Occurrence of tornado outbreaks influenced by solar wind–magnetosphere–ionosphere–atmosphere coupling
Physics Department, University of New Brunswick, Fredericton, NB, Canada
Vojto Rušin
Astronomical Institute, Slovak Academy of Sciences, Tatranská Lomnica, Slovakia
Related authors
Paul Prikryl
Adv. Sci. Res., 21, 1–17, https://doi.org/10.5194/asr-21-1-2024, https://doi.org/10.5194/asr-21-1-2024, 2024
Short summary
Short summary
We consider possible influence on severe weather occurrence by aurorally excited atmospheric gravity waves generated by solar wind coupling to the magnetosphere-ionosphere-atmosphere system. The results indicate that these gravity waves contribute to the release of instabilities in frontal zones of extratropical cyclones leading to convection and heavy precipitation. It is observed that severe snowstorms and flash floods tend to occur following arrivals of solar wind high-speed streams.
Paul Prikryl, David R. Themens, Jaroslav Chum, Shibaji Chakraborty, Robert G. Gillies, and James M. Weygand
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-6, https://doi.org/10.5194/angeo-2024-6, 2024
Revised manuscript accepted for ANGEO
Short summary
Short summary
Travelling ionospheric disturbances are plasma density fluctuations usually driven by atmospheric gravity waves in the neutral atmosphere. The aim of this study is to attribute multi-instrument observations of travelling ionospheric disturbances to gravity waves generated in the upper atmosphere at high latitudes or gravity waves generated by tropospheric weather systems at mid latitudes.
Paul Prikryl, Robert G. Gillies, David R. Themens, James M. Weygand, Evan G. Thomas, and Shibaji Chakraborty
Ann. Geophys., 40, 619–639, https://doi.org/10.5194/angeo-40-619-2022, https://doi.org/10.5194/angeo-40-619-2022, 2022
Short summary
Short summary
The solar wind interaction with Earth’s magnetic field deposits energy into the upper portion of the atmosphere at high latitudes. The coupling process that modulates the ionospheric convection and intensity of ionospheric currents leads to formation of densely ionized patches convecting across the polar cap. The ionospheric currents launch traveling ionospheric disturbances (TIDs) propagating equatorward. The polar cap patches and TIDs are then observed by networks of radars and GPS receivers.
Paul Prikryl, Vojto Rušin, Emil A. Prikryl, Pavel Šťastný, Maroš Turňa, and Martina Zeleňáková
Ann. Geophys., 39, 769–793, https://doi.org/10.5194/angeo-39-769-2021, https://doi.org/10.5194/angeo-39-769-2021, 2021
Short summary
Short summary
Climate change is affecting the stability of the atmosphere and increasing the occurrence of extreme rainfall and floods, which pose natural hazards with major socio-economic and health impacts. We show that such events tend to follow arrivals of high-speed solar wind. The role of atmospheric waves generated in the auroral region as the mechanism mediating the influence of solar wind coupling to the magnetosphere–ionosphere–atmosphere system on the troposphere is highlighted.
Paul Prikryl
Adv. Sci. Res., 21, 1–17, https://doi.org/10.5194/asr-21-1-2024, https://doi.org/10.5194/asr-21-1-2024, 2024
Short summary
Short summary
We consider possible influence on severe weather occurrence by aurorally excited atmospheric gravity waves generated by solar wind coupling to the magnetosphere-ionosphere-atmosphere system. The results indicate that these gravity waves contribute to the release of instabilities in frontal zones of extratropical cyclones leading to convection and heavy precipitation. It is observed that severe snowstorms and flash floods tend to occur following arrivals of solar wind high-speed streams.
Paul Prikryl, David R. Themens, Jaroslav Chum, Shibaji Chakraborty, Robert G. Gillies, and James M. Weygand
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-6, https://doi.org/10.5194/angeo-2024-6, 2024
Revised manuscript accepted for ANGEO
Short summary
Short summary
Travelling ionospheric disturbances are plasma density fluctuations usually driven by atmospheric gravity waves in the neutral atmosphere. The aim of this study is to attribute multi-instrument observations of travelling ionospheric disturbances to gravity waves generated in the upper atmosphere at high latitudes or gravity waves generated by tropospheric weather systems at mid latitudes.
Paul Prikryl, Robert G. Gillies, David R. Themens, James M. Weygand, Evan G. Thomas, and Shibaji Chakraborty
Ann. Geophys., 40, 619–639, https://doi.org/10.5194/angeo-40-619-2022, https://doi.org/10.5194/angeo-40-619-2022, 2022
Short summary
Short summary
The solar wind interaction with Earth’s magnetic field deposits energy into the upper portion of the atmosphere at high latitudes. The coupling process that modulates the ionospheric convection and intensity of ionospheric currents leads to formation of densely ionized patches convecting across the polar cap. The ionospheric currents launch traveling ionospheric disturbances (TIDs) propagating equatorward. The polar cap patches and TIDs are then observed by networks of radars and GPS receivers.
Paul Prikryl, Vojto Rušin, Emil A. Prikryl, Pavel Šťastný, Maroš Turňa, and Martina Zeleňáková
Ann. Geophys., 39, 769–793, https://doi.org/10.5194/angeo-39-769-2021, https://doi.org/10.5194/angeo-39-769-2021, 2021
Short summary
Short summary
Climate change is affecting the stability of the atmosphere and increasing the occurrence of extreme rainfall and floods, which pose natural hazards with major socio-economic and health impacts. We show that such events tend to follow arrivals of high-speed solar wind. The role of atmospheric waves generated in the auroral region as the mechanism mediating the influence of solar wind coupling to the magnetosphere–ionosphere–atmosphere system on the troposphere is highlighted.
Cited articles
Afraimovich, E. L., Kosogorov, E. A., Leonovich, L. A., Palamartchouk, K. S., Perevalova, N. P., and Pirog, O. M.: Determining parameters of large-scale traveling ionospheric disturbances of auroral origin using GPS-arrays, J. Atmos. Sol.-Terr. Phy., 62, 553–565, https://doi.org/10.1016/S1364-6826(00)00011-0, 2000.
Agee, E., Larson, J., Childs, S., and Marmo, A.: Spatial Redistribution of U.S. Tornado Activity between 1954 and 2013, J. Appl. Meteorol. Clim., 55, 1681–1697, 2016.
Ambrož, P.: Statistical method of superposition of epochs. I-Methodical analysis and some criteria of application, Bull. Astron. Inst. Czechoslov., 30, 114–121, 1979.
Arge, C. N. and Pizzo, V. J.: Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates, J. Geophys. Res., 105, 10465–10479, https://doi.org/10.1029/1999JA000262, 2000.
Arge, C. N., Odstricil, D., Pizzo, V. J., and Mayer, L. R.: Improved method for specifying solar wind speed near the sun, in: AIP conference proceedings, 679, 190–193, https://doi.org/10.1063/1.1618574, 2003.
Belcher, J. W. and Davis Jr., L.: Large-amplitude Alfvén waves in the interplanetary medium, J. Geophys. Res., 76, 3534–3563, https://doi.org/10.1029/JA076i016p03534, 1971.
Bolton, N., Elsomb, D. M., and Meaden, G. T.: Forecasting tornadoes in the United Kingdom, Atmos. Res., 67–68, 53–72, https://doi.org/10.1016/S0169-8095(03)00083-8, 2003.
Bristow, W. A., Greenwald, R. A., and Villain, J. P.: On the seasonal dependence of medium-scale atmospheric gravity waves in the upper atmosphere at high latitudes, J. Geophys. Res., 101, 15685–15699, https://doi.org/10.1029/96JA01010, 1996.
Brooks, H. E. and Doswell III, C. A.: Normalized Damage from Major Tornadoes in the United States: 1890–1999, Weather Forecast., 16, 168–176, https://doi.org/10.1175/1520-0434(2001)016<0168:NDFMTI>2.0.CO;2, 2001.
Brooks, H. E., Carbin, G. W., and Marsh, P. T.: Increased variability of tornado occurrence in the United States, Science, 346, 349–352, https://doi.org/10.1126/science.1257460, 2014.
Bunkers, M. J.: Vertical Wind Shear Associated with Left-Moving Supercells, Weather Forecast., 17, 845–855, https://doi.org/10.1175/1520-0434(2002)017<0845:VWSAWL>2.0.CO;2, 2002.
Bunkers, M. J., Klimowski, B. A., Zeitler, J. W., Thompson, R. L., and Weisman, M. L.: Predicting Supercell Motion Using a New Hodograph Technique, Weather Forecast., 15, 61–79, https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2, 2000.
Bunkers, M. J., Wilson, M. B., Van Den Broeke, M. S., and Healey, D. J.: Scan-by-Scan Storm-Motion Deviations for Concurrent Tornadic and Nontornadic Supercells, Weather Forecast., 37, 749–770, https://doi.org/10.1175/WAF-D-21-0153.1, 2022.
Chen, T.-C., Yau, M. K., and Kirshbaum, D. J.: Assessment of conditional symmetric instability from global reanalysis data, J. Atmos. Sci., 75, 2425–2443, https://doi.org/10.1175/JAS-D-17-0221.1, 2018.
Cherniak, I. and Zakharenkova, I.: Large-scale traveling ionospheric disturbances origin and propagation: Case study of the December 2015 geomagnetic storm, Space Weather, 16, 1377–1395, https://doi.org/10.1029/2018SW001869, 2018.
Chimonas, G. and Hines, C. O.: Atmospheric gravity waves launched by auroral currents, Planet. Space Sci., 18, 565–582, https://doi.org/10.1016/0032-0633(70)90132-7, 1970.
Corfidi, S. F., Weiss, S. J., Kain, J. S., Corfidi, S. J., Rabin, R. M., and Levit, J. J.: Revisiting the 3–4 April 1974 Super Outbreak of Tornadoes, Weather Forecast., 25, 465–510, https://doi.org/10.1175/2009WAF2222297.1, 2010.
Cowling, D. H., Webb, H. D., and Yeh, K. C.: Group rays of internal gravity waves in a wind stratified atmosphere, J. Geophys. Res., 79, 213–220, https://doi.org/10.1029/JA076i001p00213, 1971.
Cross, H. A., Cavanaugh, D., Buonanno, C. C., and Hyman, A.: The Impact of the Storm Prediction Center's Convective Outlooks and Watches on Emergency Management Operational Planning, J. Oper. Meteorol., 9, 36–46, https://doi.org/10.15191/nwajom.2021.0903, 2021.
Crowley, G. and Williams, P. J. S.: Observations of the source and propagation of atmospheric gravity waves, Nature, 328, 231–233, https://doi.org/10.1038/328231a0, 1987.
Crowley, G. and McCrea, I. W.: A synoptic study of TIDs observed in the UK during the first WAGS campaign, October 10–18, 1985, Radio Sci., 23, 905–917, https://doi.org/10.1029/RS023i006p00905, 1988.
Ćwik, P., McPherson, R. A., and Brooks, H. E.: What Is a Tornado Outbreak?: Perspectives through Time, B. Am. Meteorol. Soc., 102, E817–E835, https://doi.org/10.1175/BAMS-D-20-0076.1, 2021.
Davies-Jones, R.: Streamwise vorticity: The origin of updraft rotation in supercell storms, J. Atmos. Sci., 41, 2991–3006, https://doi.org/10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2, 1984.
Davies-Jones, R.: A review of supercell and tornado dynamics, Atmos. Res., 158–159, 274–291, https://doi.org/10.1016/j.atmosres.2014.04.007, 2015.
Davies-Jones, R. P., Burgess, D. W., and Foster, M.: Test of helicity as a tornado forecast parameter. 16th Conference on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588–592, 1990.
Diffenbaugh, N. S., Scherer, M., and Trapp, R. J.: Robust increases in severe thunderstorm environments in response to greenhouse forcing, P. Natl. Acad. Sci. USA, 110, 16361–16366, 2013.
Dorotovič, I., Minarovjech, M., Lorenc, M., and Rybanský, M.: Modified homogeneous data set of coronal intensities, Solar. Phys., 289, 2697–2703, https://doi.org/10.1007/s11207-014-0501-2, 2014.
Doswell, C. A., Brooks, H. E., and Maddox, R. A.: Flash flood forecasting: An ingredients-based methodology, Weather Forecast., 11, 560–581, https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2, 1996.
Doswell III, C. A., Carbin, G. W., and Brooks, H. E.: The tornadoes of spring 2011 in the USA: An historical perspective, Weather, 67, 88–94, https://doi.org/10.1002/wea.1902, 2012.
Doswell III, C. A., Weiss, S. J., Johns, R. H.: Tornado Forecasting: A Review, in: The Tornado: Its Structure, Dynamics, Prediction, and Hazards, edited by: Church, C., Burgess, D., Doswell, C., and Davies-Jones, R., Geophysical Monograph 79, Amer. Geophys. Union, 557–571, https://doi.org/10.1029/GM079p0557, 2013.
Dungey, J. W.: Interplanetary Magnetic Field and the Auroral Zones, Phys. Rev. Lett., 6, 47–48. https://doi.org/10.1103/PhysRevLett.6.47, 1961.
Dungey, J. W.: Origin of the concept of reconnection and its application to the magnetopause: A historical view, Physics of the Magnetopause. Geophysical Monograph 90, edited by: Song, P., Sonnerup, B. U. O., and Thomsen, M. F., 17–19, AGU, Washington, D.C., 1995.
Elsner, J. B., Elsner, S. C., and Jagger, T. H.: The increasing efficiency of tornado days in the United States, Clim. Dynam., 45, 651–659, https://doi.org/10.1007/s00382-014-2277-3 2015.
Eltayeb, I. A. and McKenzie, J. F.: Critical-level behaviour and wave amplification of a gravity wave incident upon a shear layer, J. Fluid Mech., 72, 661–671, https://doi.org/10.1017/S0022112075003217, 1975.
Emanuel, K. A.: On Assessing Local Conditional Symmetric Instability from Atmospheric Soundings, Mon. Weather Rev., 111, 2016–2033, https://doi.org/10.1175/1520-0493(1983)111<2016:OALCSI>2.0.CO;2, 1983.
Esterheld, J. M. and Giuliano, D. J.: Discriminating between tornadic and non-tornadic supercells: A new hodograph technique, Electronic J. Severe Storms Meteor., 3, 1–50, https://doi.org/10.55599/ejssm.v3i2.15, 2008.
Fawbush, E. J., Miller, R. C., and Starrett, L. G.: An empirical method of forecasting tornado development, B. Am. Meteorol. Soc., 32, 1–9, https://doi.org/10.1175/1520-0477-32.1.1, 1951.
Fujita, T. T. and Stiegler, D.: Detailed analysis of the tornado outbreak in the Carolinas by Using Radar, Satellite, and Aerial Survey Data, 14th Conference on Severe Local Storms, Indianapolis, American Meteorological Society, Boston, 271–274, https://swco-ir.tdl.org/handle/10605/262009 (last access: 15 July 2025), 1985.
Gallo, B. T., Clark, A. J., and Dembek, S. R.: Forecasting Tornadoes Using Convection-Permitting Ensembles, Weather Forecast., 31, 273–295, https://doi.org/10.1175/WAF-D-15-0134.1, 2016.
Galway, J. G.: Relationship of tornado deaths to severe weather watch areas, Mon. Weather Rev. 103, 737–741, https://doi.org/10.1175/1520-0493(1975)103<0737:ROTDTS>2.0.CO;2, 1975.
Galway, J. G.: Some climatological aspects of tornado outbreaks, Mon. Weather Rev., 105, 477–484, https://doi.org/10.1175/1520-0493(1977)105<0477:SCAOTO>2.0.CO;2, 1977.
Glinton, M., Gray, S. L., Chagnon, J. M., and Morcrette, C. J.: Modulation of precipitation by conditional symmetric instability release, Atmos. Res., 185, 186–201, https://doi.org/10.1016/j.atmosres.2016.10.013, 2017.
Gosling, J. T., McComas, D. J., Phillips, J. L., and Bame, S. J.: Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections, J. Geophys. Res., 96, 7831–7839, https://doi.org/10.1029/91JA00316, 1991.
Hagiwara, M. and Tanaka, H. L.: A theoretical analysis of the atmospheric gravity wave that connects the thermosphere and the troposphere, Tsukuba Geoenvironmental Sciences, 16, 1–14, 2020.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2023.
Hines, C. O.: Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys., 38, 1441–1481, https://doi.org/10.1139/p60-150, 1960.
Hines, C. O.: Motions of the neutral atmosphere, in: Physics of the Earth's Upper Atmosphere, edited by: Hines, C. O., Paghis, I., Hartz, T. R., and Fejer, J. A., Prentice-Hall, Inc., London, ISBN-10 0136722792, 1965.
Hocke, K. and Schlegel, K.: A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995, Ann. Geophys., 14, 917–940, https://doi.org/10.1007/s00585-996-0917-6, 1996.
Hoeksema, J. T., Wilcox, J. M., and Scherrer, P. H.: The structure of the heliospheric current sheet: 1978–1982, J. Geophys. Res., 88, 9910–9918, https://doi.org/10.1029/JA088iA12p09910, 1983.
Huang, J., Liu, Y.C.-M., Klecker, B., and Chen, Y.: Coincidence of heliospheric current sheet and stream interface: implications for the origin and evolution of the solar wind, J. Geophys. Res.-Space Phys., 121, 19–29, https://doi.org/10.1002/2015JA021729, 2016a.
Huang, J., Liu, Y. C.-M., Qi, Z., Klecker, B., Marghitu, O., Galvin, A. B., Farrugia, C. J., and Li, X.: A multievent study of the coincidence of heliospheric current sheet and stream interface, J. Geophys. Res.-Space Phys., 121, 10768–10782, https://doi.org/10.1002/2016JA022842, 2016b.
Hunsucker, R. D.: Atmospheric gravity waves generated in the highlatitude ionosphere: a review, Rev. Geophys., 20, 293–315, https://doi.org/10.1029/RG020i002p00293, 1982.
Jones, W. L.: Reflexion and stability of waves in stable stratified fluids with shear flow: numerical study, J. Fluid Mech., 34, 609–624, 1968.
King, J. H. and Papitashvili, N. E.: Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res., 110, A02104, https://doi.org/10.1029/2004JA010649, 2005 (data available at: http://omniweb.gsfc.nasa.gov, last access: 15 July 2025).
Klingler, T. E. and Smith, D. R.: An Analysis of the 28 March 1984 Tornado Outbreak in the Carolinas, Indiana Academy of Science, 94, 555–564, 1984.
KOZMOS: Modified homogeneous data set, KOZMOS [data set], https://www.kozmos-online.sk/slnko/modifikovany-homogenny-rad-modified-homogeneous-data-set/, last access: 15 July 2025.
Knox, J. A., Rackley, J. A., Black, A. W., Gensini, V. A., Butler, M., Dunn, C., Gallo, T., Hunter, M. R., Lindsey, L., Phan, M., Scroggs, R., and Brustad, S.: Tornado debris characteristics and trajectories during the 27 April 2011 Super Outbreak as determined using social media data, B. Am. Meteorol. Soc., 94, 1371–1380, https://doi.org/10.1175/BAMS-D-12-00036.1, 2013.
Lindsay, G. M., Russell, C. T., and Luhmann, J. G.: Coronal mass ejection and stream interaction region characteristics and their potential geomagnetic effectiveness, J. Geophys. Res., 100, 16999–17013, https://doi.org/10.1029/95JA00525, 1995.
Lindzen, R. S. and Barker, J.: Instability and wave over-reflection in stably stratified shear flow, J. Fluid Mech., 151, 189–217, https://doi.org/10.1017/S0022112085000921, 1985.
Mayr, H. G., Harris, I., Varosi, F., and Herrero, F. A.: Global excitation of wave phenomena in a dissipative multiconstituent medium 1. Transfer function of the Earth's thermosphere, J. Geophys. Res., 89, 10929–10959, https://doi.org/10.1029/JA089iA12p10929, 1984a.
Mayr, H. G., Harris, I., Varosi, F., and Herrero, F. A.: Global excitation of wave phenomena in a dissipative multiconstituent medium 2. Impulsive perturbations in the Earth's thermosphere, J. Geophys. Res., 89, 10961–10986, https://doi.org/10.1029/JA089iA12p10961, 1984b.
Mayr, H. G., Harris, I., Herrero, F. A., Spencer, N. W., Varosi, F., and Pesnell, W.D.: Thermospheric gravity waves: Observations and interpretation using the transfer function model, Space Sci. Rev., 54, 297–375, https://doi.org/10.1007/BF00177800, 1990.
Mayr, H. G., Talaat, E. R., and Wolven, B. C.: Global propagation of gravity waves generated with the whole atmosphere transfer function model, J. Atmos. Sol.-Terr. Phy., 104, 7–17, https://doi.org/10.1016/j.jastp.2013.08.001, 2013.
McKenzie, J. F.: Reflection and amplification of acoustic-gravity waves at a density and velocity discontinuity, J. Geophys. Res., 77, 2915–2926, https://doi.org/10.1029/JA077i016p02915, 1972.
Mercer, A. E., Shafer, C. M., Doswell, C. A., Leslie, L. M., and Richman, M. B.: Objective Classification of Tornadic and Nontornadic Severe Weather Outbreaks, Mon. Weather Rev., 137, 4355–4368, https://doi.org/10.1175/2009MWR2897.1, 2009.
Mercer, A. E., Shafer, C. M., Doswell, C. A., Leslie, L. M., and Richman M. B.: Synoptic Composites of Tornadic and Nontornadic Outbreaks, Mon. Weather Rev., 140, 2590–2608, https://doi.org/10.1175/MWR-D-12-00029.1, 2012.
Miller, D. E., Wang, Z., Trapp, R. J., and Harnos, D. S.: Hybrid prediction of weekly tornado activity out to Week 3: Utilizing weather regimes, Geophys. Res. Lett., 47, e2020GL087253, https://doi.org/10.1029/2020GL087253, 2020.
Moller, A. R., Doswell, C. A., Foster, M. P., and Woodall, G. R.: The Operational Recognition of Supercell Thunderstorm Environments and Storm Structures, Weather Forecast., 9, 327–347, https://doi.org/10.1175/1520-0434(1994)009<0327:TOROST>2.0.CO;2, 1994.
NOAA: Severe Weather Database Files (1950–2024), NOAA [data set], https://www.spc.noaa.gov/wcm/#data, last access: 15 July 2025.
Odstrcil, D., Pizzo, V. Linker, J. A., Riley, P., Lionello, R. and Mikic, Z.: Initial coupling of coronal and heliospheric numerical magnetohydrodynamic codes, J. Atmos. Sol.-Terr. Phy., 66, 1311–1320, https://doi.org/10.1016/j.jastp.2004.04.007, 2004.
Owens, M. J., Spence, H. E., McGregor, S., Hughes, W. J., Quinn, J. M., Arge, C. N., Riley, P., Linker, J., and Odstrcil, D.: Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physics-based schemes with 8 years of L1 observations, Space Weather, 6, S08001, https://doi.org/10.1029/2007SW000380, 2008.
Pautz, M. E. (Ed.): Severe local storm occurrences 1955–1967, vol. 12, 1–77, Environmental Science Services Administration, Weather Bureau, 1969.
Pitteway, M. L. V. and Hines, C. O.: The reflection and ducting of atmospheric acoustic-gravity waves, Can. J. Phys., 43, 2222–2243, https://doi.org/10.1139/p65-217, 1965.
Prikryl, P.: Mesoscale weather influenced by auroral gravity waves contributing to conditional symmetric instability release?, Adv. Sci. Res., 21, 1–17, https://doi.org/10.5194/asr-21-1-2024, 2024.
Prikryl, P. and Rušin, V.: Occurrence of heavy precipitation influenced by solar wind high-speed streams through vertical atmospheric coupling, Front. Astron. Space Sci., 10, https://doi.org/10.3389/fspas.2023.1196231, 2023.
Prikryl, P., Muldrew, D. B., Sofko, G. J., and Ruohoniemi, J. M.: Solar wind Alfvén waves: a source of pulsed ionospheric convection and atmospheric gravity waves, Ann. Geophys., 23, 401–417, https://doi.org/10.5194/angeo-23-401-2005, 2005.
Prikryl, P., Muldrew, D. B., and Sofko, G. J.: The influence of solar wind on extratropical cyclones – Part 2: A link mediated by auroral atmospheric gravity waves?, Ann. Geophys., 27, 31–57, https://doi.org/10.5194/angeo-27-31-2009, 2009a.
Prikryl, P., Rušin, V., and Rybanský, M.: The influence of solar wind on extratropical cyclones – Part 1: Wilcox effect revisited, Ann. Geophys., 27, 1–30, https://doi.org/10.5194/angeo-27-1-2009, 2009b.
Prikryl, P., Iwao, K., Muldrew, D. B., Rušin, V., Rybanský, M., and Bruntz, R.: A link between high-speed solar wind streams and explosive extratropical cyclones, J. Atmos. Sol.-Terr. Phy., 149, 219–231, https://doi.org/10.1016/j.jastp.2016.04.002, 2016.
Prikryl, P, Bruntz, R, Tsukijihara, T, Iwao, K, Muldrew, D. B., Rušin, V, Rybanský, M, Turňa, M, Šťastný, P.: Tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control, J. Atmos. Sol.-Terr. Phy., 171, 94–110, https://doi.org/10.1016/j.jastp.2017.07.023, 2018.
Prikryl, P., Nikitina, L., and Rušin, V.: Rapid intensification of tropical cyclones in the context of the solar wind-magnetosphere-ionosphere-atmosphere coupling, J. Atmos. Sol.-Terr. Phy., 183, 36–60, https://doi.org/10.1016/j.jastp.2018.12.009, 2019.
Prikryl, P., Rušin, V., and Prikryl, E. A.: High-Rate Precipitation Occurrence Modulated by Solar Wind High-Speed Streams, Atmosphere, 12, 1186, https://doi.org/10.3390/atmos12091186, 2021a.
Prikryl, P., Rušin, V., Prikryl, E. A., Šťastný, P., Turňa, M., and Zeleňáková, M.: Heavy rainfall, floods, and flash floods influenced by high-speed solar wind coupling to the magnetosphere–ionosphere–atmosphere system, Ann. Geophys., 39, 769–793, https://doi.org/10.5194/angeo-39-769-2021, 2021b.
Púčik, T., Groenemeijer, P., Rýva, D., and Kolář, M.: Proximity soundings of severe and non-severe thunderstorms in central Europe, Mon. Weather Rev., 143, 4805–4821, https://doi.org/10.1175/MWR-D-15-0104.1, 2015.
Púčik, T., Groenemeijer, P., and Tsonevsky, I.: Vertical Wind Shear and Convective Storms, Technical memorandum, European Centre for Medium-Range Weather Forecasts, https://doi.org/10.21957/z0b3t5mrv, 2021.
Richardson, I. G.: The formation of CIRs at stream-stream interfaces and resultant geomagnetic activity, in Recurrent Magnetic Storms: Corotating Solar Wind, AGU monograph, 167, https://doi.org/10.1029/167GM06, 2006.
Richardson, I. G. and Cane, H. V.: Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009), catalog and summary of properties, Sol. Phys., 264, 189–237, https://doi.org/10.1007/s11207-010-9568-6, 2010.
Richardson, I. G., Cliver, E. W., and Cane, H. V.: Sources of geomagnetic activity over the solar cycle: Relative importance of CMEs, high-speed streams, and slow solar wind, J. Geophys. Res., 105, 18203–18213, https://doi.org/10.1029/1999JA000400, 2000.
Richardson, I. G., Cliver, E. W., and Cane, H. V.: Sources of geomagnetic storms for solar minimum and maximum conditions during 1972–2000, Geophys. Res. Lett., 28, 2569–2572, https://doi.org/10.1029/2001GL013052, 2001.
Richmond, A. D.: Gravity wave generation, propagation, and dissipation in the thermosphere, J. Geophys. Res., 83, 4131–4145, https://doi.org/10.1029/JA083iA09p04131, 1978.
Rotunno, R. and Klemp, J. B.: The influence of the shear-induced pressure gradient on thunderstorm motion, Mon. Weather Rev., 110, 136–151, https://doi.org/10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2, 1982.
Rotunno, R. and Klemp, J. B.: On the rotation and propagation of simulated supercell thunderstorms, J. Atmos. Sci., 42, 271–292, https://doi.org/10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2, 1985.
Rybanský, M.: Coronal index of solar activity, Bull. Astron. Inst. Czechoslov., 28, 367–370, 1975.
Rybanský, M., Rušin, V., and Minarovijech, M.: Coronal index of solar activity, Space Sci. Rev., 95, 227–234, 2001.
Rybanský, M., Rušin, V., Minarovjech, M., Klocok, L., and Cliver, E. W.: Reexamination of the coronal index of solar activity, J. Geophys. Res., 110, A08106, https://doi.org/10.1029/2005JA011146, 2005.
Samson, J. C., Greenwald, R. A., Ruohoniemi, J. M., and Baker, K. B.: High-frequency radar observations of atmospheric gravity waves in the high latitude ionosphere, Geophys. Res. Lett., 16, 875–878, https://doi.org/10.1029/GL016i008p00875 1989.
Schultz, D. M. and Schumacher, P. N.: The use and misuse of conditional symmetric instability, Mon. Weather Rev., 127, 2709–2732, https://doi.org/10.1175/1520-0493(1999)127<2709:TUAMOC>2.0.CO;2, 1999.
Shafer, C. M. and Doswell III, C. A.: A multivariate index for ranking and classifying severe weather outbreaks, Electron. J. Severe Storms Meteorol., 5, 1–39, 2010.
Shafer, C. M., Mercer, A. E., Doswell, C. A., Richman, M. B., and Leslie, L. M.: Evaluation of WRF Forecasts of Tornadic and Nontornadic Outbreaks When Initialized with Synoptic-Scale Input, Mon. Weather Rev., 137, 1250–1271, https://doi.org/10.1175/2008MWR2597.1, 2009.
Smith, E. J. and Wolfe, J. H.: Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11, Geophys. Res. Lett., 3, 137–140, https://doi.org/10.1029/gl003i003p00137, 1976.
Smith, E. J., Tsurutani, B. T., and Rosenberg, R. L.: Observations of the interplanetary sector structure up to heliographic latitudes of 16°: Pioneer 11, J. Geophys. Res., 83, 717–724, https://doi.org/10.1029/JA083iA02p00717, 1978.
Svalgaard, L.: On the use of Godhavn H component as an indicator of the interplanetary sector polarity, J. Geophys. Res., 80, 2717–2722, https://doi.org/10.1029/JA080i019p02717, 1975.
Thompson, R. L., Edwards, R., Hart, J. A., Elmore, K. L., and Markowski, P. M.: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle, Weather Forecast., 18, 1243–1261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2, 2003.
Tinsley, B. A.: Solar Activity, Weather, and Climate: The Elusive Connection, B. Am. Meteorol. Soc., 104, E2171–E2191, https://doi.org/10.1175/BAMS-D-23-0065.1, 2023.
Tinsley, B. A.: The influence of the solar wind electric and magnetic fields on the latitude and temporal variations of the current density, JZ, of the global electric circuit, with relevance to weather and climate, J. Atmos. Sol.-Terr. Phys., 265, 106355, https://doi.org/10.1016/j.jastp.2024.106355, 2024.
Tinsley, B. A. and Deen, G. W.: Apparent tropospheric response to MeV-GeV particle flux variations: A connection via electrofreezing of supercooled water in high-level clouds?, J. Geophys. Res., 96, 22283–22296, https://doi.org/10.1029/91JD02473, 1991.
Tippett, M. K.: Changing volatility of U.S. annual tornado reports, Geophys. Res. Lett., 41, 6956–6961, https://doi.org/10.1002/2014GL061347, 2014.
Tippett, M. K., Lepore, C., and Cohen, J. E.: More Tornadoes in the Most Extreme U.S. Tornado Outbreaks, Science, 354, 1419–1423, https://doi.org/10.1126/science.aah7393, 2016.
Tochimoto, E. and Niino, H.: Structural and Environmental Characteristics of Extratropical Cyclones that Cause Tornado Outbreaks in the Warm Sector: A Composite Study, Mon. Weather Rev., 144, 945–969, https://doi.org/10.1175/MWR-D-15-0015.1, 2016.
Tsurutani, B. T. and Gonzalez, W. D.: The cause of High-Intensity, Long-Duration Continuous AE Activity (HILDCAAs): Interplanetary Alfvén wave trains, Planet. Space Sci., 35, 405–412, https://doi.org/10.1016/0032-0633(87)90097-3, 1987.
Tsurutani, B. T., Gould, T., Goldstein, B. E., Gonzalez, W. D., and Sugiura, M.: Interplanetary Alfvén waves and auroral (substorm) activity: IMP-8, J. Geophys. Res., 95, 2241–2252, https://doi.org/10.1029/JA095iA03p02241, 1990.
Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Tang, F., Arballo, J. K., and Okada, M.: Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle, J. Geophys. Res., 100, 21717–21733, https://doi.org/10.1029/95JA01476, 1995.
Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Guarnieri, F. L., Gopalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., Mann, I., McPherron, R., Soraas, F., and Vasyliunas, V.: Corotating solar wind streams and recurrent geomagnetic activity: A review, J. Geophys. Res., 111, A07S01, https://doi.org/10.1029/2005JA011273, 2006a.
Tsurutani, B. T., McPherron, R. L., Gonzalez, W. D., Lu, G., Gopalswamy, N., and Guarnieri, F. L.: Magnetic Storms Caused by Corotating Solar Wind Streams, in Recurrent Magnetic Storms: Corotating Solar Wind, AGU monograph, 167, https://doi.org/10.1029/167GM03, 2006b.
Tsurutani, B. T., Hajra, R., Tanimori, T., Takada, A., Remya, B., Mannucci, A. J., Lakhina, G. S., Kozyra, J. U., Shiokawa, K., Lee, L. C., Echer, E., Reddy, R. V., and Gonzalez, W. D.: Heliospheric plasma sheet (HPS) impingement onto the magnetosphere as a cause of relativistic electron dropouts (REDs) via coherent EMIC wave scattering with possible consequences for climate change mechanisms, J. Geophys. Res., 121, 10130–10156, https://doi.org/10.1002/2016JA022499, 2016.
Verbout, S. M., Brooks, H. E., Leslie, L. M., and Schultz, D. M: Evolution of the US tornado database: 1954–2003, Weather Forecast., 21, 86–93, 2006.
Weisman, M. L. and Rotunno, R.: The Use of Vertical Wind Shear versus Helicity in Interpreting Supercell Dynamics, J. Atmos. Sci., 57, 1452–1472, https://doi.org/10.1175/1520-0469(2000)057<1452:TUOVWS>2.0.CO;2, 2000.
Wilcox, J. M., Scherrer, P. H., Svalgaard, L., Roberts, W. O., and Olson, R. H.: Solar Magnetic Sector Structure: Relation to Circulation of the Earth's Atmosphere, Science, 180, 185–186, https://doi.org/10.1126/science.180.4082.185, 1973.
Wilcox, J. M., Scherrer, P. H., Svalgaard, L., Roberts, W. O., Olson, R. H., and Jenne, R. L.: Influence of Solar Magnetic Sector Structure on Terrestrial Atmospheric Vorticity, J. Atmos. Sci., 31, 581–88, https://doi.org/10.1175/1520-0469(1974)031<0581:IOSMSS>2.0.CO;2, 1974.
Witten, D. E.: May 31, 1985 a Deadly Tornado Outbreak, Weatherwise, 38, 193–198, https://doi.org/10.1080/00431672.1985.9933314, 1985.
Zhang, J., Richardson, I. G., Webb, D. F., Gopalswamy, N., Huttunen, E., Kasper, J. C., Nitta, N. V., Poomvises, W., Thompson, B. J., Wu, C.-C., Yashiro, S., and Zhukov, A. N.: Solar and interplanetary sources of major geomagnetic storms (Dst nT) during 1996–2005, J. Geophys. Res., 112, A10102, https://doi.org/10.1029/2007JA012321, 2007.
Zhao, X. P. and Webb, D. F.: Source regions and storm effectiveness of frontside full halo coronal mass ejections, J. Geophys. Res., 108, 1234, https://doi.org/10.1029/2002JA009606, 2003.
Short summary
A link between the solar wind and the occurrence of large tornado outbreaks is found. The solar wind coupling to the Earth’s magnetic field deposits energy into the upper atmosphere at high latitudes. We consider the role of aurorally generated atmospheric gravity waves in the release of instabilities contributing to development of synoptic-scale weather conditions favoring formation of supercells in a strong wind shear environment and high tornado occurrence.
A link between the solar wind and the occurrence of large tornado outbreaks is found. The solar...