ECMWF: Part IV: Physical Processes, in: IFS Documentation CY47R1, June,
1–82, available at: https://www.ecmwf.int/node/19748 (last access: 30 April 2021), 2020. a
Faroux, S., Kaptué Tchuenté, A. T., Roujean, J.-L., Masson, V., Martin, E., and Le Moigne, P.: ECOCLIMAP-II/Europe: a twofold database of ecosystems and surface parameters at 1 km resolution based on satellite information for use in land surface, meteorological and climate models, Geosci. Model Dev., 6, 563–582, https://doi.org/10.5194/gmd-6-563-2013, 2013. a, b, c
Green, S.: ILMO: Irish Land Mapping Observatory, available at:
https://www.teagasc.ie/media/website/publications/2016/6405-ILMO.pdf
(last access: 30 April 2021), 2015. a
Grönquist, P., Yao, C., Ben-Nun, T., Dryden, N., Dueben, P., Li, S., and
Hoefler, T.: Deep Learning for Post-Processing Ensemble Weather Forecasts,
available at: http://arxiv.org/abs/2005.08748 (last access: 30 April 2021), 2020. a
He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for Image
Recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27–30 June 2016, Las Vegas, Nevada, 770–778, 2015. a
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M.,
Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, PLOS ONE, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017. a, b
Howard, J. and Gugger, S.: Fastai: A Layered API for Deep Learning,
Information, 11, 108, https://doi.org/10.3390/info11020108, 2020. a
Hu, X., Shi, L., Lin, L., and Magliulo, V.: Improving surface roughness
lengths estimation using machine learning algorithms, Agr. Forest Meteorol., 287, 107956, https://doi.org/10.1016/j.agrformet.2020.107956, 2020. a
Jones, N.: How machine learning could help to improve climate forecasts,
Nature, 548, 379–380, 2017. a
Jung, T., Ruprecht, E., and Wagner, F.: Determination of Cloud Liquid Water
Path over the Oceans from Special Sensor Microwave/Imager (SSM/I) Data Using
Neural Networks, J. Appl. Meteorol., 37, 832–844,
https://doi.org/10.1175/1520-0450(1998)037<0832:DOCLWP>2.0.CO;2, 1998. a
Karstens, C. D., Stumpf, G., Ling, C., Hua, L., Kingfield, D., Smith, T. M.,
Correia, J., Calhoun, K., Ortega, K., Melick, C., and Rothfusz, L. P.: Evaluation of a probabilistic forecasting methodology for severe convective
weather in the 2014 hazardous weather testbed, Weather Forecast., 30, 1551–1570, https://doi.org/10.1175/WAF-D-14-00163.1, 2015. a
Karstens, C. D., Stumpf, G. J., Ling, C., Kingfield, D. M., Correia Jr., J.,
LaDue, D., Kuhlman, K. M., Meyer, T. C., Smith, T. M., Cintineo, J. L.,
Melick, C. J., and Rothfusz, L. P.: Forecaster Decision-Making with Automated Probabilistic Guidance in the 2015 Hazardous Weather Testbed Probabilistic Hazard Information Experiment, in: Fourth Symposium on Building a Weather-Ready Nation: Enhancing Our Nation's Readiness, Responsiveness, and Resilience to High Impact Weather Event, American Meteorological Society, New Orleans, available at:
https://ams.confex.com/ams/96Annual/webprogram/Paper286854.html (last access: 30 April 2021), 2016. a
Krasnopolsky, V. M. and Lin, Y.: A neural network nonlinear multimodel
ensemble to improve precipitation forecasts over continental US, Adv. Meteorol., 2012, 649450, https://doi.org/10.1155/2012/649450, 2012. a
Krasnopolsky, V. M., Chalikov, D. V., and Tolman, H. L.: A neural network
technique to improve computational efficiency of numerical oceanic models,
Ocean Model., 4, 363–383, https://doi.org/10.1016/S1463-5003(02)00010-0, 2002. a
Krasnopolsky, V. M., Fox-Rabinovitz, M. S., and Chalikov, D. V.: New approach
to calculation of atmospheric model physics: Accurate and fast neural network
emulation of longwave radiation in a climate model, Mon. Weather Rev., 133, 1370–1383, https://doi.org/10.1175/MWR2923.1, 2005. a
Krasnopolsky, V. M., Fox-Rabinovitz, M. S., and Belochitski, A. A.: Using
Ensemble of Neural Networks to Learn Stochastic Convection Parameterizations
for Climate and Numerical Weather Prediction Models from Data Simulated by a
Cloud Resolving Model, Adv. Artific. Neural Syst., 2013, 1–13,
https://doi.org/10.1155/2013/485913, 2013. a
Li, W., Niu, Z., Shang, R., Qin, Y., Wang, L., and Chen, H.: High-resolution
mapping of forest canopy height using machine learning by coupling ICESat-2
LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data, Int. J. Appl. Earth Obs. Geoinf., 92, 102163, https://doi.org/10.1016/j.jag.2020.102163, 2020. a
Loveland, T. R., Reed, B. C., Ohlen, D. O., Brown, J. F., Zhu, Z., Yang, L.,
and Merchant, J. W.: Development of a global land cover characteristics
database and IGBP DISCover from 1 km AVHRR data, Int. J. Remote Sens., 21, 1303–1330, https://doi.org/10.1080/014311600210191, 2000. a
Masson, V., Champeaux, J. L., Chauvin, F., Meriguet, C., and Lacaze, R.: A
global database of land surface parameters at 1-km resolution in
meteorological and climate models, J. Climate, 16, 1261–1282, https://doi.org/10.1175/1520-0442-16.9.1261, 2003. a, b, c
McGovern, A., Elmore, K. L., Gagne, D. J., Haupt, S. E., Karstens, C. D.,
Lagerquist, R., Smith, T., and Williams, J. K.: Using artificial intelligence to improve real-time decision-making for high-impact weather, B. Am. Meteorol. Soc., 98, 2073–2090, https://doi.org/10.1175/BAMS-D-16-0123.1, 2017. a
Mitchell, T.: Machine Learning, McGraw-Hill International Editions,
McGraw-Hill, available at: https://books.google.ie/books?id=EoYBngEACAAJ (last access: 30 April 2021), 1997. a
Napoly, A., Grassmann, T., Meier, F., and Fenner, D.: Development and
Application of a Statistically-Based Quality Control for Crowdsourced Air
Temperature Data, Front. Earth Sci., 6, 1–16, https://doi.org/10.3389/feart.2018.00118, 2018. a
Nitze, I., Barrett, B., and Cawkwell, F.: Temporal optimisation of image
acquisition for land cover classification with random forest and MODIS
time-series, Int. J. Appl. Earth Obs. Geoinf., 34, 136–146, https://doi.org/10.1016/j.jag.2014.08.001, 2015. a
Ordnance Survey Ireland: Prime2 – Data Concepts & Data Model Overview, available at: http://www.osi.ie/OSI/media/OSI/Prime2_Docs/Prime2-V-2.pdf (last access: 30 April 2021), 2014. a
Petersen, G. N., Pálmason, B., Thorsteinsson, S., and Nawri, N.: Using
the best available physiography to improve weather forecasts, in: EMS Annual
Meeting, available at:
https://presentations.copernicus.org/EMS2017-677_presentation.pdf
(last access: 30 April 2021), 2017. a
Qiu, C., Schmitt, M., Geiß, C., Chen, T.-H. K., and Zhu, X. X.: A framework for large-scale mapping of human settlement extent from Sentinel-2 images via fully convolutional neural networks, ISPRS J. Photogram. Remote Sens., 163, 152–170, https://doi.org/10.1016/j.isprsjprs.2020.01.028, 2020. a
Radiometer Physics: Instrument Operation and Software Guide Operation
Principles and Software Description for RPG standard single polarization
radiometers, available at: https://www.radiometerphysics.de/download/PDF/Radiometers/HATPRO/RPG_MWR_STD_Software_Manual G5.pdf (last access: 30 Apirl 2021) 2014. a
Rasp, S. and Lerch, S.: Neural networks for postprocessing ensemble weather
forecasts, Mon. Weather Rev., 146, 3885–3900, https://doi.org/10.1175/MWR-D-18-0187.1, 2018. a
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L.:
ImageNet Large Scale Visual Recognition Challenge, Int. J. Comput. Vis., 115, 211–252, https://doi.org/10.1007/s11263-015-0816-y, 2015. a
Samuelsson, P., Kourzeneva, E., de Vries, J., and Viana Jiménez, S.:
HIRLAM experience with ECOCLIMAP Second Generation, ALADIN-HIRLAM newsletter, 154–180, available at: http://www.umr-cnrm.fr/aladin/IMG/pdf/nl14.pdf
(last access: 30 April 2021), 2020. a
Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier, F., Lac, C., and Masson, V.: The AROME-France Convective-Scale Operational Model, Mon. Weather Rev., 139, 976–991, https://doi.org/10.1175/2010MWR3425.1, 2011. a
Simard, M., Pinto, N., Fisher, J. B., and Baccini, A.: Mapping forest canopy
height globally with spaceborne lidar, J. Geophys. Res.-Biogeo., 116, 1–12, https://doi.org/10.1029/2011JG001708, 2011.
a
Sumbul, G., Charfuelan, M., Demir, B., and Markl, V.: Bigearthnet: A
Large-Scale Benchmark Archive for Remote Sensing Image Understanding, in: IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium,
28 July–2 August 2019, Yokohama, Japan, https://doi.org/10.1109/igarss.2019.8900532, 2019. a, b
Termonia, P., Fischer, C., Bazile, E., Bouyssel, F., Brožková, R.,
Bénard, P., Bochenek, B., Degrauwe, D., Derková, M., El Khatib, R.,
Hamdi, R., Mašek, J., Pottier, P., Pristov, N., Seity, Y., Smolíková, P., Španiel, O., Tudor, M., Wang, Y., Wittmann, C., and Joly, A.: The ALADIN System and its canonical model configurations AROME
CY41T1 and ALARO CY40T1, Geosci. Model Dev., 11, 257–281,
https://doi.org/10.5194/gmd-11-257-2018, 2018. a
Tolman, H. L., Krasnopolsky, V. M., and Chalikov, D. V.: Neural network
approximations for nonlinear interactions in wind wave spectra: Direct mapping for wind seas in deep water, Ocean Model., 8, 253–278,
https://doi.org/10.1016/j.ocemod.2003.12.008, 2005. a
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J.,
Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J.,
Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw,
K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A.,
Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office
Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosc. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019. a
Wang, S., Chen, W., Xie, S. M., Azzari, G., and Lobell, D. B.: Weakly
Supervised Deep Learning for Segmentation of Remote Sensing Imagery, Remote
Sens., 12, 207, https://doi.org/10.3390/rs12020207, 2020. a
Short summary
In this work, machine learning techniques, satellite data and land-cover data were used to produce a land-cover map for Ireland that shows greater accuracy and resolution than an altered version of the standard land-cover map (ECOCLIMAP-SG) used for numerical weather prediction. This method offers a way to universally improve meteorological land-cover maps across jurisdictions, while also offering a method of updating the map regularly to account for seasonal changes in surface land-covers.
In this work, machine learning techniques, satellite data and land-cover data were used to...