Investigation of the ENVI-met model sensitivity to different wind direction forcing data in a heterogeneous urban environment
Nils Eingrüber
CORRESPONDING AUTHOR
University of Cologne, Institute of Geography, Hydrogeography and
Climatology Research Group, 50923, Cologne, Germany
Wolfgang Korres
University of Cologne, Institute of Geography, Hydrogeography and
Climatology Research Group, 50923, Cologne, Germany
Ulrich Löhnert
University of Cologne, Institute of Geophysics and Meteorology, 50969, Cologne, Germany
Karl Schneider
University of Cologne, Institute of Geography, Hydrogeography and
Climatology Research Group, 50923, Cologne, Germany
Related authors
Nils Eingrüber, Alina Sophie Domm, Wolfgang Korres, and Karl Schneider
EGUsphere, https://doi.org/10.5194/egusphere-2024-697, https://doi.org/10.5194/egusphere-2024-697, 2024
Short summary
Short summary
Climate change adaptation measures like unsealings can reduce urban heat stress. As grass grid pavers have never been parameterized for microclimate model simulations with ENVI-met, a new parameterization was developed based on field measurements. To analyse the cooling potential, scenario analyses were performed for a densely-developed area in Cologne. Statistically significant average cooling effects of up to -11.1 K were found for surface temperature, and up to -2.9 K for 1 m air temperature.
Nils Eingrüber, Wolfgang Korres, and Karl Schneider
Adv. Sci. Res., 19, 81–90, https://doi.org/10.5194/asr-19-81-2022, https://doi.org/10.5194/asr-19-81-2022, 2022
Short summary
Short summary
Cities are particularly affected by climate change. Adaptation strategies require data, models and scenario analyses. This paper characterizes the urban microclimate of a 16 ha study area in Cologne based on a network of 33 calibrated and validated sensors. Using statistical analyses, tests and pairwise comparisons, significant microclimatic differences were identified between a park, courtyard, avenue and narrow street. The data will be used in future to validate an ENVI-met microclimate model.
Nils Eingrüber, Alina Sophie Domm, Wolfgang Korres, and Karl Schneider
EGUsphere, https://doi.org/10.5194/egusphere-2024-697, https://doi.org/10.5194/egusphere-2024-697, 2024
Short summary
Short summary
Climate change adaptation measures like unsealings can reduce urban heat stress. As grass grid pavers have never been parameterized for microclimate model simulations with ENVI-met, a new parameterization was developed based on field measurements. To analyse the cooling potential, scenario analyses were performed for a densely-developed area in Cologne. Statistically significant average cooling effects of up to -11.1 K were found for surface temperature, and up to -2.9 K for 1 m air temperature.
Sabrina Schnitt, Andreas Foth, Heike Kalesse-Los, Mario Mech, Claudia Acquistapace, Friedhelm Jansen, Ulrich Löhnert, Bernhard Pospichal, Johannes Röttenbacher, Susanne Crewell, and Bjorn Stevens
Earth Syst. Sci. Data, 16, 681–700, https://doi.org/10.5194/essd-16-681-2024, https://doi.org/10.5194/essd-16-681-2024, 2024
Short summary
Short summary
This publication describes the microwave radiometric measurements performed during the EUREC4A campaign at Barbados Cloud Observatory (BCO) and aboard RV Meteor and RV Maria S Merian. We present retrieved integrated water vapor (IWV), liquid water path (LWP), and temperature and humidity profiles as a unified, quality-controlled, multi-site data set on a 3 s temporal resolution for a core period between 19 January 2020 and 14 February 2020.
Tobias Böck, Bernhard Pospichal, and Ulrich Löhnert
Atmos. Meas. Tech., 17, 219–233, https://doi.org/10.5194/amt-17-219-2024, https://doi.org/10.5194/amt-17-219-2024, 2024
Short summary
Short summary
In this study, measurement uncertainties from microwave radiometers and their impact on temperature profiling are analyzed. These measurement uncertainties include horizontal inhomogeneities of the atmosphere, pointing errors or tilts of the instrument, physical obstacles which are in the line of sight of the radiometer, and radio frequency interferences. Impacts on temperature profiles from these uncertainties are usually small in real-life scenarios and when obstacles are far enough away.
Jan H. Schween, Camilo del Rio, Juan-Luis García, Pablo Osses, Sarah Westbrook, and Ulrich Löhnert
Atmos. Chem. Phys., 22, 12241–12267, https://doi.org/10.5194/acp-22-12241-2022, https://doi.org/10.5194/acp-22-12241-2022, 2022
Short summary
Short summary
Marine stratocumulus clouds of the eastern Pacific play an essential role in the Earth's climate. These clouds form the major source of water to parts of the extreme dry Atacama Desert at the northern coast of Chile. For the first time these clouds are observed over a whole year with three remote sensing instruments. It is shown how these clouds are influenced by the land–sea wind system and the distribution of ocean temperatures.
Nils Eingrüber, Wolfgang Korres, and Karl Schneider
Adv. Sci. Res., 19, 81–90, https://doi.org/10.5194/asr-19-81-2022, https://doi.org/10.5194/asr-19-81-2022, 2022
Short summary
Short summary
Cities are particularly affected by climate change. Adaptation strategies require data, models and scenario analyses. This paper characterizes the urban microclimate of a 16 ha study area in Cologne based on a network of 33 calibrated and validated sensors. Using statistical analyses, tests and pairwise comparisons, significant microclimatic differences were identified between a park, courtyard, avenue and narrow street. The data will be used in future to validate an ENVI-met microclimate model.
Julian Steinheuer, Carola Detring, Frank Beyrich, Ulrich Löhnert, Petra Friederichs, and Stephanie Fiedler
Atmos. Meas. Tech., 15, 3243–3260, https://doi.org/10.5194/amt-15-3243-2022, https://doi.org/10.5194/amt-15-3243-2022, 2022
Short summary
Short summary
Doppler wind lidars (DWLs) allow the determination of wind profiles with high vertical resolution and thus provide an alternative to meteorological towers. We address the question of whether wind gusts can be derived since they are short-lived phenomena. Therefore, we compare different DWL configurations and develop a new method applicable to all of them. A fast continuous scanning mode that completes a full observation cycle within 3.4 s is found to be the best-performing configuration.
David D. Turner and Ulrich Löhnert
Atmos. Meas. Tech., 14, 3033–3048, https://doi.org/10.5194/amt-14-3033-2021, https://doi.org/10.5194/amt-14-3033-2021, 2021
Short summary
Short summary
Temperature and humidity profiles in the lowest couple of kilometers near the surface are very important for many applications. Passive spectral radiometers are commercially available, and observations from these instruments have been used to get these profiles. However, new active lidar systems are able to measure partial profiles of water vapor. This paper investigates how the derived profiles of water vapor and temperature are improved when the active and passive observations are combined.
Tim G. Reichenau, Wolfgang Korres, Marius Schmidt, Alexander Graf, Gerhard Welp, Nele Meyer, Anja Stadler, Cosimo Brogi, and Karl Schneider
Earth Syst. Sci. Data, 12, 2333–2364, https://doi.org/10.5194/essd-12-2333-2020, https://doi.org/10.5194/essd-12-2333-2020, 2020
Tatiana Nomokonova, Kerstin Ebell, Ulrich Löhnert, Marion Maturilli, and Christoph Ritter
Atmos. Chem. Phys., 20, 5157–5173, https://doi.org/10.5194/acp-20-5157-2020, https://doi.org/10.5194/acp-20-5157-2020, 2020
Short summary
Short summary
This paper presents an influence of water vapor anomalies on cloud properties and their radiative effect at Ny-Ålesund. The study is based on a 2.5-year active and passive cloud observation and a radiative transfer model. The results show that moist and dry conditions are related to strong changes in cloud occurrence, phase partitioning, water path, and, consequently, modulate the surface radiative budget.
Rosa Gierens, Stefan Kneifel, Matthew D. Shupe, Kerstin Ebell, Marion Maturilli, and Ulrich Löhnert
Atmos. Chem. Phys., 20, 3459–3481, https://doi.org/10.5194/acp-20-3459-2020, https://doi.org/10.5194/acp-20-3459-2020, 2020
Short summary
Short summary
Multiyear statistics of persistent low-level mixed-phase clouds observed at an Arctic fjord environment in Svalbard are presented. The effects the local boundary layer (i.e. the fjords' wind climate and surface coupling), regional wind direction, and seasonality have on the cloud occurrence and properties are evaluated using a synergy of ground-based remote sensing methods and auxiliary data. The phenomena considered were found to modify the amount of liquid and ice in the studied clouds.
Tobias Marke, Ulrich Löhnert, Vera Schemann, Jan H. Schween, and Susanne Crewell
Atmos. Chem. Phys., 20, 1723–1736, https://doi.org/10.5194/acp-20-1723-2020, https://doi.org/10.5194/acp-20-1723-2020, 2020
Short summary
Short summary
In this study, land surface and atmosphere interactions are addressed using ground-based remote sensing, satellite products, and high-resolution large-eddy simulations. The focus is on water vapor transport from the surface into the atmosphere. Patterns found in long-term observations can be linked to properties of the surrounding land surface. The simulation results suggest that a different distribution of land use types has implications for boundary layer characteristics and clouds.
Tatiana Nomokonova, Kerstin Ebell, Ulrich Löhnert, Marion Maturilli, Christoph Ritter, and Ewan O'Connor
Atmos. Chem. Phys., 19, 4105–4126, https://doi.org/10.5194/acp-19-4105-2019, https://doi.org/10.5194/acp-19-4105-2019, 2019
Short summary
Short summary
In this study, properties of clouds at the French–German Arctic research station in Ny-Ålesund are related to in-cloud thermodynamic conditions. The dataset used was collected within the Arctic Amplification project with a set of active and passive remote instruments. The results are compared with a model output. Significant divergence in observations and modelling of single-layer ice and mixed-phase clouds was found.
Francesco De Angelis, Domenico Cimini, Ulrich Löhnert, Olivier Caumont, Alexander Haefele, Bernhard Pospichal, Pauline Martinet, Francisco Navas-Guzmán, Henk Klein-Baltink, Jean-Charles Dupont, and James Hocking
Atmos. Meas. Tech., 10, 3947–3961, https://doi.org/10.5194/amt-10-3947-2017, https://doi.org/10.5194/amt-10-3947-2017, 2017
Short summary
Short summary
Modern data assimilation systems require knowledge of the typical differences between observations and model background (O–B). This work illustrates a 1-year O–B analysis for ground-based microwave radiometer (MWR) observations in clear-sky conditions for a prototype network of six MWRs in Europe. Observations are MWR brightness temperatures (TB). Background profiles extracted from the output of a convective-scale model are used to simulate TB through the radiative transfer model RTTOV-gb.
Claudia Acquistapace, Stefan Kneifel, Ulrich Löhnert, Pavlos Kollias, Maximilian Maahn, and Matthias Bauer-Pfundstein
Atmos. Meas. Tech., 10, 1783–1802, https://doi.org/10.5194/amt-10-1783-2017, https://doi.org/10.5194/amt-10-1783-2017, 2017
Short summary
Short summary
The goal of the paper is to understand what the optimal cloud radar settings for drizzle detection are. The number of cloud radars in the world has increased in the last 10 years and it is important to develop strategies to derive optimal settings which can be applied to all radar systems. The study is part of broader research focused on better understanding the microphysical process of drizzle growth using ground-based observations.
Andreas Macke, Patric Seifert, Holger Baars, Christian Barthlott, Christoph Beekmans, Andreas Behrendt, Birger Bohn, Matthias Brueck, Johannes Bühl, Susanne Crewell, Thomas Damian, Hartwig Deneke, Sebastian Düsing, Andreas Foth, Paolo Di Girolamo, Eva Hammann, Rieke Heinze, Anne Hirsikko, John Kalisch, Norbert Kalthoff, Stefan Kinne, Martin Kohler, Ulrich Löhnert, Bomidi Lakshmi Madhavan, Vera Maurer, Shravan Kumar Muppa, Jan Schween, Ilya Serikov, Holger Siebert, Clemens Simmer, Florian Späth, Sandra Steinke, Katja Träumner, Silke Trömel, Birgit Wehner, Andreas Wieser, Volker Wulfmeyer, and Xinxin Xie
Atmos. Chem. Phys., 17, 4887–4914, https://doi.org/10.5194/acp-17-4887-2017, https://doi.org/10.5194/acp-17-4887-2017, 2017
Short summary
Short summary
This article provides an overview of the instrumental setup and the main results obtained during the two HD(CP)2 Observational Prototype Experiments HOPE-Jülich and HOPE-Melpitz conducted in Germany in April–May and Sept 2013, respectively. Goal of the field experiments was to provide high-resolution observational datasets for both, improving the understaning of boundary layer and cloud processes, as well as for the evaluation of the new ICON model that is run at 156 m horizontal resolution.
María Barrera-Verdejo, Susanne Crewell, Ulrich Löhnert, Emiliano Orlandi, and Paolo Di Girolamo
Atmos. Meas. Tech., 9, 4013–4028, https://doi.org/10.5194/amt-9-4013-2016, https://doi.org/10.5194/amt-9-4013-2016, 2016
M. Barrera-Verdejo, S. Crewell, U. Löhnert, E. Orlandi, and P. Di Girolamo
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-5467-2015, https://doi.org/10.5194/amtd-8-5467-2015, 2015
Revised manuscript not accepted
S. Steinke, S. Eikenberg, U. Löhnert, G. Dick, D. Klocke, P. Di Girolamo, and S. Crewell
Atmos. Chem. Phys., 15, 2675–2692, https://doi.org/10.5194/acp-15-2675-2015, https://doi.org/10.5194/acp-15-2675-2015, 2015
J. H. Schween, A. Hirsikko, U. Löhnert, and S. Crewell
Atmos. Meas. Tech., 7, 3685–3704, https://doi.org/10.5194/amt-7-3685-2014, https://doi.org/10.5194/amt-7-3685-2014, 2014
Short summary
Short summary
Two different methods for the determination of the mixing layer height (MLH) are investigated with a one-year data set from central Europe: (i) based on a significant gradient of backscatter and (ii) on the vertical velocity. The aerosol-based method shows significant over-estimation in the morning hours when the ML grows into the residual layer and late afternoon hours when turbulent mixing decays. This results in systematic over-estimation of average characteristcs as e.g. maximum MLH.
A. Battaglia, C. D. Westbrook, S. Kneifel, P. Kollias, N. Humpage, U. Löhnert, J. Tyynelä, and G. W. Petty
Atmos. Meas. Tech., 7, 1527–1546, https://doi.org/10.5194/amt-7-1527-2014, https://doi.org/10.5194/amt-7-1527-2014, 2014
G. Maschwitz, U. Löhnert, S. Crewell, T. Rose, and D. D. Turner
Atmos. Meas. Tech., 6, 2641–2658, https://doi.org/10.5194/amt-6-2641-2013, https://doi.org/10.5194/amt-6-2641-2013, 2013
P. D. Wagner, S. Kumar, and K. Schneider
Hydrol. Earth Syst. Sci., 17, 2233–2246, https://doi.org/10.5194/hess-17-2233-2013, https://doi.org/10.5194/hess-17-2233-2013, 2013
V. Meunier, U. Löhnert, P. Kollias, and S. Crewell
Atmos. Meas. Tech., 6, 1171–1187, https://doi.org/10.5194/amt-6-1171-2013, https://doi.org/10.5194/amt-6-1171-2013, 2013
Cited articles
Bruse, M.: ENVI-met Version 5.0: updated model overview. University of
Bochum, https://www.envi-met.com/, last access: 30 December 2022.
Chatzinikolaou, E., Chalkias, C., and Dimopoulou, E.: URBAN MICROCLIMATE IMPROVEMENT USING ENVI-MET CLIMATE MODEL, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4, 69–76, https://doi.org/10.5194/isprs-archives-XLII-4-69-2018, 2018.
Cortes, A., Rejuso, A. J., Santos, J. A., and Blanco, A.: Evaluating
mitigation strategies for urban heat island in Mandaue City using ENVI-met,
Journal of Urban Management, 11, 97–106,
https://doi.org/10.1016/j.jum.2022.01.002, 2022.
Crank, P. J., Sailor, D. J., Ban-Weiss, G., and Taleghani, M.: Evaluating
the ENVI-met microscale model for suitability in analysis of targeted urban
heat mitigation strategies, Urban Climate, 26, 188–197,
https://doi.org/10.1016/j.uclim.2018.09.002, 2018.
Eingrüber, N. and Korres, W.: Climate change simulation and trend
analysis of extreme precipitation and floods in the mesoscale Rur catchment
in western Germany until 2099 using Statistical Downscaling Model (SDSM) and
the Soil & Water Assessment Tool (SWAT model), Sci. Total
Environ., 838, 155775, https://doi.org/10.1016/j.scitotenv.2022.155775,
2022.
Eingrüber, N., Korres, W., and Schneider, K.: Pathways for climate change adaptation in urban areas - first results from field measurements and ENVI-met modeling, EMS Annual Meeting 2021, online, 6–10 Sep 2021, EMS2021-374, https://doi.org/10.5194/ems2021-374, 2021.
Eingrüber, N., Korres, W., and Schneider, K.: Microclimatic field measurements to support microclimatological modelling with ENVI-met for an urban study area in Cologne, Adv. Sci. Res., 19, 81–90, https://doi.org/10.5194/asr-19-81-2022, 2022.
Kotharkar, R., Bagade, A., and Singh, P. R.: A systematic approach for urban
heat island mitigation strategies in critical local climate zones of an
Indian city, Urban Climate, 34, 100701,
https://doi.org/10.1016/j.uclim.2020.100701, 2020.
Liu, Z., Cheng, W., Jim, C. Y., Morakinyo, T. E., Shi, Y., and Ng, E.: Heat
mitigation benefits of urban green and blue infrastructures: A systematic
review of modeling techniques, validation and scenario simulation in
ENVI-met V4, Build. Environ., 200, 107939,
https://doi.org/10.1016/j.buildenv.2021.107939, 2021.
Perini, K., Calise, C., Castellari, P., and Roccotiello, E.: Microclimatic
and Environmental Improvement in a Mediterranean City through the
Regeneration of an Area with Nature-Based Solutions: A Case Study,
Sustainability, 14, 5847, https://doi.org/10.3390/su14105847, 2022.
Yang, J., Zhao, Y., Zou, Y., Xia, D., Lou, S., Guo, T., and Zhong, Z.:
Improving the Thermal Comfort of an Open Space via Landscape Design: A Case
Study in Hot and Humid Areas, Atmosphere, 13, 1604,
https://doi.org/10.3390/atmos13101604, 2022.
Short summary
Sensitivity analyses for wind direction effects upon an ENVI-met microclimate model were performed for a heterogeneous urban study area. Significant temperature differences were found when forcing the model with constant N/E/S/W wind direction data. Best model performance was observed using measured wind direction forcing data. The results demonstrate that cooling effects of park areas are largely directional which is important for urban planning and design of climate change adaptation measures.
Sensitivity analyses for wind direction effects upon an ENVI-met microclimate model were...