Mesoscale weather influenced by auroral gravity waves contributing to conditional symmetric instability release?
Physics Department, University of New Brunswick, Fredericton, NB, Canada
Related authors
Paul Prikryl, David R. Themens, Jaroslav Chum, Shibaji Chakraborty, Robert G. Gillies, and James M. Weygand
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-6, https://doi.org/10.5194/angeo-2024-6, 2024
Preprint under review for ANGEO
Short summary
Short summary
Travelling ionospheric disturbances are plasma density fluctuations usually driven by atmospheric gravity waves in the neutral atmosphere. The aim of this study is to attribute multi-instrument observations of travelling ionospheric disturbances to gravity waves generated in the upper atmosphere at high latitudes or gravity waves generated by tropospheric weather systems at mid latitudes.
Paul Prikryl, Robert G. Gillies, David R. Themens, James M. Weygand, Evan G. Thomas, and Shibaji Chakraborty
Ann. Geophys., 40, 619–639, https://doi.org/10.5194/angeo-40-619-2022, https://doi.org/10.5194/angeo-40-619-2022, 2022
Short summary
Short summary
The solar wind interaction with Earth’s magnetic field deposits energy into the upper portion of the atmosphere at high latitudes. The coupling process that modulates the ionospheric convection and intensity of ionospheric currents leads to formation of densely ionized patches convecting across the polar cap. The ionospheric currents launch traveling ionospheric disturbances (TIDs) propagating equatorward. The polar cap patches and TIDs are then observed by networks of radars and GPS receivers.
Paul Prikryl, Vojto Rušin, Emil A. Prikryl, Pavel Šťastný, Maroš Turňa, and Martina Zeleňáková
Ann. Geophys., 39, 769–793, https://doi.org/10.5194/angeo-39-769-2021, https://doi.org/10.5194/angeo-39-769-2021, 2021
Short summary
Short summary
Climate change is affecting the stability of the atmosphere and increasing the occurrence of extreme rainfall and floods, which pose natural hazards with major socio-economic and health impacts. We show that such events tend to follow arrivals of high-speed solar wind. The role of atmospheric waves generated in the auroral region as the mechanism mediating the influence of solar wind coupling to the magnetosphere–ionosphere–atmosphere system on the troposphere is highlighted.
Paul Prikryl, David R. Themens, Jaroslav Chum, Shibaji Chakraborty, Robert G. Gillies, and James M. Weygand
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-6, https://doi.org/10.5194/angeo-2024-6, 2024
Preprint under review for ANGEO
Short summary
Short summary
Travelling ionospheric disturbances are plasma density fluctuations usually driven by atmospheric gravity waves in the neutral atmosphere. The aim of this study is to attribute multi-instrument observations of travelling ionospheric disturbances to gravity waves generated in the upper atmosphere at high latitudes or gravity waves generated by tropospheric weather systems at mid latitudes.
Paul Prikryl, Robert G. Gillies, David R. Themens, James M. Weygand, Evan G. Thomas, and Shibaji Chakraborty
Ann. Geophys., 40, 619–639, https://doi.org/10.5194/angeo-40-619-2022, https://doi.org/10.5194/angeo-40-619-2022, 2022
Short summary
Short summary
The solar wind interaction with Earth’s magnetic field deposits energy into the upper portion of the atmosphere at high latitudes. The coupling process that modulates the ionospheric convection and intensity of ionospheric currents leads to formation of densely ionized patches convecting across the polar cap. The ionospheric currents launch traveling ionospheric disturbances (TIDs) propagating equatorward. The polar cap patches and TIDs are then observed by networks of radars and GPS receivers.
Paul Prikryl, Vojto Rušin, Emil A. Prikryl, Pavel Šťastný, Maroš Turňa, and Martina Zeleňáková
Ann. Geophys., 39, 769–793, https://doi.org/10.5194/angeo-39-769-2021, https://doi.org/10.5194/angeo-39-769-2021, 2021
Short summary
Short summary
Climate change is affecting the stability of the atmosphere and increasing the occurrence of extreme rainfall and floods, which pose natural hazards with major socio-economic and health impacts. We show that such events tend to follow arrivals of high-speed solar wind. The role of atmospheric waves generated in the auroral region as the mechanism mediating the influence of solar wind coupling to the magnetosphere–ionosphere–atmosphere system on the troposphere is highlighted.
Cited articles
Bluestein, H. B. and Jain, M. H.: Formation of mesoscale lines of precipitation: Severe squall lines in Oklahoma during the spring, J. Atmos. Sci., 42, 1711–1732, https://doi.org/10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2, 1985.
Browning, K. A. and Wang, C.-G.: Cloud-top striations above ana-cold frontal circulations, Q. J. Roy. Meteorol. Soc., 128, 477–489, https://doi.org/10.1256/003590002321042063, 2002.
Burlaga, L., Sittler, E., Mariani, F., and Schwenn, R.: Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations, J. Geophys. Res., 86, 6673–6684, https://doi.org/10.1029/JA086iA08p06673, 1981.
Chen, T.-C., Yau, M. K., and Kirshbaum, D. J.: Assessment of conditional symmetric instability from global reanalysis data, J. Atmos. Sci., 75, 2425–2443, https://doi.org/10.1175/JAS-D-17-0221.1, 2018.
Chen, T.-C., Di Luca, A., Winger, K., Laprise, R., and Thériault, J. M.: Seasonality of continental extratropical-cyclone wind speeds over northeastern North America, Geophys. Res. Lett., 49, e2022GL098776, https://doi.org/10.1029/2022GL098776, 2022a.
Chen, T.-C., Di Luca, A., and Winger, K.: North America Extratropical Cyclone (NAEC) Catalogue, V3, Borealis, https://doi.org/10.5683/SP3/LH8OBV, 2022b.
Chernokulsky, A., Shikhov, A., Bykov, A., and Azhigov, I.: Satellite-Based Study and Numerical Forecasting of Two Tornado Outbreaks in the Ural Region in June 2017, Atmosphere, 11, 1146, https://doi.org/10.3390/atmos11111146, 2020.
Chimonas, G. and Hines, C. O.: Atmospheric gravity waves launched by auroral currents, Planet. Space Sci., 18, 565–582, https://doi.org/10.1016/0032-0633(70)90132-7, 1970.
Colle, B. A., Yeh, P., Finlon, J. A., McMurdie, L., McDonald, V., and DeLaFrance, A.: An Investigation of a Northeast U.S. Cyclone Event without Well-Defined Snow Banding during IMPACTS, Mon. Weather Rev., 151, 2465–2484, https://doi.org/10.1175/MWR-D-22-0296.1, 2023.
Cowling, D. H., Webb, H. D., and Yeh, K. C.: Group rays of internal gravity waves in a wind-stratified atmosphere, J. Geophys. Res., 76, 213–220, https://doi.org/10.1029/ja076i001p00213, 1971.
DeMaria, M., Franklin, J. L., Onderlinde, M. J., and Kaplan, J.: Operational Forecasting of Tropical Cyclone Rapid Intensification at the National Hurricane Center, Atmosphere, 12, 683, https://doi.org/10.3390/atmos12060683, 2021.
Dixon, R. S., Browning, K. A., and Shutts, G. J.: The mystery of striated cloud heads in satellite imagery, Atmos. Sci. Lett., 1, 1–13, https://doi.org/10.1006/asle.2000.0001, 2000.
Dixon, R. S., Browning, K. A., and Shutts, G. J.: The relation of moist symmetric instability and upper-level potential-vorticity anomalies to the observed evolution of cloud heads, Q. J. Roy. Meteorol. Soc., 128, 839–859, https://doi.org/10.1256/0035900021643719, 2002.
Dorotovič, I., Minarovjech, M., Lorenc, M., and Rybanský, M.: Modified homogeneous data set of coronal intensities, Sol. Phys., 289, 2697–2703, https://doi.org/10.1007/s11207-014-0501-2, 2014.
Dougherty, E.: Characteristics of current and future flood-producing storms in the continental United States, PhD thesis, Colorado State University, https://doi.org/10.5555/AAI28025598, 2020.
Dougherty, E. and Rasmussen, K. L.: Climatology of Flood-Producing Storms and Their Associated Rainfall Characteristics in the United States, Mon. Weather Rev., 147, 3861–3877,, https://doi.org/10.1175/MWR-D-19-0020.1, 2019.
Dougherty, E. and Rasmussen, K. L.: Changes in Future Flash Flood–Producing Storms in the United States, J. Hydrometeorol., 21, 2221–2236,, https://doi.org/10.1175/JHM-D-20-0014.1, 2020.
Dungey, J. W.: Interplanetary Magnetic Field and the Auroral Zones, Phys. Rev. Lett. 6, 47–48, https://doi.org/10.1103/PhysRevLett.6.47, 1961.
Dungey, J. W.: Origin of the concept of reconnection and its application to the magnetopause: A historical view, Physics of the Magnetopause, in: Geophysical Monograph 90, edited by: Song, P., Sonnerup, B. U. O., and Thomsen, M. F., AGU, Washington, D.C., 17–19, https://doi.org/10.1029/GM090p0017, 1995.
Eltayeb, I. A. and McKenzie, J. F.: Critical-level behaviour and wave amplification of a gravity wave incident upon a shear layer, J. Fluid Mech., 72, 661–671, https://doi.org/10.1017/S0022112075003217, 1975.
Feren, G.: The “striated delta” cloud system – a satellite imagery precursor to major cyclogenesis in the eastern Australian – western Tasman Sea region, Weather Forecast., 10, 286–309, 1995.
Ferraris, L., Rudari, R., and Siccardi, F.: The Uncertainty in the Prediction of Flash Floods in the Northern Mediterranean Environment, J. Hydrometeorol., 3, 714–727, 2002.
Gensini, V. A., Gold, D., Allen, J. T., and Barrett, B. S.: Extended U.S. tornado outbreak during late May 2019: A forecast of opportunity, Geophys. Res. Lett., 46, 10150–10158, https://doi.org/10.1029/2019GL084470, 2019.
Glinton, M., Gray, S. L., Chagnon, J. M., and Morcrette, C. J.: Modulation of precipitation by conditional symmetric instability release, Atmos. Res., 185, 186–201, https://doi.org/10.1016/j.atmosres.2016.10.013, 2017.
Gopalswamy, N.: History and development of coronal mass ejections as a key player in solar terrestrial relationship, Geosci. Lett., 3, 8, https://doi.org/10.1186/s40562-016-0039-2, 2016.
Gourley, J. J., Erlingis, J. M., Hong, Y., and Wells, E. B.: Evaluation of Tools Used for Monitoring and Forecasting Flash Floods in the United States, Weather Forecast., 27, 158–173, https://doi.org/10.1175/WAF-D-10-05043.1, 2012.
Greybush, S., Seibert, J., Zhang, Y., and Kumjian, M.: Assessing Practical Predictability of Winter Storms using NWP and Ensemble Data Assimilation, in: EMS Annual Meeting 2023, 4–8 September 2023, Bratislava, Slovakia, EMS2023-565, https://doi.org/10.5194/ems2023-565, 2023.
Greybush, S. J., Saslo, S., and Grumm, R.: Assessing the Ensemble Predictability of Precipitation Forecasts for the January 2015 and 2016 East Coast Winter Storms, Weather Forecast., 32, 1057–1078,, https://doi.org/10.1175/WAF-D-16-0153.1, 2017.
Gyakum, J. R., Carrera, M., Zhang, D.-L., Miller, S., Caveen, J., Benoit, R., Black, T., Buzzi, A., Chouinard, C., Fantini, M., Folloni, C., Katzfey, J. J., Kuo, Y.-H., Lalaurette, F., Low-Nam, S., Mailhot, J., Malguzzi, P., McGregor, J. L., Nakamura, M., Tripoli, G., and Wilson, C.: A regional model intercomparison using a case of explosive oceanic cyclogenesis, Weather Forecast., 11, 521–543, 1996.
Hagiwara, M. and Tanaka, H. L.: A theoretical analysis of the atmospheric gravity wave that connects the thermosphere and the troposphere, Tsukuba Geoenviron. Sci., 16, 1–14, https://doi.org/10.15068/00162379, 2020.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: Complete ERA5 from 1940: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service (C3S) Data Store (CDS) [data set], https://doi.org/10.24381/cds.143582cf, 2017.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hines, C. O.: Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys., 38, 1441–1481, https://doi.org/10.1139/p60-150, 1960.
Hoeksema, J. T., Wilcox, J. M., and Scherrer, P. H.: The structure of the heliospheric current sheet: 1978–1982, J. Geophys. Res., 88, 9910–9918, 1983.
Huang, J., Liu, Y. C.-M., Klecker, B., and Chen, Y.: Coincidence of heliospheric current sheet and stream interface: implications for the origin and evolution of the solar wind, J. Geophys. Res.-Space, 121, 19–29, https://doi.org/10.1002/2015JA021729, 2016a.
Huang, J., Y. Liu, C.-M., Qi, Z., Klecker, B., Marghitu, O., Galvin, A. B., Farrugia, C. J., and Li, X.: A multievent study of the coincidence of heliospheric current sheet and stream interface, J. Geophys. Res.-Space, 121, 10768–10782, https://doi.org/10.1002/2016JA022842, 2016b.
Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J., and Tan, J.: GPM IMERG final precipitation L3 1 day 0.1 degree × 0.1 degree V06, Goddard Earth Sciences Data and Information Services Center [data set], https://doi.org/10.5067/GPM/IMERGDL/DAY/06, 2019.
Hunsucker, R. D.: Atmospheric gravity waves generated in the high-latitude ionosphere: A review, Rev. Geophys., 20, 293–315, https://doi.org/10.1029/RG020i002p00293, 1982.
Jones, W. L.: Reflexion and stability of waves in stably stratified fluids with shear flow: A numerical study, J. Fluid Mech., 34, 609–624, https://doi.org/10.1017/S0022112068002119, 1968.
King, J. H. and Papitashvili, N.: Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res., 110, A02104, https://doi.org/10.1029/2004JA010649, 2005.
Knapp, K. R.: Scientific data stewardship of international satellite cloud climatology project B1 global geostationary observations, J. Appl. Remote Sens., 2, 023548, https://doi.org/10.1117/1.3043461, 2008.
Kocin, P. J. and Uccellini, L. W.: A snowfall impact scale derived from northeast storm snowfall distributions, B. Am. Meteorol. Soc., 85, 177–194, 2004a.
Kocin, P. J. and Uccellini, L. W.: Northeast Snowstorms, in: Volume II: The Cases, Meteor. Monogr. No. 54, American Meteorological Society, ISBN 9781878220646, 2004b.
KOZMOS-online.sk: Modified Homogeneous Data Set, https://www.kozmos-online.sk/slnko/modifikovany-homogenny-rad-modified-homogeneous-data-set/ (last access: 10 July 2024), 2024.
Krieger, A. S., Timothy, A. F., and Roelof, E. C.: A coronal hole and its identification as the source of a high velocity solar wind stream, Sol. Phys., 29, 505–525, https://doi.org/10.1007/BF00150828, 1973.
Kuwano-Yoshida, A. and Enomoto, T.: Predictability of Explosive Cyclogenesis over the Northwestern Pacific Region Using Ensemble Reanalysis, Mon. Weather Rev., 141, 3769–3785,, https://doi.org/10.1175/MWR-D-12-00161.1, 2013.
Lim, E.-P. and Simmonds, I.: Explosive cyclone development in the southern hemisphere and a comparison with northern hemisphere events, Mon. Weather Rev., 130, 2188–2209, https://doi.org/10.1175/1520-0493(2002)130<2188:ECDITS>2.0.CO;2, 2002.
Lu, D., Ding, R., Zhong, Q., Mao, J., Zou, Q., and Li, J.: A rapid intensification warning index for tropical cyclones based on the analog method, Geophys. Res. Lett., 50, e2022GL101951, https://doi.org/10.1029/2022GL101951, 2023.
Mayr, H. G., Harris, I., Varosi, F., and Herrero, F. A.: Global excitation of wave phenomena in a dissipative multiconstituent medium 1. Transfer function of the Earth's thermosphere, J. Geophys. Res., 89, 10929–10959, https://doi.org/10.1029/JA089iA12p10929, 1984a.
Mayr, H. G., Harris, I., Varosi, F., and Herrero, F. A.: Global excitation of wave phenomena in a dissipative multiconstituent medium 2. Impulsive perturbations in the Earth's thermosphere, J. Geophys. Res., 89, 10961–10986, https://doi.org/10.1029/JA089iA12p10961, 1984b.
Mayr, H. G., Talaat, E. R., and Wolven, B. C.: Global propagation of gravity waves generated with the whole atmosphere transfer function model, J. Atmos. Sol.-Terr. Phy., 104, 7–17, https://doi.org/10.1016/j.jastp.2013.08.001, 2013.
McKenzie, J. F.: Reflection and amplification of acoustic-gravity waves at a density and velocity discontinuity, J. Geophys. Res., 77, 2915–2926, https://doi.org/10.1029/ja077i016p02915, 1972.
Mercer, A. and Bates, A.: Meteorological Differences Characterizing Tornado Outbreak Forecasts of Varying Quality, Atmosphere, 10, 16, https://doi.org/10.3390/atmos10010016, 2019.
Miller, D. E., Wang, Z., Trapp, R. J., and Harnos, D. S.: Hybrid prediction of weekly tornado activity out to Week 3: Utilizing weather regimes, Geophys. Res. Lett., 47, e2020GL087253, https://doi.org/10.1029/2020GL087253, 2020.
NASA: OMNIWeb Plus, NASA [data set], http://omniweb.gsfc.nasa.gov (last access: 10 July 2024), 2024.
Prikryl P. and Rušin V.: Occurrence of heavy precipitation influenced by solar wind high-speed streams through vertical atmospheric coupling, Front. Astron. Space Sci., 10, https://doi.org/10.3389/fspas.2023.1196231, 2023.
Prikryl, P., Muldrew, D. B., Sofko, G. J., and Ruohoniemi, J. M.: Solar wind Alfvén waves: A source of pulsed ionospheric convection and atmospheric gravity waves, Ann. Geophys., 23, 401–417, https://doi.org/10.5194/angeo-23-401-2005, 2005.
Prikryl, P., Rušin, V., and Rybanský, M.: The influence of solar wind on extratropical cyclones – Part 1: Wilcox effect revisited, Ann. Geophys., 27, 1–30, https://doi.org/10.5194/angeo-27-1-2009, 2009a.
Prikryl, P., Muldrew, D. B., and Sofko, G. J.: The influence of solar wind on extratropical cyclones – Part 2: A link mediated by auroral atmospheric gravity waves?, Ann. Geophys., 27, 31–57, https://doi.org/10.5194/angeo-27-31-2009, 2009b.
Prikryl, P., Iwao, K., Muldrew, D. B., Rušin, V., Rybanský, M., and Bruntz, R.: A link between high-speed solar wind streams and explosive extratropical cyclones, J. Atmos. Sol.-Terr. Phy., 149, 219–231, https://doi.org/10.1016/j.jastp.2016.04.002, 2016.
Prikryl, P., Bruntz, R., Tsukijihara, T., Iwao, K., Muldrew, D. B., Rušin, V., Rybanský, M., Turňa, M., and Šťastný, P.: Tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control, J. Atmos. Sol.-Terr. Phy., 171, 94–110, https://doi.org/10.1016/j.jastp.2017.07.023, 2018.
Prikryl, P., Nikitina, L., and Rušin, V.: Rapid intensification of tropical cyclones in the context of the solar wind-magnetosphere-ionosphere-atmosphere coupling, J. Atmos. Sol.-Terr. Phy., 183, 36–60, https://doi.org/10.1016/j.jastp.2018.12.009, 2019.
Prikryl, P., Rušin, V., Prikryl, E. A., Šťastný, P., Turňa, M., and Zeleňáková, M.: Heavy rainfall, floods, and flash floods influenced by high-speed solar wind coupling to the magnetosphere–ionosphere–atmosphere system, Ann. Geophys., 39, 769–793, https://doi.org/10.5194/angeo-39-769-2021, 2021a.
Prikryl, P., Rušin, V., and Prikryl, E. A.: High-Rate Precipitation Occurrence Modulated by Solar Wind High-Speed Stream, Atmosphere, 12, 1186, https://doi.org/10.3390/atmos12091186, 2021b.
Prikryl, P., Gillies, R. G., Themens, D. R., Weygand, J. M., Thomas, E. G., and Chakraborty, S.: Multi-instrument observations of polar cap patches and traveling ionospheric disturbances generated by solar wind Alfvén waves coupling to the dayside magnetosphere, Ann. Geophys., 40, 619—639, https://doi.org/10.5194/angeo-40-619-2022, 2022.
Richmond, A. D.: Gravity wave generation, propagation, and dissipation in the thermosphere, J. Geophys. Res., 83, 4131–4145, https://doi.org/10.1029/JA083iA09p04131, 1978.
Rozoff, C. M. and Kossin, J. P.: New Probabilistic Forecast Models for the Prediction of Tropical Cyclone Rapid Intensification, Weather Forecast., 26, 677–689, https://doi.org/10.1175/WAF-D-10-05059.1, 2011.
Rybanský, M.: Coronal index of solar activity, Bull. Astron. Inst. Czechoslov., 28, 367–370, 1975.
Rybanský, M., Rušin, V., and Minarovijech, M.: Coronal index of solar activity, Space Sci. Rev., 95, 227–234, 2001.
Rybanský, M., Rušin, V., Minarovjech, M., Klocok, L., and Cliver, E. W.: Reexamination of the coronal index of solar activity, J. Geophys. Res.-Space, 110, A08106, https://doi.org/10.1029/2005JA011146, 2005.
Sanders, F. and Gyakum, J. R.: Synoptic-dynamic Climatology of the “bomb”, Mon. Weather Rev., 108, 1589–1606, https://doi.org/10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2, 1980.
Sanders, F.: Skill of NMC operational dynamical models in prediction of explosive cyclogenesis, Weather Forecast., 2, 322–336, 1987.
Schultz, D. M. and Schumacher, P. N.: The use and misuse of conditional symmetric instability, Mon. Weather Rev., 127, 2709–2732, 1999.
Schultz, D. M., Bosart, L. F., Colle, B. A., Davies, H. C., Dearden, C., Keyser, D., Martius, O., Roebber, P. J., Steenburgh, W. J., Volkert, H., and Winters, A. C.: Extratropical Cyclones: A Century of Research on Meteorology's Centerpiece, Meteorol. Monogr., 59, 16.1–16.56,, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0015.1. 2019.
Smith, E. J. and Wolfe, J. H.: Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11, Geophys. Res. Lett., 3, 137–140, https://doi.org/10.1029/GL003i003p00137, 1976.
Smith, E. J., Tsurutani, B. T., and Rosenberg, R. L.: Observations of the interplanetary sector structure up to heliographic latitudes of 16: Pioneer 11, J. Geophys. Res., 83, 717–724, 1978.
Squires, M. F., Lawrimore, J. H., Heim Jr., R. R., Robinson, D. A., Gerbush, M. R., and Estilow, T. W.: The regional snowfall index, B. Am. Meteorol. Soc., 95, 1835–1848, https://doi.org/10.1175/BAMS-D-13-00101.1, 2014.
Svalgaard, L.: On the use of Godhavn H component as an indicator of the interplanetary sector polarity, J. Geophys. Res., 80, 2717– 2722, https://doi.org/10.1029/JA080i019p02717, 1975.
Terti, G., Ruin, I., Gourley, J. J., Kirstetter, P., Flamig, Z., Blanchet, J., Arthur, A., and Anquetin, S.: Toward Probabilistic Prediction of Flash Flood Human Impacts, Risk Anal., 39, 140–161, https://doi.org/10.1111/risa.12921, 2019.
Tsurutani, B. T. and Gonzalez, W. D.: The cause of high-intensity long-duration continuous AE activity (HILDCAAs): Interplanetary Alfvén wave trains, Planet. Space Sci., 35, 405–412, https://doi.org/10.1016/0032-0633(87)90097-3, 1987.
Tsurutani, B. T., Gould, T., Goldstein, B. E., Gonzalez, W. D., and Sugiura, M.: Interplanetary Alfvén waves and auroral (substorm) activity: Imp 8, J. Geophys. Res., 95, 2241–2252, https://doi.org/10.1029/ja095ia03p02241, 1990.
Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Tang, F., Arballo, J. K., and Okada, M.: Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle, J. Geophys. Res.-Space, 100, 21717–21733, https://doi.org/10.1029/95ja01476, 1995.
Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Guarnieri, F. L., Gopalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., Mann, I., McPherron, R., Soraas, F., and Vasyliunas, V.:: Corotating solar wind streams and recurrent geomagnetic activity: A review, J. Geophys. Res., 111, A07S01, https://doi.org/10.1029/2005JA011273, 2006.
Tsurutani, B. T., Hajra, R., Tanimori, T., Takada, A., Remya, B., Mannucci, A. J., Lakhina, G. S., Kozyra, J. U., Shiokawa, K., Lee, L. C., Echer, E., Reddy, R. V., and Gonzalez, W. D.: Heliospheric plasma sheet (HPS) impingement onto the magnetosphere as a cause of relativistic electron dropouts (REDs) via coherent EMIC wave scattering with possible consequences for climate change mechanisms, J. Geophys. Res.-Space, 121, 10130–10156, https://doi.org/10.1002/2016JA022499, 2016.
Tsurutani, B. T., Lakhina, G. S., Sen, A., Hellinger, P., Glassmeier, K.-H., and Mannucci, A. J.: A review of Alfvénic turbulence in high-speed solar wind streams: Hints from cometary plasma turbulence, J. Geophys. Res.-Space, 123, 2458–2492, https://doi.org/10.1002/2017JA024203, 2018.
Varcie, M. M., Zaremba, T. J., Rauber, R. M, McFarquhar, G. M., Finlon, J. A., McMurdie, L. A., Ryzhkov, A., Schnaiter, M., Järvinen, E., Waitz, F., Delene, D. J., Poellot, M. R., McLinden, M. L. W., and Janiszeski, A.: Precipitation Growth Processes in the Comma-Head Region of the 7 February 2020 Northeast Snowstorm: Results from IMPACTS, J. Atmos. Sci., 80, 3–29, https://doi.org/10.1175/JAS-D-22-0118.1, 2023.
Short summary
We consider possible influence on severe weather occurrence by aurorally excited atmospheric gravity waves generated by solar wind coupling to the magnetosphere-ionosphere-atmosphere system. The results indicate that these gravity waves contribute to the release of instabilities in frontal zones of extratropical cyclones leading to convection and heavy precipitation. It is observed that severe snowstorms and flash floods tend to occur following arrivals of solar wind high-speed streams.
We consider possible influence on severe weather occurrence by aurorally excited atmospheric...