Articles | Volume 6, issue 1
22 Aug 2011
 | 22 Aug 2011

Evaluating meteorological climate model inputs to improve coastal hydrodynamic studies

D. Bellafiore, E. Bucchignani, S. Gualdi, S. Carniel, V. Djurdjeviæ, and G. Umgiesser

Abstract. This work compares meteorological results from different regional climate model (RCM) implementations in the Mediterranean area, with a focus on the northern Adriatic Sea. The need to use these datasets as atmospheric forcings (wind and atmospheric pressure fields) for coastal hydrodynamic models to assess future changes in the coastal hydrodynamics, is the basis of the presented analysis. It would allow the assessment of uncertainties due to atmospheric forcings in providing coastal current, surge and wave climate changes from future implementations of hydrodynamic models.

Two regional climate models, with different spatial resolutions, downscaled from two different global climate models (whose atmospheric components are, respectively, ECHAM4 and ECHAM5), were considered. In particular, the RCM delivered wind and atmospheric pressure fields were compared with measurements at four stations along the Italian Adriatic coast. The analyses were conducted using a past control period, 1960–1990, and the A1B IPCC future scenario (2070–2100). The chosen scenario corresponds to a world of very rapid economic and demographic growth that peaks in mid-century, with a rapid introduction of new efficient technologies, which balance fossil and non-fossil resources (IPCC, 2007). Consideration is given to the accuracy of each model at reproducing the basic statistics and the trends. The role of models' spatial resolution in reproducing global and local scale meteorological processes is also discussed. The Adriatic Sea climate is affected by the orography that produces a strengthening of north-eastern katabatic winds like bora. Therefore, spatial model resolution, both for orography and for a better resolution of coastline (Cavaleri et al., 2010), is one of the important factors in providing more realistic wind forcings for future hydrodynamic models implementations. However, also the characteristics in RCM setup and parameterization can explain differences between the datasets. The analysis from an ensemble of model implementation would provide more robust indications on climatic wind and atmospheric pressure variations. The scenario-control comparison shows a general increase in the mean atmospheric pressure values while a decrease in mean wind speed and in extreme wind events is seen, particularly for the datasets with higher spatial resolution.