Articles | Volume 20
https://doi.org/10.5194/asr-20-129-2024
https://doi.org/10.5194/asr-20-129-2024
02 Jan 2024
 | 02 Jan 2024

Probabilistic end-to-end irradiance forecasting through pre-trained deep learning models using all-sky-images

Samer Chaaraoui, Sebastian Houben, and Stefanie Meilinger

Related authors

Irradiance and cloud optical properties from solar photovoltaic systems
James Barry, Stefanie Meilinger, Klaus Pfeilsticker, Anna Herman-Czezuch, Nicola Kimiaie, Christopher Schirrmeister, Rone Yousif, Tina Buchmann, Johannes Grabenstein, Hartwig Deneke, Jonas Witthuhn, Claudia Emde, Felix Gödde, Bernhard Mayer, Leonhard Scheck, Marion Schroedter-Homscheidt, Philipp Hofbauer, and Matthias Struck
Atmos. Meas. Tech., 16, 4975–5007, https://doi.org/10.5194/amt-16-4975-2023,https://doi.org/10.5194/amt-16-4975-2023, 2023
Short summary
Aerosol properties and aerosol–radiation interactions in clear-sky conditions over Germany
Jonas Witthuhn, Anja Hünerbein, Florian Filipitsch, Stefan Wacker, Stefanie Meilinger, and Hartwig Deneke
Atmos. Chem. Phys., 21, 14591–14630, https://doi.org/10.5194/acp-21-14591-2021,https://doi.org/10.5194/acp-21-14591-2021, 2021
Short summary
Photovoltaic power potential in West Africa using long-term satellite data
Ina Neher, Susanne Crewell, Stefanie Meilinger, Uwe Pfeifroth, and Jörg Trentmann
Atmos. Chem. Phys., 20, 12871–12888, https://doi.org/10.5194/acp-20-12871-2020,https://doi.org/10.5194/acp-20-12871-2020, 2020
Short summary
Dynamic model of photovoltaic module temperature as a function of atmospheric conditions
James Barry, Dirk Böttcher, Klaus Pfeilsticker, Anna Herman-Czezuch, Nicola Kimiaie, Stefanie Meilinger, Christopher Schirrmeister, Hartwig Deneke, Jonas Witthuhn, and Felix Gödde
Adv. Sci. Res., 17, 165–173, https://doi.org/10.5194/asr-17-165-2020,https://doi.org/10.5194/asr-17-165-2020, 2020
Short summary

Cited articles

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, http://tensorflow.org/ (last access: 26 December 2023), 2015. a, b
Amos, D. E.: Algorithm 644: A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order, ACM Trans. Math. Softw., 12, 265–273, https://doi.org/10.1145/7921.214331, 1986. a
Barnes, E. A., Barnes, R. J., and Gordillo, N.: Adding Uncertainty to Neural Network Regression Tasks in the Geosciences, arXiv [preprint], https://doi.org/10.48550/ARXIV.2109.07250, 2021. a, b, c, d, e
Bouktif, S., Fiaz, A., Ouni, A., and Serhani, M.: Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches, Energies, 11, 1636, https://doi.org/10.3390/en11071636, 2018. a
Bozkurt, Ö. Ö., Biricik, G., and Taysi, Z. C.: Artificial neural network and SARIMA based models for power load forecasting in Turkish electricity market, PLOS ONE, 12, 1–24, https://doi.org/10.1371/journal.pone.0175915, 2017. a
Download
Short summary
This method generates probabilistic solar power forecasts of up to 30 min using artificial intelligence and fish eye images of the sky. We investigated the impact of parameters describing the variability of the solar power on the forecast performance and divided the solar power to its direct and diffuse components. The method achieves overall good performance, while variability parameters and dividing the solar power don't show any performance gain. However, training time can be decreased.